analysis of the macroscopic characteristics of wood, observation in pocket magnifier (10x) and observation of the histological sections in microtome. Were fabricated and tested 120 samples, according to COPANT standards. Before the destructive bending test, the samples were evaluated non-destructively through the technique of stress waves for determining the dynamic modulus of elasticity and propagation of waves speed.

The Tukey test showed significant differences between the species for physical and mechanical properties. There was no relationship between the propagation waves speed and wood density, however, the Pearson’s correlation between the propagation waves speed and static and dynamic MOE for each species and for all data, in both cases the models showed high R², but superior results were found to analysis of all data. In estimating the static modulus of elasticity, the dynamic modulus of elasticity explained 95.0% of the variation of the observed data. The relation between wave speed and MOE are high, to estimate MOE, the wave propagation speed explained 85.0% of the variation of the data. It is concluded that the method is suitable for predicting the bending properties, capturing also the intra-specific variations, allowing the development of models with good predictability.

Keywords: Tropical forest; material selection; wood; stress waves.

PP084

Global Nirs Models to Predict Main Chemical Compounds of Eucalyptus Woods

Gilles Chaix1, Mario Tomazello Filho2, Sophie Nourissier1, Abdoulaye Diombokho1

1Cirad, UMR AGAP, F-34398 Montpellier, France
2Department of Forest Sciences, University of São Paulo, Brazil
gilles.chaix@cirad.fr

The Nirs technology is particularly well-suited to tree improvement programmes where huge numbers of samples must be analysed, but it can be used in any forestry application where the rapid measurement of wood property data is required or to screen unknown samples. Forest breeders include chemicals wood properties as selection criteria for new varieties, especially lignin, cellulose, hemicellulose. Efforts to develop multi-site, multiple-species, multiple age calibrations are rare. Because of the genotype x environment/age interactions, we try to develop a very useful multispecies Nirs calibrations to predict chemical properties for varied eucalyptus in term of species, age, and site plantation.

Global near infrared models to predict wood properties of Eucalyptus were developed using more than one hundred samples well representatives from 3,000 wood samples. These calibration set was selected on spectral data based on Mahalanobis distance. Samples were provided from different country and location (Congo, Senegal, Brazil), including different species and hybrids of Eucalyptus (E. urophylla, E. grandis, E. camaldulensis, E. urophylla x E. grandis, E. urophylla x E. pellita) from different age (from 5 to 30 years old). The global models tested by cross-validation, based on our own reference data, showed encouraged fits for extractives, lignin, cellulose, hemicelluloses. The models for lignin and extractives showed higher fits than cellulose and hemicellulose even if for these late, the model remained sufficient for prediction. The high variability of chemical properties due to the sampling, associated to the good repeatability of reference measurements, provided high values of model parameters. These results suggest that global calibration could be useful in tree breeding program and for different experiment trials from the fields, to rank genotypes for extractives, lignin, cellulose, and hemicelluloses. Local models are more accurate usually and in order to get local models, we are improving our sampling in term of number and origin of wood. The main interest of this type of calibration is the possibility to screen samples for different species, different origins and the other interest is to select new samples to be included in calibration and validation sets.

Keywords: Nirs; Eucalypt; wet-chemistry; multi-site calibration

PP085

Sustainable Mycology Alternatives In Natural Forests And Conifer Plantations In México

Fortunato Garza Ocaña1 and Artemio Carrillo Parra

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Carretera Nacional km 145, Código Postal 67700, Apartado Postal 41, Linares, Nuevo León, México
Email: fortunatofo@gmail.com

Concepts of mycoforests, mycosylviculture and mycoparks and their relationship to education, production and sustainable management of fungi in forests in Mexico are analyzed. These concepts applied in Mexican protected areas, parks and forestry rural communities and improve socio-economic conditions. Two decades ago commerce of wild edible mushroom in the world was relatively small; mushroom industries were selling their products in a rather informal way. At the end of the 80’s important changes in mushroom commerce occurred; and it became organized in activities such as mushroom picking, cleaning, processing and packing and selling to retailers. Mushrooms prices may depend on factors such as: size, freshness, color, abundance, appearance, flavour, texture and familiarity of sellers and buyers with the species. Currently natural forests and forest plantations where mushrooms grow produce an important income in some European countries. Those countries have multifunctional forest practices integrating mushrooms into sustainable forest management. Mexicans living in most rural forestry conditions are used to picking and eating wild edible mushrooms every year. Natural forests in protected areas and national parks are ideal places for implementation of mycosylviculture and mycopark projects, mushroom courses may be offered to park officers and people living in rural communities inside parks and protected areas. These activities will serve to educate people and generate yearly income for them and these activities should be conducted in keeping with current laws to achieve sustainable management and conservation. Forest management programs and mushroom harvesting practices for commercial and home purposes use should be regulated to ensure sustainability. Thus, mushrooms pickers should buy mushroom picking permits, price to accord to their activities. Money obtained from these permits can be reinvested in forest and edible mushroom management that focuses on multifunctional conservation practices. Countries already applying some degree of mycosylviculture practices to mycoparks or truffeliculture include France, Italy, Spain, Portugal, United States of America, New Zealand, Australia, Argentina, Chile, Israel and Morocco. Every year these countries produce significant income from wild edible mushrooms.
DIVISION 5 - FOREST PRODUCTS

