

INSTITUTO MATOGROSSENSE DO ALGODÃO & CIRAD – CENTRE DE COOPERATION INTERNATIONALE DE RECHERCHE AGRONOMIQUE POUR LE DEVELOPPEMENT

CONTRIBUIÇÃO PARA A OTIMIZAÇÃO E A VALIDAÇÃO DE SISTEMAS CONSERVACIONISTAS DE PRODUÇÃO A BASE DE ALGODÃO NO CERRADO DO MATO GROSSO (CONTINUAÇÃO)

RELATÓRIO ANO AGRÍCOLA 2011/2012

Lucien Séguy Serge Bouzinac Érica Tieme Mine Élio Rodriguéz de la Torre Márcio Henkes Caldeira Adelar Schons

Goiânia - GO Janeiro 2013

SUMÁRIO

	Paginas
1. INTRODUÇÃO	. 03
II. ATIVIDADES DE PESQUISA 2010/2011 – RESUMO	05
2.1 PROGRAMA DE MELHORAMENTO ARROZ	05
2.2 APOIO A AGRICULTURA FAMILIAR DO NORTE (Nova Guarita)	05
2.3 ATIVIDADES DE APOIO E CONSELHOS A PESQUISADORES DO IMA	05
2.4 DIFUSÃO DE TECNOLOGIAS SOBRE MANEJO MAIS ECOLOGICOS DOS	SOLOS
E DAS CULTURAS	
III. RESULTADOS DO ANO 2010/2011 "HIGHLIGHTS"	06
3.1) PROGRAMA DE MELHORAMENTO ARROZ	06
3.1.1 SISTEMAS PDSCV DE UMA BIODIVERSIDADE FUNCIONAL CRESCENTE	06
3.1.2 RECUPERAÇÃO/REGENERAÇÃO DA FERTILIDADE E SANEAMENTO DOS ARENOSOS DAS CHAPADAS DA REGIÃO DE ALTO GARÇAS – MT – TORRE – PRIMEIROS RESULTADOS	GRUPO 10
3.1.3 TRATAMENTO QUÍMICO TRADICIONAL DE SEMENTES DE ALGODÃO TRATAMENTO COM BIOPRODUTOS EM ÁREA INFESTADA DE PERO CASTANHA – FAZ. CAIMBÉ – MT	CEVEJO
3.2) RESULTADOS DO PROGRAMA "MELHORAMENTO ARROZ"	27
3.2.1. VCUs	27
3.2.2 MULTIPLICAÇÕES DAS MELHORES VARIEDADES E NOVAS PROMISSO MAIOR ESCALA – 2011/12	
3.2.3 PRINCIPAIS CARACTERISTICAS FENOLÓGICAS E TECNOLO ESPECIFICIDADES	
3.2.4 ALGUMAS RECOMENDAÇÕES IMPORTANTES PARA UM MONITORA BEM SUCEDIDO DAS VARIEDADES SEBOTAS	
3.3) APOIO A PEQUENA AGRICULTURA FAMILIAR NOVA GUARITA	67
3.4) ATIVIDADES DE APOIO E CONSELHOS A PESQUISADORES DO IMA	69
3.5) DIFUSÃO DE TECNOLOGIAS SOBRE MANEJO MAIS ECOLÓGICO DOS E DAS CULTURAS	
ANEXOS	70

I. INTRODUÇÃO

LEMBRETE - OBJETIVOS

O objetivo prioritário deste projeto IMA-FACUAL/ CIRAD é contribuir para a valorização e a otimização continua de cenários cada vez mais atuantes, diversificados e ecológicos de agricultura sustentável, em larga escala no Estado do Mato Grosso. O projeto tem seu fundamento e suas justificativas essenciais no livro de 2008 "A sinfonia inacabada do Plantio Direto no Brasil Central" de L. Séguy, S. Bouzinac e seus parceiros brasileiros, publicado pelo IMA em 2008, que conta a saga dos Sistemas de cultivo em Plantio Direto sobre Cobertura Vegetal permanente dos solos (PDSCV), nos Trópicos Úmidos (TU) do Brasil Central entre 1985 e 2008. Este conceito foi elaborado pelo CIRAD e foi transformado em tecnologias diversificadas, apropriáveis, com a colaboração ativa de nossos parceiros brasileiros da pesquisa e da extensão, e se inspirou diretamente do ecossistema florestal, do qual ele utiliza as principais características de funcionamento que lhe conferem sua estabilidade.

As propostas e ações de pesquisas são construídas a partir da engenharia ecológica em prol do desenvolvimento, engajada na recuperação da fertilidade (*resiliência*) ao menor custo dos latossolos das frentes pioneiras degradados por anos de preparo intensivo do solo e de monocultura de soja, desde o final dos anos 70.

