

Contribution to the optimization of clarification of cashew apple juices by tangential microfiltration: identification of the foulant fractions and implementation of filterability tests

Doudjo SORO, Michèle DELALONDE, <u>Christelle WISNIEWSKI</u>, Manuel DORNIER

UMR Qualisud, Montpellier, France

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment

Cirad Superior

□ To determine the main foulant fractions of cashew apple juices

To implement tests of filterability *Prediction of the filtration performance*

CONTEXT

□ To valorize cashew apple in juice

✓ Côte d'Ivoire product 3 million t/year

EXPERIMENTAL APPROACH

Capillary Suction Time (CST)

The CST is derived from the time taken to draw a known volume of filtrate from a suspension by the capillary suction pressure generated from standard CST filter paper.

Capillary Suction Time has been established as a reliable method for assessing **sewage sludge** filterability.

However the CST technique can be used on **any** colloidal aqueous suspension.

Triton Type 319 Multi-purpose CST

EXPERIMENTAL APPROACH

Specific resistance to filtration (SRF)

Stirred Ultrafiltration Cells AMICON - Model 8010 Cellulose nitrate membrane 0,2 μm – 2 bar

🖉 cirad Sup Agro 🛛 🗸 🗍 UM 🕹

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment

EXPERIMENTAL APPROACH

Clarification experiments - Pilot unit and operating conditions

 \Box For clarification, a pilot of micro-filtration was used. It contains four modules connected in series. Each module contained a ceramic membrane of 0.2 µm of pore size.

□ Operating conditions:

- ✓ Crossflow velocity: 6 m.s⁻¹;
- ✓ Temperature: 35±2°C;
- ✓ Average transmembrane pressure: 2bar

Pilot Unit

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment

QualiSud

RESULTS – Juice characteristics

and the second	the second second second second second	and the second se
JM	JB	JM
4.05 (0.29)*	3.90 (0,21)*	4.06 (0.15)*
2.94 (0.08)*	2.61 (0,09)*	2.66 (0.05)*
52 (2)*	56 (2)*	56 (2)*
65 (2)	60 (2)	60 (2)
7.78 (0.46)	3.32 (0.19)*	0**
23.10 (0,13)**	2.1 (0,01)*	0
3.81 (0.15)**	0.25 (0.02)*	0
1.24 (0.07)	1.05 (0.05)	1.13 (0.04)
8 033 (907)**	233 (15)*	6 (<1)*
15.0 (0.5)	14.2 (0.1)	14.1 (0.7)
4.04	2.09	1.89
	JM 4.05 (0.29)* 2.94 (0.08)* 52 (2)* 65 (2) 7.78 (0.46) 23.10 (0,13)** 3.81 (0.15)** 1.24 (0.07) 8 033 (907)** 15.0 (0.5) 4.04	JM JB 4.05 (0.29)* 3.90 (0,21)* 2.94 (0.08)* 2.61 (0,09)* 52 (2)* 56 (2)* 65 (2) 60 (2) 7.78 (0.46) 3.32 (0.19)* 23.10 (0,13)** 2.1 (0,01)* 3.81 (0.15)** 0.25 (0.02)* 1.24 (0.07) 1.05 (0.05) 8 033 (907)** 233 (15)* 15.0 (0.5) 14.2 (0.1) 4.04 2.09

MST2012: Sustainable Energy and Environment

SRF (kg.m⁻¹) 1,2E+14 1,06E+14 1,0E+14 8,0E+13 6.0E+13 4,0E+13 2,0E+13 5,51E+12 3,15E+12 0,0E+00 JD Different juice JB JM International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment Cirad SupAgro UV11 ume QualiSud **RESULTS – Permeate flux** Jb (L.h⁻¹.m⁻²) 500 fl-400 300 200 116 L.h⁻¹.m⁻² 100 41 L.h⁻¹.m⁻²

QualiSud

0

1

2

3

RESULTS – SRF

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment

5

6

7

VRR

R

4

39 L.h⁻¹.m⁻²

RESULTS – DISCUSSION

□ JB (Raw juice) : contains more tannins, total nitrogène, AIS, SIS than JD (Decanted juice) one.

□ JM (Clarify juice): not contains tanins, AIS and SIS. Total nitrogène is reduced

□ Jp of JM (116 L.h⁻¹.m⁻²), is very raise than JB (39 L.h⁻¹.m⁻²) and JD (40 L.h⁻¹.m⁻²).

International Conference on Membrane Science & Technology
MST2012: Sustainable Energy and Environment

Quali Sud

Cirad Sup Agro Lubronit Mongolism

□ The JB having the lowest SRF, should in principle have the permeate flux is higher. But this is not the case

RESULTS – DISCUSSION

□ This means that we can not use the filterability tests on Amicon cell to predict the permeate flux of juice

RESULTS – DISCUSSION

	JB	JD	JM
Jp (L.h ⁻¹ .m ⁻²) (3 <vrr<8; tmp="2bar)</td"><td>39</td><td>40</td><td>116</td></vrr<8;>	39	40	116
SRF (Kg.m ⁻¹)	3.15 10 ¹²	106 10 ¹²	5.51 10 ¹²
CST (s)	9.8 (0.9) ^a	7.9 (0.7) ^b	6.6 (0.9) ^b

□ JD has a different behavior of other juice during filtration with cell amicon. Its SRF is very high but its permeate flux is the same than JB.

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment

Cirad State Region Charles

RESULTS – DISCUSSION

□ The values of the Capillary Suction Time (CST) of JD and JM are statistically identical. However, the permeate flux are very different;

□ We can not use the filterability tests on CST to predict the permeate flux of juices

Cirad Monteelier UV/11 UV/11 UV/14

CONCLUSION

□ This study shows that:

✓ simples filterability tests can not be used to predict permeate flux during microfiltration;

✓ The colloidal fraction is responsible for membrane fouling in crossflow microfiltration;

✓ Crossflow microfiltration removes the astringency of cashew apple juice.

International Conference on Membrane Science & Technology MST2012: Sustainable Energy and Environment