Variability results of homogenized cottons by a new laboratory cotton homogenizing machine

Résultats de variabilité de cotonshomogénéisés par le nouveau ouvrier-mélangeur de fibres de coton

GOURLOT J.-P.
Arusha, January 2012

From a joint work by:
A partir d’un travail conjoint de :
Payet L., Gourlot J.- P., Azuara C.
Présenté à l’ITMF, Bremen, March 2010
Plan of presentation

• Introduction
• Homogenizing machine description
• Effect of machine on mixed cottons
• Effect of machine on homogenized cotton
• Conclusion
Plan of presentation

- **Introduction**
- Homogenizing machine description
- Effect of machine on mixed cottons
- Effect of machine on homogenized cotton
- Conclusion
Introduction

• Scope of the study
 – Prepare cottons for round tests
 – Several cottons covering a range of characteristics are tested
 – Goal: Compare every lab result to the labs mean result

 ➔ Avoid raw material variability impact on laboratory results
Introduction

• For any participating cotton
 – proper reading level within a chosen range for
 the required characteristics (many samples, many repetitions)
 – low variability
 • If good level, and low variability → cotton selected
 • If not, according to given thresholds
 – Cotton rejected
 – Cotton could be homogenized

• CFC/ICAC/33 project, Regional round tests in Africa
Introduction

- The homogenizing machine should ensure
 - a gentle processing (mean unchanged)
 - a decrease in within-cotton variability

- an easy processing
- an easy sampling of cotton fibre masses to be sent to every participating lab
Plan of presentation

• Introduction
• Homogenizing machine description
• Effect of machine on mixed cottons
• Effect of machine on homogenized cotton
• Conclusion
The homogenizing machine

Principles:

Outlet → Cotton fibres flow → Inlet

Speed ratio C → Speed ratio B → Speed ratio A

Distance

Adjustable distances

Flexible tube Venturi

Filtration dusts

Plastic bag 800 grams

Feeding table

Device to remove the pression between pairs of cylinders
The homogenizing machine

Picture:
Plan of presentation

- Introduction
- Homogenizing machine description
- **Effect of machine on mixed cottons**
- Effect of machine on homogenized cotton
- Conclusion
Mixing cottons with the machine

- **Objective**
 - Mix 2 types of cottons
 - Observe a difference of variability between “raw” and mixed samples

H0: homogenizing machine reduces the variability of two cottons chosen to be drastically different on their length and strength properties when mixed together

- **Exp. 1** small samples (40 g)
 - 1A: mixing
 - 1B: mixing+“doubling”

- **Exp. 2** larger masses (4 kg)
 - 2A: mixing
 - 2B: mixing+“doubling”
Mixing cottons with the machine

• Materials
 – Cottons: LS and SW stacked up on the feeding table
 – Homogenizing machine:
 » Speed ratios fixed
 » Distances between pairs of cylinders
 » Pressure between cylinders
 » Pressure drop in venturi
 – SITC testing:
 • HVI 1000 M700
 • 2 Mic, 6 LS, 6 CT on 40g or 200g samples
Mixing cottons with the machine: Protocol

Exp. 1A

LS

Homogenizing machine

SW

2x5x 40g
MIXED SAMPLES

"RAW" (stacked up) SAMPLES

SITC

x2
Mixing cottons with the machine: Protocol

Homogenizing machine

2x5x40g MIXED ++ SAMPLES

SITC

"RAW" (stacked up) SAMPLES

Exp. 1B
Mixing cottons with the machine: Protocol

- LS
- SW

Exp. 2A

Homogenizing machine

5x4x200g

MIXED SAMPLES

"RAW" (stacked up) SAMPLES

5x4x

SITC
Mixing cottons with the machine: Protocol

This project is co-funded by the European Union and the Common Fund for Commodities.

Exp. 2B

LS

SW

400g

Homogenizing machine

"RAW" (stacked up)

SAMPLES

MIXED ++ SAMPLES

5x4x200g

SITC

MIXING + DOUBLING
Effect of machine on within-cotton variability: results

• Results
 – Example: strength
Effect of machine on within-cotton variability: results