As regras básicas que comandam a construção de sistemas de cultivo mais atuantes e mais ecológicos são, em resumo :

- O conceito e as tecnologias PDSCV obedecem às regras e práticas fundamentais e precisas, que não podem ser transgredidas sem se expor a enormes riscos agroeconômicos e ambientais. É o caso da necessidade absoluta de não preparar mais o solo e mantê-lo sempre coberto. O sistema chamado de "semi-direto" foi um ajuste equivocado dos PDSCV pelos agricultores que introduziram um preparo mínimo do solo (gradagens) para implantar as coberturas vegetais e constitue um exemplo demonstrativo negativo. Este sistema não é sustentável e mostra ser limitado na viabilidade e na reprodutibilidade ambiental, obrigando ao uso crescente de insumos químicos.
- A matéria orgânica (M.O.) é certamente o componente principal que está no coração da gestão sustentável dos eco-agrossistemas em ambiente tropical quente e úmido: as performances agronômicas dos SCV são significativamente correlatas aos teores em M.O. do perfil cultural, esses últimos são estreitamente correlatos á quantia e á qualidade das entradas anuais de carbono no sistema de cultivo nos latossolos, tanto com textura argilosa quanto argilo-arenosa e areno-argilosa.
- Não há irreversibilidade no processo de degradação da fertilidade dos solos: os PDSCV permitem restaurar o estatuto orgânico dos solos com a mesma velocidade com que as técnicas de preparo intensivo do solo aliadas com a monocultura de soja os tem destruídos, na medida em que os PDSCV praticados fornecem grandes quantias de biomassa seca anual diversificada, obedecendo aos critérios quantidade e qualidade, tanto acima da superfície do solo como no perfil cultural e na medida em que o solo nunca é preparado e permanece sempre totalmente protegido sob uma cobertura vegetal para minimizar a mineralização da M.O no perfil. Este resultado constituí uma clara confirmação dos trabalhos de pesquisa do CIRAD e de seus parceiros brasileiros reunidos já em 2001, no documento "Sistemas de cultivo e dinâmica da Matéria Orgânica" (*L. Séguy, S. Bouzinac et al. 2001*).
- As performances agronômicas e técnico-econômicas dos PDSCV progridem de acordo com a importância e o domínio da biodiversidade funcional empregada nos sistemas que confere ás coberturas vegetais uma multifuncionalidade eficiente crescente e gratuita. Esta última permite progressivamente reduzir significativamente os insumos químicos (pesticidas) e os adubos minerais dentre dos quais o nitrogênio principalmente para as culturas mais exigentes como milho, arroz e algodão, e portanto reduzir os

_

¹ Resultado também confirmado em varias fazendas francesas que praticam os PDSCV diversificados a base de trigo, milho, soja, cevada, canola; estes PDSCV bem dominados permitem desde já reduzir as doses de pesticidas de 50 para 70% e as quantias de nitrogênio mineral de 30 para 50% nas cereais para alcançar rendimentos já superiores aos dos sistemas vigentes que usam meios químicos intensivos.

custos de produção, sem diminuição notável dos rendimentos. É assim que se abre o caminho para produções e solos mais "limpos", livres de resíduos agrotóxicos, na medida em que bioprodutos podem complementar uma gestão química reduzida das culturas (já se domina a capacidade em reduzir em 50% a carga química dos agrossistemas vigentes em lavoura comercial, com manutenção de produtividades elevadas).

Esta "pesquisa de qualidade" sistêmica deve continuar a aprofundar os conhecimentos sobre as maiores interações benéficas entre as espécies de cobertura do solo e dominar as práticas e os reajustes que as favorecem (tema de pesquisa por si só), pois ela produz ao mesmo tempo os conhecimentos científicos e as soluções técnicas mais atuantes e apropriáveis pelos agricultores, e pode efetivamente, ao menor custo, melhorar a quantidade e a qualidade das produções. Esses conhecimentos sobre o papel multifuncional da biodiversidade em escalas crescentes (da parcela experimental aos talhões das fazendas e as unidades de paisagem) permitem já um melhor manejo dos agro ecossistemas atuais, consumidores maciços "de energia cultural industrial" e os orienta de modo estruturado para "ecossistemas cultivados" cada vez mais construídos a partir da "energia cultural biológica", procedentes da gestão da biodiversidade que pode fornecer serviços ecológicos ainda mais atuantes e gratuitos.

- (*) Este tipo de atuação integrada da pesquisa enfrenta diversas dificuldades que podem limitar, e muito, o seu desempenho, como foi o caso estes 3 últimos anos:
 - de natureza operacional: é muito mais dificil de construir-dominar sistemas de cultivo que são conjuntos complexos de componentes a serem otimizados em interação permanente do que conduzir pesquisas temáticas isoladas e simples tais como competição de cultivares, niveis de adubação, etc....; o monitoramento em fazenda pode ser problemático por diversas razões entre outras: disponibilização deficiente dos meios de produção, monitoramento deficientes nas inovações sistemas em construção, ainda não perfeitamente dominadas, etc....
 - de natureza conjuntural: este tipo de intervenção sistêmica em larga escala terá sucesso somente se o proprietário tem consciência da necessidade absoluta do interesse fundamental deste tipo de pesquisa; este comportamento é quanto mais imprescindível no contexto da agricultura de hoje, cada dia mais "simplificada" e produtivista (mas que se beneficia de preços altos pagos), dependente de uma carga química cada vez maior, endividada, e "enforcada" pelas multinacionais, ou seja numa situação geral muito pouco favorável para apoiar uma mudança tão importante de gestão agronômica e técnico-econômica.

