16. Use of mapped SSR markers to assist the selection of low-gossypol seeds and high-gossypol plant cultivars in upland cotton

BENBOUZA HALIMA, Unité de Phytotechnie Tropicale et d’Horticulture, Faculté Universitaire des Sciences Agronomiques, 2 Passage des Déportés, B-5030 Gembloux, Belgium
J-M Lacape, CIRAD-CA, Avenue Agropolis, 34398 Montpellier Cedex 05, France
J-M Jacquemin, Unité de Phytotechnie Tropicale et d’Horticulture, Faculté Universitaire des Sciences
J-P Baudoin, Unité de Phytotechnie Tropicale et d’Horticulture, Faculté Universitaire des Sciences Agronomiques, 2
Guy Mergeai, Unité de Phytotechnie Tropicale et d’Horticulture, Faculté Universitaire des Sciences Agronomiques, 2

Mapped SSR markers were used to assist the phenotypic selection of genotypes expressing the low-gossypol seed and high-gossypol plant trait in BC1, BC2, BC2S1, BC2S2, BC2S3, BC2S4, BC2S5, BC2S2, BC1-S1, BC3, BC3S1, BC3S2, BC3S3, BC2S2BC1 and BC2S2BC1S1 genotypes obtained from the G. hirsutum L. x G. raimondii Ulb. x G. sturtianum (HRS) trispecific hybrid. Two hundred and six mapped microsatellite markers uniformly distributed on the 26 linkage groups of the G. hirsutum genetic map were used to monitor the introgression of G. sturtianum Willis and G. raimondii Ulb. chromosomal segments in the progenies of the HRS hybrid. Out of 146 polymorphic SSRs amplified on the analysed materials, 188 alleles were introgressed from the wild donor species G. sturtianum into the HRS hybrid. A total of 14 G. sturtianum alleles mapped on c2-c14, c3-c17, c6-c25, c12-c26 and A03-D02 homeologous chromosome pairs were conserved on the selected BC2S4 and BC2S5 genotypes while the G. sturtianum or G. raimondii origin of a locus on c12 could not be determined. For the selected BC3S3 materials, three alleles were conserved on c6-c25 chromosomes. The two selected BC2S2, BC1S1 genotypes conserved respectively 13 and 11 alleles of G. sturtianum on c2-c14, c3-c17 and c6-c25 homeologous chromosomes pairs. All selected plants in this work presented a normal density of gossypol glands on their aerial parts and produced regularly an important proportion of almost totally glandless seeds. These plants constitute valuable genetic stocks for the introgression of interesting agronomic traits from the wild parental species of HRS into G. hirsutum.
International Cotton Genome Initiative
ICGI–2004 Workshop

Book of Abstracts

October 10-13, 2004
Hyderabad, Andhra Pradesh, India
International Cotton Genome Initiative

ICGI Workshop Organizing Committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair, ICGI</td>
<td>Dr. David Stelly</td>
</tr>
<tr>
<td>Co – Chair, ICGI</td>
<td>Dr. Sukumar Saha</td>
</tr>
<tr>
<td>Vice Chair, ICGI</td>
<td>Dr. R. J. Kohel</td>
</tr>
<tr>
<td>Chair, LWOC, ICGI - 2004</td>
<td>Mr. P. Vidyasagar</td>
</tr>
<tr>
<td>President, ISCI</td>
<td>Dr. V. R. Gadwal</td>
</tr>
<tr>
<td>Chairman, ISCI</td>
<td>Dr. G. R. Anap</td>
</tr>
</tbody>
</table>
Abstracts

INTERNATIONAL INITIATIVE
cotton genome

Issued By:
Dr. P. V. Varadarajan
Secretary, Indian Society
For Cotton Improvement

Compiled And Printed By:
Mr. P. Vidyasagar
Dr. S. S. Narayanan
Mr. S. Arvind Kumar