F-ratio: raw:mixed

if $>1 \rightarrow$ variability tend to decrease
the higher, the more effect of mixing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Variance</th>
<th>F ratio</th>
<th>Pr>F</th>
<th>Trend to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>M</td>
<td>Raw</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>4.32</td>
<td>4.28</td>
<td>0.00221</td>
<td>0.00042</td>
<td>4.9</td>
</tr>
<tr>
<td>UHML mm</td>
<td>27.97</td>
<td>28.31</td>
<td>0.20347</td>
<td>0.05514</td>
<td>3.5</td>
</tr>
<tr>
<td>UI %</td>
<td>80.94</td>
<td>80.63</td>
<td>0.37292</td>
<td>0.14678</td>
<td>2.4</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>28.68</td>
<td>29.37</td>
<td>1.21747</td>
<td>0.25344</td>
<td>4.6</td>
</tr>
<tr>
<td>Rd</td>
<td>77.33</td>
<td>77.51</td>
<td>0.05671</td>
<td>0.04767</td>
<td>1.1</td>
</tr>
<tr>
<td>+b</td>
<td>13.25</td>
<td>13.34</td>
<td>0.01842</td>
<td>0.00489</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Raw</td>
<td>M+D</td>
<td>Raw</td>
<td>M+D</td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>4.32</td>
<td>4.27</td>
<td>0.00221</td>
<td>0.00049</td>
<td>4.3</td>
</tr>
<tr>
<td>UHML mm</td>
<td>27.97</td>
<td>28.15</td>
<td>0.20347</td>
<td>0.01672</td>
<td>11.5</td>
</tr>
<tr>
<td>UI %</td>
<td>80.94</td>
<td>80.36</td>
<td>0.37292</td>
<td>0.03378</td>
<td>10.5</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>28.68</td>
<td>28.93</td>
<td>1.21747</td>
<td>0.18678</td>
<td>6.2</td>
</tr>
<tr>
<td>Rd</td>
<td>77.33</td>
<td>77.67</td>
<td>0.05671</td>
<td>0.03122</td>
<td>1.7</td>
</tr>
<tr>
<td>+b</td>
<td>13.25</td>
<td>13.31</td>
<td>0.01842</td>
<td>0.00544</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Exp 1:

- **Mix small samples (40 g)**
- 1A: mixing
- 1B: mixing and doubling
Effect of machine on within-cotton variability: results

F-ratio: raw:mixed (inverted when in italic)

if > 1 → variability tend to decrease (to increase when in italic)
the higher, the more effect of mixing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Variance</th>
<th>F ratio</th>
<th>Pr>F</th>
<th>Trend to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>M</td>
<td>Raw</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>4.31</td>
<td>4.31</td>
<td>0.00234</td>
<td>0.00157</td>
<td>1.5</td>
</tr>
<tr>
<td>UHML mm</td>
<td>29.70</td>
<td>29.57</td>
<td>0.20706</td>
<td>0.18532</td>
<td>1.1</td>
</tr>
<tr>
<td>UI %</td>
<td>82.04</td>
<td>81.39</td>
<td>0.33311</td>
<td>0.74054</td>
<td>2.2</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>33.11</td>
<td>33.78</td>
<td>0.86485</td>
<td>0.75136</td>
<td>1.2</td>
</tr>
<tr>
<td>Rd</td>
<td>79.39</td>
<td>79.68</td>
<td>0.04133</td>
<td>0.08167</td>
<td>2.0</td>
</tr>
<tr>
<td>+b</td>
<td>11.54</td>
<td>11.52</td>
<td>0.05980</td>
<td>0.04802</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Variance</th>
<th>F ratio</th>
<th>Pr>F</th>
<th>Trend to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>M+D</td>
<td>Raw</td>
<td>M+D</td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>4.31</td>
<td>4.30</td>
<td>0.00234</td>
<td>0.00123</td>
<td>1.9</td>
</tr>
<tr>
<td>UHML mm</td>
<td>29.70</td>
<td>29.52</td>
<td>0.20706</td>
<td>0.08164</td>
<td>2.5</td>
</tr>
<tr>
<td>UI %</td>
<td>82.04</td>
<td>81.38</td>
<td>0.33311</td>
<td>0.17115</td>
<td>1.9</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>33.11</td>
<td>33.90</td>
<td>0.86485</td>
<td>0.50780</td>
<td>1.7</td>
</tr>
<tr>
<td>Rd</td>
<td>79.39</td>
<td>79.68</td>
<td>0.04133</td>
<td>0.01154</td>
<td>3.6</td>
</tr>
<tr>
<td>+b</td>
<td>11.54</td>
<td>11.49</td>
<td>0.05980</td>
<td>0.01127</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Effect of machine on within-cotton variability: discussion

• The homogenizing machine enables a decrease in variability for the 6 CSITC criteria (UHML and Str) so the mixing effect can be considered as efficient.

• Mixing effect is more important for the procedure involving small samples.

