TARCHY food texture has a strong dependency on gelatinization and water content distributions (1). A physically-based model was designed to predict cooked rice sensory attributes.

Keywords: modelling, swelling, gelatinization, starch, texture.



AURÉLIEN BRIFFAZ<sup>1</sup>, PHILIPPE BOHUON<sup>1,2</sup>, MANUEL DORNIER<sup>1,2</sup>, CHRISTIAN MESTRES<sup>1</sup>, JEAN-MICHEL MEOT<sup>1</sup>

<sup>1</sup> CIRAD, UMR QualiSud

<sup>2</sup> Montpellier SupAgro, UMR QualiSud

Corresponding author: philippe.bohuon@cirad.fr

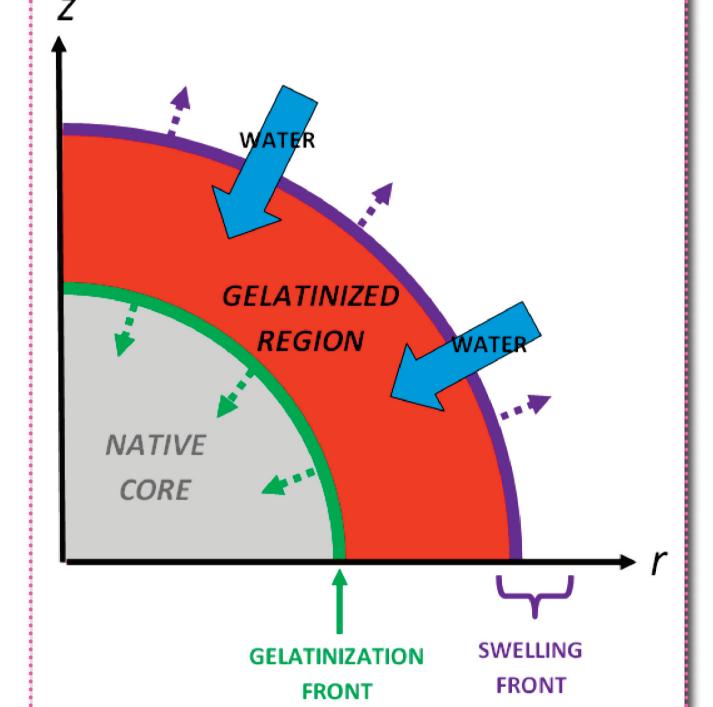



Figure 1. Modelled phenomena involved during rice cooking.

## Mathematical model (COMSOL Multiphysics TM)

The present binary model (1: water; 2: anhydrous starch) includes (figure 1):

Water transport with two water populations: in native  $X_{1n}$  and gelatinized starch  $X_{1g}$  (kg/kg db):

$$\left(\frac{\partial X_{1n}}{\partial t}\right)_{\xi,t} = \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \left(\xi^2 \left(\frac{r^2 \rho_2}{\xi^2 \rho_2^0}\right)^2 D_{1n} \frac{\partial X_{1n}}{\partial \xi}\right) \qquad X_{1n} < X_1^{cr} \\
\left(\frac{\partial X_{1g}}{\partial t}\right)_{\xi,t} = \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \left(\xi^2 \left(\frac{r^2 \rho_2}{\xi^2 \rho_2^0}\right)^2 D_{1g} \frac{\partial X_{1g}}{\partial \xi}\right) \qquad X_{1n} \ge X_1^{cr}$$

crunchiness).

crunchiness.

where  $\xi$  and r are the Lagrangian and Eulerian coordinates respectively (m),  $D_i$  are the apparent diffusivities (m<sup>2</sup>.s<sup>-1</sup>),  $X_1^{cr}$ is the water content threshold for gelatinization starting-up (kg/kg db) and  $\rho_i$  are the densities of the species i (kg.m<sup>-3</sup>).

