MOLECULAR MARKERS FOR CACAO TRAITS

Lambert A. Motilal1, Dapeng Zhang2, Pathmanathan Umaharan1, Michel Boccarda1,3, Lyndel Meinhardt2 and Claire Lanaud3.

1Cocoa Research Unit, The University of the West Indies, St. Augustine, Trinidad, Rep. Trinidad and Tobago, West Indies.
Email: lamotilal@yahoo.com

2USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD 20705, USA.

3Centre de coopération internationale en recherche agronomique pour le développement, Montpellier Cedex 5, France

SUMMARY

Seventy-one microsatellites and 82 SNP markers were examined for their association with flush colour, shell content, seed butterfat content, fruit butterfat content, dry mass of cotyledons in a seed and dry mass of cotyledons from a fruit in 145 cacao accessions drawn from Refractario and Forastero groups. The more reliable markers were obtained when a vector matrix of multidimensional similarities rather than a matrix of population composition was utilised as a system screen. Fifteen markers (five SNPs and 10 SSRs) were found over six linkage groups (chromosomes 1, 2, 4, 5, 7 and 9). Each marker accounted for 10 – 43% of the phenotypic variation. Three markers (mTcCIR250, mTcCIR251 and SNP836) appeared fairly robust. The microsatellite mTcCIR250, present on chromosome nine, accounted for a substantial 34.1% of variation in the cotyledonary mass of a fruit. The microsatellite mTcCIR251, located on the same chromosome, tagged both the cotyledonary mass and butterfat content of a fruit explaining 43.4% and 41.7% of the variation respectively. The marker SNP836, present on chromosome 2, tagged both fruit butterfat content and cotyledonary dry mass in a seed explaining 12% and 11% of the total variation respectively.