Coordinator
Andrew Wong, Malaysia

Deputies:
Jamie Barbour, United States
Dave Cown, New Zealand
Pekka Saranpää, Finland

INTERNATIONAL ORGANISING COMMITTEE

Conference Chair
Pekka Saranpää (Finland)

Conference Co-Chair
Jamie Barbour (USA)

Scientific Committee
Andrew Wong (Malaysia)
Dave Cown (New Zealand)
Helena Pereira (Portugal)
Jamie Barbour (USA)
Jerry Winandy (USA)

LOCAL ORGANISING COMMITTEE

Chair
Helena Pereira
Vice-rector of the Technical University of Lisbon, full professor of ISA (School of Agronomy), president secretary of the Forest Research Centre Centro de Estudos Florestais (CEF).

Jorge Gominho, CEF, ISA
Isabel Miranda, CEF, ISA
Sofia Knapić, CEF, ISA
Francisca Lima, AIFF (Competitiveness and technology center for forest industries)
Pedro Cardoso, THE (local PCO)

Technical Board
Francisca Lima, AIFF
Jorge Gominho, CEF, ISA
Sofia Knapić, ISA
Luis Leal, ALTRI
Susana Silva, Cortiça Maçãos
Susana Carneiro, Centro Pinus
José Manuel Nordeste, RAIZ

Congress Agency and PCO
Organizing Committee Support
THE – The House of Events
Office contact +351 22 8348940
Contact at Conference Centre +351 21 464 6204
The Scientific Committee wishes to encourage scientists to display outstanding posters during the IUFRO Division 5 conference.

An Awarding Body will evaluate all the posters exhibited during the poster sessions, based upon the following selection criteria:

1. Presentation: layout (attractiveness, legibility, creativity)
2. Content: innovative ideas and value of subject matter
3. Presenter’s ability to convey the message

The awards will be presented at the Conference dinner, on July 11 and consist of a certificate and a gift sponsored by 3DCork – www.3dcork.com

ACKNOWLEDGMENTS

GOLD SPONSOR

grupo Portucel Soporcel

PREMIUM SPONSORS

altri
SONAE INDUSTRIA
FSC

BEST POSTER AWARDS SPONSOR

3DCORK

CO-SPONSOR

estoril
CENTRO DE CONGRESSOS

PARTNERS

anefa
Criar Bosques
Un proyecto Qromat

GREEN PARTNERS

Pegada Ecológica

SAP/YSP PROGRAM SPONSOR

UAS

MEDIA PARTNERS

GREENSAVERS
planetazul

SCIENTIFIC COLLABORATORS

IRG
IAWA
TWCS

OFFICIAL AIRLINE COMPANY

TAP PORTUGAL
Materials and methods

- We collected more than 3,000 wood samples of different species and hybrids (E. urophylla, E. grandis, E. camaldulensis, E. urophylla x E. grandis, E. grandis x E. urophylla, E. urophylla x E. pellita) from different age of plantation (from 5 to 30 years old), and location (Congo, Senegal, Brazil - Table I). The grounded samples were measured by Nirs. Less than 100 samples were selected on the Mahalanobis distance calculated on spectral information (Figure 1).

Results

- Figure 2 and Table II show the results of wet chemistry laboratory obtained on selected samples.

- The global models tested by cross-validation (Table III and figure 3), based on our own reference data, shown encouraged fits for extractives (correlation coefficient R²cv = 0.98 and error of cross-validation SECV = 0.76 and ratio of performance deviation RPD = 7.2), lignin (R²cv = 0.91, SECV = 1.1, RPD = 3.3), alpha-cellulose (R²cv = 0.89, SECV = 1.2, RPD = 3.0), hemi-celluloses (R²cv = 0.82, SECV = 1.6, RPD = 2.4).

Conclusion

These results suggest that global calibration could be useful in tree breeding processes and for different experiment trials from the fields, to rank genotypes for extractives, lignins, celluloses, and hemicelluloses. In order to get near infrared local models, we are improving our sampling in term of number and origin of wood.