• Additional doubling enables a greater decrease in variability, for both experiments involving small or larger quantities mixed.
Plan of presentation

- Introduction
- Homogenizing machine description
- Effect of machine on mixed cottons
- **Effect of machine on homogenized cotton**
- Conclusion
Homogenizing cotton with the machine

- Test in partnership with BBB
 - BCRT2008-4 and BCRT2009-4(H): same cotton

- Objective
 - BCRT2009-4: Homogenize large masses of cotton (50 kg) from one bale
 Procedure: machine+doubling described for Exp.2 (12 times)
 - Observe a difference of variability between material before and after homogenization
 H0: homogenizing machine reduces within-cotton variability
Homogenizing cotton with the machine

- Materials
 - Cotton: West African Guinea Conakry (RM 40)
 - BCRT2009-4: Homogenizing machine
 - Speed ratios fixed
 - Distances between pairs of cylinders
 - Pressure between cylinders
 - Pressure drop in venturi

- Internal experiment in one laboratory:
 - SITC testing: HVI 1000 M1000
 - 10 tests (1 Mic, 2 LS, 2 CT)
Effect of machine on within-cotton variability: results and discussion

• Internal procedure to evaluate within-cotton variability

\[
N_{\text{raw,2008}} = 8 \quad \text{F-ratio: raw:homogenized} \\
N_{H,2009} = 10 \quad \text{if > 1 \rightarrow variability decrease}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean Raw</th>
<th>Mean H</th>
<th>Variance Raw</th>
<th>Variance H</th>
<th>Ratio Var</th>
<th>Pr>F</th>
<th>Trend to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic</td>
<td>3.34</td>
<td>3.44</td>
<td>0.003</td>
<td>0.000</td>
<td>7.0</td>
<td>0.00</td>
<td>decrease significantly</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>31.51</td>
<td>31.84</td>
<td>0.058</td>
<td>0.058</td>
<td>1.0</td>
<td>0.47</td>
<td>stable</td>
</tr>
<tr>
<td>UHML mm</td>
<td>28.93</td>
<td>28.57</td>
<td>0.062</td>
<td>0.011</td>
<td>5.9</td>
<td>0.01</td>
<td>decrease significantly</td>
</tr>
<tr>
<td>UI %</td>
<td>82.55</td>
<td>81.63</td>
<td>0.040</td>
<td>0.025</td>
<td>1.7</td>
<td>0.23</td>
<td>decrease</td>
</tr>
<tr>
<td>Rd</td>
<td>71.68</td>
<td>72.13</td>
<td>0.048</td>
<td>0.018</td>
<td>2.8</td>
<td>0.08</td>
<td>decrease significantly</td>
</tr>
<tr>
<td>+b</td>
<td>12.41</td>
<td>12.72</td>
<td>0.007</td>
<td>0.004</td>
<td>1.8</td>
<td>0.20</td>
<td>decrease</td>
</tr>
</tbody>
</table>

• Variability is reduced after homogenizing procedure \rightarrow evaluation of the true inter-lab variability (due to laboratory practices, independently from cotton)
Interpretation of inter-laboratory variability

• Complementary results (from RT):
 – Over 187 (2008-4) and 141 (2009-4) participating laboratories
 – Inter-lab variance results 2008-4 (Raw) and 2009-4 (H):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>Mean</th>
<th>Variance</th>
<th>MD significant?</th>
<th>F Ratio</th>
<th>Trend to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>H</td>
<td>Raw</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>74</td>
<td>74</td>
<td>3.40</td>
<td>3.43</td>
<td>0.011</td>
<td>0.007</td>
</tr>
<tr>
<td>Str gf/tex</td>
<td>65</td>
<td>65</td>
<td>31.29</td>
<td>32.21</td>
<td>1.661</td>
<td>3.298</td>
</tr>
<tr>
<td>UHML mm</td>
<td>63</td>
<td>63</td>
<td>29.01</td>
<td>28.97</td>
<td>0.159</td>
<td>0.164</td>
</tr>
<tr>
<td>UI %</td>
<td>59</td>
<td>59</td>
<td>82.57</td>
<td>82.34</td>
<td>0.324</td>
<td>0.457</td>
</tr>
<tr>
<td>Rd</td>
<td>74</td>
<td>74</td>
<td>70.95</td>
<td>71.08</td>
<td>3.249</td>
<td>3.915</td>
</tr>
<tr>
<td>+b</td>
<td>70</td>
<td>70</td>
<td>12.63</td>
<td>12.62</td>
<td>0.364</td>
<td>0.389</td>
</tr>
</tbody>
</table>

F-ratios in italic: inverted from raw:H to H:raw in order to get F >1

→ Open to discussion
Plan of presentation

- Introduction
- Homogenizing machine description
- Effect of machine on mixed cottons
- Effect of machine on homogenized cotton
- Conclusion
The homogenizing machine ensures:

- a decrease in within-cotton variability while mean values remain unchanged (gentle process)

- when associated to an easy doubling process, sampling 4 kg of cotton fibre masses is easy before sending samples to participating labs
Note

- Possibility to see the machine
 + 1 machine at Faserinstitut Bremen, Germany
 + 1 machine at RTC West (CERFITEX, Ségou, Mali)
 + 1 machine at RTC East (TBS, Dar Es Salaam, Tanzania)
 + 1 prototype at CIRAD, France

- Acknowledgements:
 - CFC/ICAC/33 project
 - A. Drieling, FIBRE
More details in:
Plus de détails dans :

Thanks for your attention