- $\triangleright$  Starch gelatinization: local degree of starch gelatinization  $\tau$  is a function of
- temperature and local water content within rice (figure 2). Swelling using an Arbitrary Lagrangian–Eulerian method:  $\rho_2 r^2 dr = \rho_2^0 \xi^2 d\xi$
- Model validated for 3 steeping temperatures (50, 75 and 95°C), through 3 independent ways:
  - Water uptake (gravimetry) (figure 3)
  - Volumetric change
  - Gelatinization front kinetic (polarized light microscopy) (figure 4)

Model application: Texture

## t = 0 min(b) 95°C 75°C 2000 Time (s)

Figure 4. Gelatinization front kinetics: (a) polarized light microscopy at 75°C in excess water; (b) Comparison model / experimental data at 75°C and 95°C.

|                  |            |                  |                   | AVERAGE SENSORY<br>ATTRIBUTE SCORE |                   |
|------------------|------------|------------------|-------------------|------------------------------------|-------------------|
| COOKING PROGRAMS | PRECOOKING | COOKING<br>LEVEL | PROGRAM<br>NUMBER | Firmness                           | Crunchiness       |
|                  | No         | Low              | 1                 | 8.3 <sup>a</sup>                   | 3.2 <sup>a</sup>  |
|                  | Yes        | Low              | 2                 | 6.1 <sup>b</sup>                   | 2.7 <sup>ab</sup> |
|                  | No         | High             | 3                 | 7.0 <sup>b</sup>                   | 3.3ª              |
|                  | Yes        | High             | 4                 | 5.1°                               | 2.1 <sup>b</sup>  |

Figure 5. Limited-water cooking programs and their respective average firmness and crunchiness sensory scores.

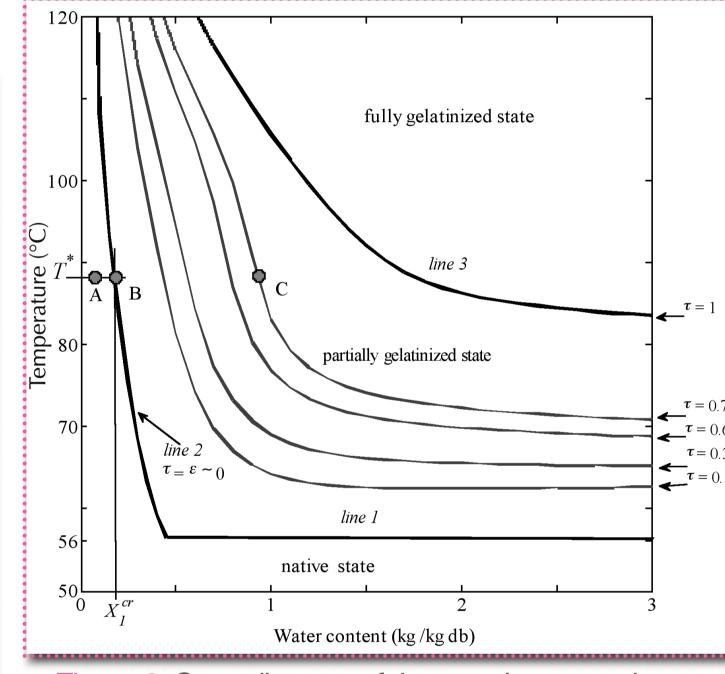



Figure 2. State diagram of rice starch-water mixtures (A: native state, B: gelatinization starting-up, C: 75% gelatinized starch).

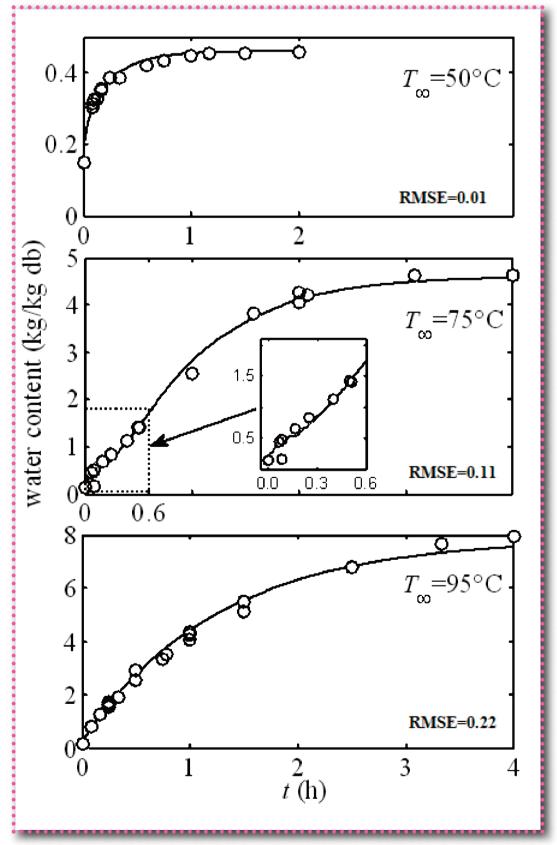



Figure 3. Water uptake kinetics (kg/kg db) in excess water at 50°C, 75°C and 95°C.

