QTLs From Genome to Field Using Markers and Genetic Maps for Peanut Improvement

Manish Pandey
ICRISAT, INDIA

Constraints for low production
Drought
Leaf spot
Leaf rust

Integrated genomics approaches in peanut

Marker series	Markers	References	Research Institute/University
Arachis	24	Papai et al. 2004	University of Georgia, USA/Cornell University, USA
236	Shu et al. 2004	Universidade Estadual Paulista (UNESP), Brazil	
32	Hisoki et al. 2007	USDA-ARS/Tuskegee University, USA	
133	Lee et al. 2008	Universidade Federal Rural do Rio de Janeiro, Brazil	
151	Large et al. 2008	USDA-ARS/Tuskegee University, USA	
178	Zhao et al. 2009	Shandong Peanut Research Institute, China	
290	Wang et al. 2009	USDA-ARS/Tuskegee University, USA	
685	Hwang et al. 2009	University of Georgia, USA	
113	Lee et al. 2009	USDA-ARS/Tuskegee University, USA	
94	Song et al. 2010	University of Georgia, USA	
210	Liu et al. 2010	USDA-ARS/Tuskegee University, USA	
630	Shi et al. 2010	USDA-ARS/Tuskegee University, USA	
102	Shi et al. 2010	University of Georgia, USA	

Improved germplasm with resistance/tolerance to biotic/abiotic stresses; better nutritional quality and enhanced agronomic performance

~13,000 SSR markers

Contents

- Markers repository
- Genetic/consensus maps
- QTLs and linked markers
- Molecular breeding
- Summary

Arachis SSR markers

Marker series	Markers	References	Research Institute/University
AA, Ac, Ap	149	Pandey et al. 2002	International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India
AA, Lec, Lep	143	Zhao et al. 2002	Tuskegee University, USA
AA, Lec, Lep	63	Macedo et al. 2012	University of Brasilia, Brazil
DArT features	15,000	Killian 2008, Varshney et al. 2012	DArT Pty Ltd (Australia), ICRISAT (India), CIRAD (France), and Catholic University of Brasilia & EMBRAPA (Brazil)
Single nucleotide polymorphism (SNP) markers	1,536	Ozias-Akins, Peggy, pers communication	University of Georgia, USA
768	Cook, Douglas, pers communication	University of California-Davis, USA	

DArT array showed low polymorphism

- Sequencing >200 genes in parents of mapping populations as well as screening of 1536 SNPs (from U6, USA) also yielded very few polymorphic SNPs
- As a collaborative effort with UGA, USA (Dr Peggy Ozias-Akins), a set of 96 highly informative SNPs in cultivated germplasm were converted into KASPar assays
- Validated KASPar assays available for 90 SNPs

Five genetic maps for 4x groundnut

<table>
<thead>
<tr>
<th>Details of different linkage maps</th>
<th>TAG 24</th>
<th>ICGS 76</th>
<th>ICGS 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGV 86031</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RIL-1 (RIL-2)</td>
<td>IGV 76</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RIL-3 (RIL-4)</td>
<td>CSMG 84-1</td>
<td>x</td>
<td>6PBD 4</td>
</tr>
<tr>
<td>RIL-5 (RIL-6)</td>
<td>ICGS 76</td>
<td>x</td>
<td>6PBD 4</td>
</tr>
</tbody>
</table>

Marker loci mapped: 191

Linkage groups: 22

Marker loci/LG: 2-19

Avg. marker loci/LG: 8

Total map distance (cM): 1785

Avg. distance/LG (cM): 81.15

Avg. inter-Locus distance (cM): 9.54

Reference consensus genetic map

Marker loci mapped: 897

Total map distance: 3863.6 (cM)

Map density: 4.42 (cM)

