and 30 to 35, respectively kraft and ASAM process. The autohydrolysis liquor was characterized by an average of 16% in xylose and 1.4% in furfural.

Keywords: E. globulus; stumps; biomass; biorefineries; kraft; ASAM

Optimization of forest biomass use in reducing green house gas emission: a life cycle analysis

Bishnu Chandra Poudel, Ecotechnology and Environmental Science, Mid Sweden University, Akademigatan 1, 83 125, Östersund, Sweden, bishnu.poudel@miun.se telephone: +46-63-165535 (Corresponding author)
Johan Bergh, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden, johan.bergh@slu.se
Roger Sathre, Ecotechnology and Environmental Science, Mid Sweden University, Akademigatan 1, 83 125, Östersund, Sweden, roger.sathre@miun.se

In this study, we discuss the greenhouse gas emission reduction from sustainable harvest and utilization of forest residues and stumps. Forest production, harvest, and use of forest residues and stumps to replace fossil fuels are considered for greenhouse gas emissions accounting in northern Sweden.

A system-based approach to life cycle assessment is adopted to calculate greenhouse gas emission reduction benefits. Amount of forest biomass production and harvest for one hectare of forest land calculate greenhouse gas emission reduction benefits. Amount of wood forest biomass production and harvest for one hectare of forest land calculate greenhouse gas emission reduction benefits.

Keywords: Forest production, DT model, harvest, bioenergy, substitution.

Lignocellulosic Resources Uses for Savings of Fossil Fuels

Jean GERARD, Patrick LANGBOUR, Daniel GUIBAL
CIRAD, Research Unit Tropical Forest Products, Montpellier, France jean.gerard@cirad.fr

Lignocellulosic biomass makes up the main part of the biomass produced in the world (12.1011 ton per year); relatively speaking, saccharose and starch make up a lower part (1.08T). Wood (from secondary-growth species) and related biomaterial from primary-growth species (palms, coconut, bamboo) make up nearly 80% of lignocellulosic biomass produced in the world.

The remaining part mainly comes from co-products of food plants (straw and co-products from cereals and oleaginous plants, bagasse ...) and also annual plants produced for fibre (cotton, flax, hemp).

A part of these fibres is used for other various applications than energy: pulp, biomaterial, and bioproducts. The wide range of cellulosic materials-saccharose-hemicelluloses distribution and structure of these biopolymers sometimes limit their applications.

The development of these applications is also limited by two factors: (1) the collection and the transport of the fibres are not well organized; (2) the fibres must be frequently left on the ground after harvesting in order to maintain the soil fertility. Lignocellulosic materials play a major role to save fossil fuels for three main reasons: (1) their elaboration and their use need a low quantity of energy, by comparison with other materials; (2) lignocellulosic materials capture carbon during plant growth and store it during the life cycle of the manufactured products; (3) savings of energy are also possible when the biomaterials are used on the spot instead of imported materials, without long transport distances.

It is economically interesting to produce energy from lignocellulosic biomass only if a part of this biomass is used as far as possible for higher added value applications, i.e. plant materials. Co-products and by-products used for energy are then obtained at lower cost.

Lignocellulosic materials and energy applications are directly linked due to carbon storage in biomass that is used for energy at the end of life cycle.

Keywords: Lignocelluloses; Energy; Carbon storage; Plant Materials.

Characteristics of Bi-functional Acidic Endoglucanase (Cel5B) from Gloeophyllum trabeum

Ho Myeong Kim1, Kyoungh Hyoun Kim2, Hyeun-Jong Bae1, 2
(1) Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
(2) Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea baeh@chonnam.ac.kr

The endoglucanase (Cel5B) from the filamentous fungus Gloeophyllum trabeum was cloned and expressed in Pichia pastoris GS115.
DIVISION 5 - FOREST PRODUCTS

Coordinator
Andrew Wong, Malaysia

Deputies:
Jamie Barbour, United States
Dave Cown, New Zealand
Pekka Saranpää, Finland

INTERNATIONAL ORGANISING COMMITTEE

Conference Chair
Pekka Saranpää (Finland)

Conference Co-Chair
Jamie Barbour (USA)

Scientific Committee
Andrew Wong (Malaysia)
Dave Cown (New Zealand)
Helena Pereira (Portugal)
Jamie Barbour (USA)
Jerry Winandy (USA)

LOCAL ORGANISING COMMITTEE

Chair
Helena Pereira
Vice-rector of the Technical University of Lisbon, full professor of ISA (School of Agronomy), president secretary of the Forest Research Centre/ Centro de Estudos Florestais (CEF).

Technical Board
Francisca Lima, AIFF
Jorge Gominho, CEF, ISA
Sofia Knapić, ISA
Luis Leal, ALTRI
Susana Silva, Cortiçear Amorim
Susana Carneiro, Centro Pinus
José Manuel Nordeste, RAIZ

Congress Agency and PCO
Organizing Committee Support

THE – The House of Events
Office contact +351 21 464 6204
Contact at Conference Centre +351 22 8348940
The Scientific Committee wishes to encourage scientists to display outstanding posters during the IUFRO Division 5 conference.

An Awarding Body will evaluate all the posters exhibited during the poster sessions, based upon the following selection criteria:

1. Presentation: layout (attractiveness, legibility, creativity)
2. Content: innovative ideas and value of subject matter
3. Presenter’s ability to convey the message

The awards will be presented at the Conference dinner, on July 11 and consist of a certificate and a gift sponsored by 3DCork – www.3dcork.com

ACKNOWLEDGMENTS

GOLD SPONSOR

PREMIUM SPONSORS

CO-SPONSOR

PARTNERS

GREEN PARTNERS

SAP/YSP PROGRAM SPONSOR

MEDIA PARTNERS

SCIENTIFIC COLLABORATORS

OFFICIAL AIRLINE COMPANY