#### prediction from simulated profiles Four limited-water rice cooking programs (namely 1, 2, 3 and 4; SOFT figure 5) were run with a rice GRAIN PERIPHERY cooker (picture) and subjected to sensory evaluation (firmness and

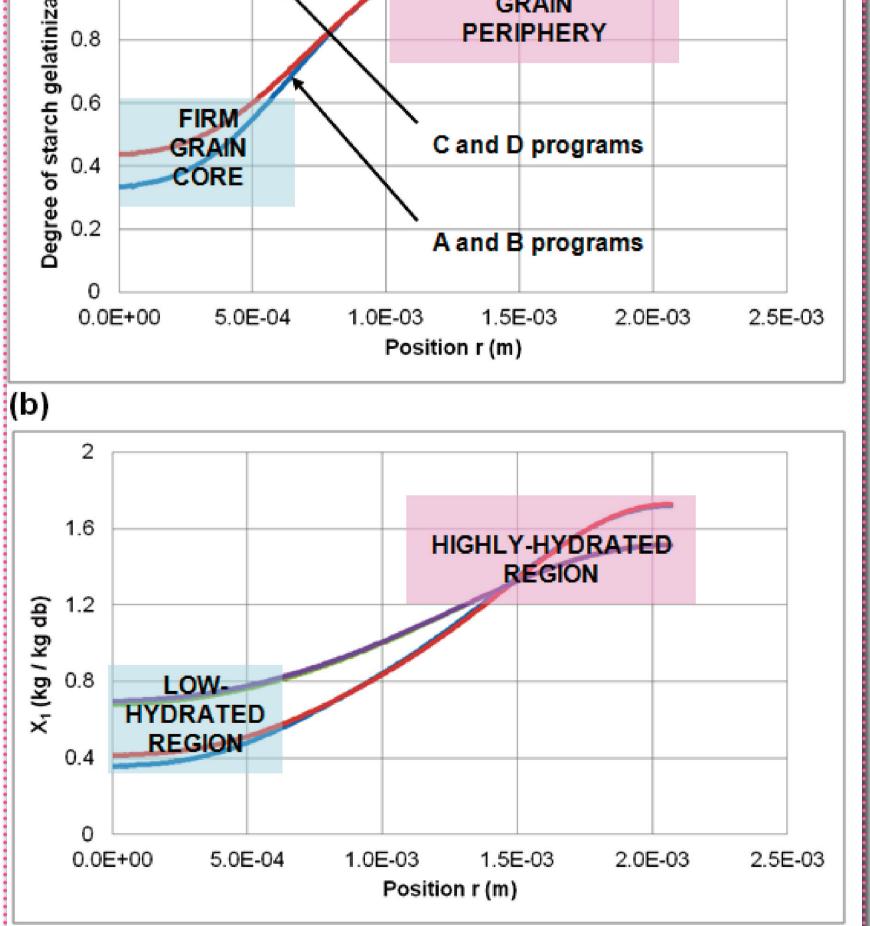



Figure 6. (a) Degree of gelatinization (au) and (b) water content  $(X_1)$  profiles at the end of the four cooking programs.

### Reference

1. IRIE, K., HORIGANE, A.K., NAITO, S., MOTOI, H., Yoshida, M., (2004). Moisture distribution and texture of various types of cooked spaghetti. Cereal Chemistry 81(3), 350-355.

# Conclusion

Cooking programs also simulated to

obtain the final degree of starch

gelatinization and water content

profiles. Programs 1 and 2 resulted

in remaining low-hydrated native

regions whereas programs 3 and

4 led to highly-hydrated and

fully gelatinized grain (figure 6). The

native and low-hydrated core

may confer more firmness and

HIS new "mechanistic" modeling approach can predict the local extent of two major phenomena (water transfer and gelatinization) involved in rice cooking process. This opens new ways for cooking process optimization.