PloS ONE 2012, 7 (7): e41213

Eleven 4X- genetic maps used for consensus map

<table>
<thead>
<tr>
<th>Maps</th>
<th>Linkage groups</th>
<th>Polymorphic loci</th>
<th>Mapped loci</th>
<th>Map length (cM)</th>
<th>Map density (cM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIL-1</td>
<td>22</td>
<td>211</td>
<td>191</td>
<td>1785.4</td>
<td>9.35</td>
</tr>
<tr>
<td>RIL-2</td>
<td>20</td>
<td>128</td>
<td>119</td>
<td>2018.2</td>
<td>18.56</td>
</tr>
<tr>
<td>RIL-3</td>
<td>15</td>
<td>87</td>
<td>82</td>
<td>831.4</td>
<td>10.14</td>
</tr>
<tr>
<td>RIL-4</td>
<td>20</td>
<td>209</td>
<td>188</td>
<td>1922.4</td>
<td>10.23</td>
</tr>
<tr>
<td>RIL-5</td>
<td>21</td>
<td>209</td>
<td>181</td>
<td>1963</td>
<td>10.85</td>
</tr>
<tr>
<td>RIL-6</td>
<td>19</td>
<td>146</td>
<td>132</td>
<td>700.4</td>
<td>6.01</td>
</tr>
<tr>
<td>RIL-7</td>
<td>21</td>
<td>124</td>
<td>109</td>
<td>503.1</td>
<td>4.62</td>
</tr>
<tr>
<td>RIL-8</td>
<td>13</td>
<td>64</td>
<td>46</td>
<td>357.4</td>
<td>7.76</td>
</tr>
<tr>
<td>RIL-9</td>
<td>26</td>
<td>261</td>
<td>233</td>
<td>1304.9</td>
<td>5.6</td>
</tr>
<tr>
<td>RIL-10</td>
<td>22</td>
<td>183</td>
<td>175</td>
<td>917.45</td>
<td>5.3</td>
</tr>
<tr>
<td>BCF1-11</td>
<td>21</td>
<td>339</td>
<td>332</td>
<td>847.4</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Genus map: 20 - 987 3863.6 4.42

Markers repository

- Genetic/consensus maps
- QTLs and linked markers
- Molecular breeding
- Summary

An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraptlate Groundnut (Arachis hypogaea L.)

Marker loci mapped: 3,693

Total map distance (cM): 2,651

Map density (loci/cM): 1.39

Markers repository

- Genetic/consensus maps
- QTLs and linked markers
- Molecular breeding
- Summary

Shirasa et al. 2015, DNA Research
16 QTL clusters identified for drought related traits

<table>
<thead>
<tr>
<th>Cluster</th>
<th>QTL Traits</th>
<th>R² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>LDW, TW, SORD, TORDER, WD, T1E</td>
<td>3.64-2.23</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>SLA, SORD, TORDER</td>
<td>3.91-2.24</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>SciWR, SciMD, TDW, Veg wt</td>
<td>5.06-3.36</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>HD, TORDER</td>
<td>6.91-7.29</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>TORDER, SORD, Pod wt, SORD, Haulm wt, TDW68125,</td>
<td>1.7-13.44</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>LA, SORD, Pod wt, TDW, TORDER, SLA, SORD, SORD, TORDER, TE</td>
<td>2.93-9.85</td>
</tr>
<tr>
<td>Cluster 7</td>
<td>SLA, Haulm wt, SciWR, SciMD, TORDER</td>
<td>3.90-9.87</td>
</tr>
<tr>
<td>Cluster 8</td>
<td>SciWR, SciMD, LA</td>
<td>6.43-10.49</td>
</tr>
<tr>
<td>Cluster 9</td>
<td>SciWR, Pod wt, Haulm wt, LA, TORDER</td>
<td>7.30-12.15</td>
</tr>
<tr>
<td>Cluster 10</td>
<td>SciWR, Pod wt, Haulm wt, LA, TORDER</td>
<td>4.67-7.74</td>
</tr>
<tr>
<td>Cluster 11</td>
<td>Initial DW, SLAG, SORD, TORDER, Haulm wt, SciMD, SciWR, TE68124</td>
<td>4.19-20.32</td>
</tr>
<tr>
<td>Cluster 12</td>
<td>TORDER, Haulm wt, SORD, LA, SciWR, TORDER, SciWR</td>
<td>3.44-12.80</td>
</tr>
<tr>
<td>Cluster 13</td>
<td>SLAG, SORD, TORDER</td>
<td>3.5-13.95</td>
</tr>
<tr>
<td>Cluster 14</td>
<td>HD, Veg wt</td>
<td>6.62-40.30</td>
</tr>
<tr>
<td>Cluster 15</td>
<td>SciWR, SciMD, SORD</td>
<td>5.41-19.53</td>
</tr>
<tr>
<td>Cluster 16</td>
<td>Total DW, SciWR,</td>
<td>2.51-9.87</td>
</tr>
</tbody>
</table>

