Contagious bovine pleuropneumonia (CBPP) is a severe infectious disease affecting ruminants of the Bos genus, characterized by unilateral lesions of pleurisy and pneumonia. CBPP is caused by Mycoplasma mycoides subsp. mycoides “Small Colony” (MmmSC) and it is transmitted by direct contact solely. Its distribution is not exactly known but recent reports show that it is expanding in Africa and that it is threatening regions that have been CBPP-free for decades (Fig 1). Acutely infected animals may be responsible for the rapid transmission of the disease while chronic carriers, with lesions known as “sequestra”, may be responsible for the long term persistence of the disease in a region. Control strategies are based on various measures such as slaughter, movement control, antibiotic treatment and vaccination. The vaccines that have been used for decades in Africa were developed by Sheriff and Piercy and consist of a MmmSC strain that has been attenuated empirically by in-vitro passages. These vaccines have a number of advantages and drawbacks (Table 1) and when used alone they never allowed an eradication of the disease. One of the reasons is that African governments do not invest sufficiently in animal disease control and that there is a lack of incentive for the investment in the development of new and more efficient products as CBPP is not threatening developed countries. For these reasons, it was decided to evaluate the potential of new types of products within the “VACNADA” project. These products consisted in inactivated preparations of MmmSC antigen injected with adjuvants that could be compatible with the development of multivalent vaccines. The objectives were to check if these vaccines elicited a noticeable sero-conversion and, more importantly, if they were able to induce a protection.

Results and Discussion

In KARI, the animals that were immunized with a single dose subcutaneously presented variable sero-conversions. A single animal sero-converted while five of them had unexpected declining titers after the seventh week. No protection was evidenced in that group as compared to non-vaccinated control groups.

In LCV, the animals that were immunized twice intramuscularly presented a remarkable sero-conversion with most animals reaching titers of 90 percent of inhibition at the time of challenge. Complete protection was evidenced in that group.

Protection to CBPP is basically dependent on the cellular immune response, hence the sero-conversion that was evidenced here is only a marker of immune stimulation. Further work is needed to decipher which components of the immune response lead to protection.

Material and Methods

Antigen production: performed at CIRAD with strain MmmSC 8740, inactivation with BiEthylleneimine

Oil-adjuvant emulsionning: performed at SEPPIC, Castres, France

Administration: one dose subcutaneously (KARI), two doses intramuscularly (LCV)

Challenge: by the in-contact with intubated animals procedure

SeroLOGY: by cELISA, IDEXX performed at LCV and KARI

Acknowledgements

This study was financed by the European Union, Grant: DCI-FOOD/2009/226-469

Vaccines for neglected animal diseases in Africa: « VACNADA »

Coordinated by AU-IBAR Nairobi Kenya