The outbreak of mountain pine beetles in the western United States has left extensive areas of dead lodgepole pine, creating hazards to human health and property particularly along roads and within the Wildland Urban Interface (WUI). This situation has lead to calls for the government to take action. We estimated the amount and cost of biomass potentially generated by a hazard abatement program. Over the coming 10 years as much as 5.1 to 7.6 million oven-dry metric tons of dead lodgepole pine could become available. Total harvesting costs could exceed $US200 million. Given the length of time much of the material has already been dead, the rate at which treatments can be implemented, and the lack of sufficient primary processing infrastructure (sawmills or veneer mills) use of this material for higher value wood products is unlikely. Co-firing of coal fired power plants or other energy uses holds the potential to dispose of large amounts this material but the costs could be high. Chipping and hauling the material to an energy facility would add an additional $US135 to $US425 million depending on the location of the dead stand. So even though there is enough material to co-fire 5 typical power plants for 11 to 17 years the annual cost for each plant could range from $1.8 million to $7.2 million per year and this could be more than the cost of coal. This presentation examines the potential to include higher value wood product options as a way to reduce overall costs.

Keywords: Wood to energy, dead timber, wood utilization.

OP189

First Report on the Termiticidal Activity of Extracts of Annona squamosa (Annonaceae) Seeds and on its Active Constituent Squamocins.

Tindo Sébastien DJENONTIN*a, Nadine AMUSANTbc, Paul Henri DUCROTd, Dominique C.K. SOHOUNHLoue*a and Daniel PIOChé*

a. Laboratoire d’Etude et de Recherche en Chimie Appliquée (LEBCA), Ecole Polytechnique
Termites inflict severe damage on wood and impede usage of several forest species. The biological metabolites could potentially replace synthetic termiticidal products which are becoming more restricted to use. Annona squamosa is well known for its edible fruits - tropical custard apple. Annonaceous tetrahydrofuran acetogenins have attracted much interest due to their broad range of biological activities, and seeds containing them are reported to show insecticidal and abortifacient properties. Under the course our exploratory investigation of non food valuable activities, and seeds containing them are reported to show insecticidal and abortifacient properties. Under the course our exploratory investigation of non food valuable products from less known forest species (here from Benin), the fractions obtained from defatted cake of Annona squamosa seeds with solvents covering a broad range of polarity, revealed a significant termiticidal activity, when applied at 5 - 10 mg/cm² (non-polar solvents).

Based on the result (0: no attack) from the standard procedure EN 118, these extracts could be used for preserving wood under class of use number 1. A derivatization step with Keedeg reagents A and B, elemental analysis C,H,O, HPLC/MS and proton NMR showed the presence of squamocin type acetogenins (MW 594 and 622 g/mole: C35H62O7 and C37H66O7) as main components of the most active fraction (100% mortality within 7 days for a sample applied at 2 mg/cm²).

Additional work will be undertaken to confirm the structure of most active compounds in the extracts, and to check whether some Annona squamosa seed extracts (non timber products of sustainable management of native forest) could show even higher activity to protect wood under more adverse conditions and be alternative active natural products to synthetic compounds.

Keywords: Annona squamosa, acetogenins, termiticidal activity, wood preservation, Benin.

Facing increasing problems with raw materials supply for wood based panels recent developments in this field aim to diversify the material supply. Many attempts have been made to incorporate ligno-cellulosic materials such as straw (Han et al. 2001), rice husk (Leiva et al. 2007), bamboo or bagasse (Lee et al. 2006). The present project focuses on a new way using waste residues from leather production for the development of a completely bio-based building material with improved material characteristics e.g. fire resistance.

Keywords: Dual cured; UV irradiation; Air drying; Wood coatings; Waterborne resin

Wood-leather panels – A biological, fire retardant building material

Stefanie WIELAND, Ulrich STÖCKL, Tilman GRÜNEWALD and Sven OSTROWSKI
Department of Forest Products Technology
stefanie.wieland@fh-salzburg.ac.at

Facing increasing problems with raw materials supply for wood based panels recent developments in this field aim to diversify the material supply. Many attempts have been made to incorporate ligno-cellulosic materials such as straw (Han et al. 2001), rice husk (Leiva et al. 2007), bamboo or bagasse (Lee et al. 2006). The presented project focuses on a new way using waste residues from leather production for the development of a completely bio-based building material with improved material characteristics e.g. fire resistance.