Mol Breeding 2012, 32:757-772
A major QTL for rust in peanut (PVE up to 82.96%)

QTLs/markers for molecular breeding

A diagnostic marker for rust resistance

Importance of high oleic acid in peanut oil

- Peanut seeds contain about 44-56% oil which comprised up to 12 fatty acids.
- Two major fatty acids oleic and linoleic account for approximately 80% of the oil composition (Ahmed and Young 1982).
- Peanut oil with high % of linoleic acid are prone to oxidation, leading to rancidity, off-flavors, and short shelf-life during seed storage.
- High levels of oleic acid is beneficial to human health by reducing low-density lipoproteins, maintaining high-density lipoprotein, slowing down atherosclerosis, and reversing the inhibitory effect of insulin production.

Contents

- Markers repository
- Genetic/consensus maps
- QTLs and linked markers
- Molecular breeding
- Summary

Marker interval

- Oleic/linoleic acid ratio
- Oleic acid
- Linoleic acid
- LLS
- Rust

Marker interval

- Oleic acid 2010
- Oleic acid 2011
- Oleic/linoleic acid ratio

Marker interval

- Marker effects
- Marker interval
- Marker significance

Marker interval

- Marker significance
- Marker interval
- Marker effects

Marker interval

- Marker significance
- Marker interval
- Marker effects
Map saturation and new co-dominant markers

- Identification of four more markers (GM2009, GM2079, GM1536, GM2301), all four markers are co-dominant in nature as compared to dominant marker IPAHM103.

- All these markers are deployed to introgress QTL for rust resistance into the genetic background of three elite cultivars (TAG 24, JL 24 and ICGV 91114).

- This is the first effort towards moving QTL from one to another genotype through marker-assisted breeding to improve any trait in peanut.

Marker-assisted breeding for rust resistance

Phenotypic expression of rust QTL

Allele specific markers for oleate trait

Marker-assisted breeding for high oleate trait

Yield assessment of promising resistant lines
Summary

- Development of large number of markers
- Construction of several SSR based genetic linkage maps for cultivated groundnut
- Development of highly dense consensus genetic maps
- Genome sequencing is in progress for diploid and tetraploids
- Involvement of few main effect (M-QTLs) and several epistatic (E-QTLs) QTLs for drought tolerance related traits
- Availability of linked markers for foliar diseases (rust and late leaf spot), tomato spotted wilt virus (TSWV) and high oleate trait
- Initiation of marker-assisted introgression of foliar diseases and high oleate trait for improvement of elite cultivars
- Promising introgression lines possessing rust QTL available with improved resistance

Acknowledgements

This work was carried out at CEG, ICRISAT under supervision of Rajeev Varshney in collaboration with several collaborators:

- UAS-Dharwad, India: MVC Gowda, R Bhat, V Sujay
- DGR-Junagadh, India: T Radhakrishnan
- Univ Brasilia, Brazil: David Bertoli
- EMBRAPA, Brazil: Soraya Bertolli, Marcio Morettsahn
- UGA, USA: Steve Knapp, Peggy Ozias-Akins
- UC-Davis, USA: Doug Cook
- Tuskegee Univ, USA: Guahao He
- USDA-ARS, USA: Baozhu Guo
- KDRI, Japan: Sachiko Iabbe
- GAAS, China: Xuanquiang Liang, Yanbin Hong, Xiaoping Chen

Thanks for your patience