Keywords: Wood, Fire retardant, Building material

OP191

Linseed oil based waterborne UV/air dual cured wood coatings

Chia-Wei Chang1 Kun-Tsung Lu2
lukt@nchu.edu.tw

In this study, the effect four kinds of curing process including UV irradiation, UV irradiation + air curing, air curing + UV irradiation, and air curing on the films properties of the linseed oil (LO) based waterborne dual cured wood coatings were examined. Modified linseed oil (MLO) was prepared by transesterification of glycerol (GL) and LO with the mole ratio of 1:0. The waterborne resin was synthesized from MLO, dimethyl propionic acid (DMPA) and isophorone disocyanate (IPDI), hexamethylene disocyanate (HDI) and hydroxyethyl methacrylate (HEMA) by acetoxy process for providing a resin with C=C bonds of acrylic acid and fatty acid, respectively. And then the resin was neutralized by triethylamine (TEA) and dispersed into water. After vacuum distillation to remove acetone, the waterborne resin was obtained. Raman and fourier transform infrared spectrometer (FTIR) were used to identify the formed products, and fundamental properties such as solid content, NCO content, molecular weight, viscosity, pH and particle size of the resin were also tested.

The result showed that the waterborne resin was a pseudoplastic fluid and possessed reactive double bonds. The waterborne dual cured coatings were formulated by mixed the waterborne resin with photoinitiator Darocur 2959 and different Co, Zr and Ca metal dryers, respectively, for different curing processes. The waterborne dual cured coatings were cured through 4 kinds curing processes as mention above and the cured film properties were characterized. The results showed that the films properties such as hardness, tensile strength and heat resistance of the dual cured coating obtained from UV irradiation + air curing were equal to those of obtained from air curing. Furthermore, the elongation at break, bending resistance, gloss and weight retention of films from UV irradiation + air curing were better than those of air drying. The poor adhesion of traditional UV cured coating films could be improved by using the UV/Air dual cured coatings. As a conclusion, the linseed oil based waterborne UV/Air dual cured coating has a potential for using as a high efficiency, excellent performance and environmental protection wood coating.

Keywords: Dual cured; UV irradiation; Air drying; Wood coatings; Waterborne resin

1 Ph.D. Student, Department of forestry, National Chung-Hsing University, Tacuhng, Taiwan, R.O.C.
2 Professor, Department of forestry, National Chung-Hsing University, Tacuhng, Taiwan, R.O.C., Corresponding author.
250, kuo Kuang Rd., Tacuhng 402, Taiwan, R.O.C, e-maillukt@nchu.edu.tw

OP190

Linseed oil based waterborne UV/air dual cured wood coatings

Chia-Wei Chang1 Kun-Tsung Lu2
lukt@nchu.edu.tw

In this study, the effect four kinds of curing process including UV irradiation, UV irradiation + air curing, air curing + UV irradiation, and air curing on the films properties of the linseed oil (LO) based waterborne dual cured wood coatings were examined. Modified linseed oil (MLO) was prepared by transesterification of glycerol (GL) and LO with the mole ratio of 1:0. The waterborne resin was synthesized from MLO, dimethyl propionic acid (DMPA) and isophorone disocyanate (IPDI), hexamethylene disocyanate (HDI) and hydroxyethyl methacrylate (HEMA) by acetoxy process for providing a resin with C=C bonds of acrylic acid and fatty acid, respectively. And then the resin was neutralized by triethylamine (TEA) and dispersed into
ORGANIZING ENTITIES

DIVISION 5 - FOREST PRODUCTS

Coordinator
Andrew Wong, Malaysia

Deputies:
Jamie Barbour, United States
Dave Cown, New Zealand
Pekka Saranpää, Finland

INTERNATIONAL ORGANISING COMMITTEE

Conference Chair
Pekka Saranpää (Finland)

Conference Co-Chair
Jamie Barbour (USA)

Scientific Committee
Andrew Wong (Malaysia)
Dave Cown (New Zealand)
Helena Pereira (Portugal)
Jamie Barbour (USA)
Jerry Winandy (USA)

LOCAL ORGANISING COMMITTEE

Chair
Helena Pereira
Vice-rector of the Technical University of Lisbon, full professor of ISA (School of Agronomy), president secretary of the Forest Research Centre/ Centro de Estudos Florestais (CEF).

Jorge Gominho, CEF, ISA
Isabel Miranda, CEF, ISA
Sofia Knapic, CEF, ISA
Francisca Lima, AIFF (Competitiveness and technology center for forest industries)
Pedro Cardoso, THE (local PCO)

Technical Board
Francisca Lima, AIFF
Jorge Gominho, CEF, ISA
Sofia Knapic, ISA
Luis Leal, ALTRI
Susana Silva, Cortiçega Amorim
Susana Carneiro, Centro Pinus
José Manuel Nordeste, RAIZ

Congress Agency and PCO
Organizing Committee Support
THE – The House of Events
Office contact +351 22 8348940
Contact at Conference Centre +351 21 464 6204
The Scientific Committee wishes to encourage scientists to display outstanding posters during the IUFRO Division 5 conference.

An Awarding Body will evaluate all the posters exhibited during the poster sessions, based upon the following selection criteria:

1. Presentation: layout (attractiveness, legibility, creativity)
2. Content: innovative ideas and value of subject matter
3. Presenter’s ability to convey the message

The awards will be presented at the Conference dinner, on July 11 and consist of a certificate and a gift sponsored by 3Dcork – www.3d cork.com