Como exemplos destas dificuldades:

- O projeto teve que abandonar campos experimentais em 2007/08 (mudança de gerente na fazenda);
- Em 2008/09, a mudança radical e repentina do agrônomo responsável e dos técnicos formados fez perder partes dos campos experimentais por falta de continuidade no monitoramento (em particular uma unidade de gestão orgânica do algodão em PD);
- Tomando em conta estas dificuldades, a melhor estratégia é sempre de se concentrar em poucas áreas onde existe uma demanda forte, um apoio eficiente, a certeza de um apoio técnico assegurado (treinamento do pessoal técnico), a confiança total de um grupo ou de um proprietário consciente que apóia este tipo de pesquisa sistêmica, que escolha e aplica na sua propriedade alguns dos melhores sistemas e que poderá assim, convencer os outros agricultores da região[dias de campo].

II. ATIVIDADES DE PESQUISA 2011/2012 – RESUMO

Vide documento "Conselhos, sugestões e propostas para elaboração do programa de pesquisa do IMA" – 2011/12

2.1 PROGRAMA MELHORAMENTO ARROZ

Opção de diversificação dos sistemas PDSCV a base de algodão, soja e milho. É o terceiro ano de VCUs multiregionais no Mato Grosso.

- VCUs Arroz VCU ciclos curtos + VCU ciclos médios em 4 localidades (condições pedoclimáticas diferenciadas):
 - · Campo Verde,
 - · Paranatinga,
 - · Sinop,
 - · Sorriso.
- Seleção de cultivares Seleção genealógica clássica, populações recorrentes, exploração de cruzamentos entre grupos genéticos muito afastados (SBT indicas, indicas x japônica, japônicas/ japonicas de sequeiro do Laos).
- · Multiplicação das melhores variedades em maior escala.
- Beneficiamento e rendimentos das melhores cultivares, outras caractéristicas tecnológicas.

2.2 APOIO A PEQUENA AGRICULTURA FAMILIAR (Nova Guarita)

- Multiplicação de espécies forrageiras,
- · Algodão orgânico,
- Sistemas em plantio Direto (PDSCV) integrando Agricultura e Pecuária.

2.3 ATIVIDADES DE CONSELHO Á EQUIPE DE PESQUISADORES DO IMA

- Apoio á tese de mestrado da Dra Érica Tieme Mine.
- Proposta de programa de pesquisa 2011/2012.
- Palestra sobre "Potencial agronômico dos bioprodutos em benefício da agricultura matogrossense".

2.4 DIFUSÃO DE TECNOLOGIAS SOBRE MANEJO MAIS ECOLÓGICO DOS SOLOS E DAS CULTURAS

- **Grupo Torre** (Alto Garças MT) : Sistemas em Plantio Direto com alto poder de biorremediação em solos arenosos cada dia mais improdutivos ("fadiga de solos").
- Publicações do CIRAD de grande interesse científico e didático sobre a agricultura de conservação destinada a pequena agricultura familiar do estado do Mato Grosso:
- O que é o Plantio Direto? Como funciona?
- Guia de plantio direto para a pequena agricultura familiar em Madagascar, caleidoscópio de ecologias tropicais.

III. RESULTADOS –

(*) Preambulo

A programação de pesquisas exposta no capítulo II precedente [Vide doc. "Programação de pesquisas 2011/12"] não foi integralmente realizada:

- o programa de apoio a pequena agricultura familiar de Nova Guarita foi amputado das ações de pesquisa: multiplicação de espécies forrageiras e algodão orgânico,
- Os VCUs de Arroz foram negativamente afetados por falhas graves de acompanhamento e monitoramento que deixaram os inços tomarem conta dos experimentos em plena fase de perfilhamento.
- Face a estes problemas recorrentes, a diretoria do IMA decidiu fechar esta linha de pesquisas aplicadas em Nova Guarita.
- É importante ressaltar também, que, como já foi comentado por nos os 2 anos precedentes, a linha de pesquisas relativa ao progresso dos sistemas de cultivo PDSCV, não é mais prioritário para a cultura algodoeira no MT. Esta, altamente tecnificada, torna-se cada dia mais "simplificada", baseada quase exclusivamente nos avanços das biotecnologias nas quais o "cultivar" deve acumular um máximo de serviços agronômicos, se substituindo assim as funções agronômicas que poderiam ser asseguradas por uma gestão ecológica eficiente a baixo custo do meio ambiente (a través da engenharia ecológica que otimiza o acúmulo de serviços gratuitos ecossistêmicos fornecidos em benefício da cultura pelas misturas de plantas de cobertura nos sistemas PDSCV)

3.1 DIFUSÃO DE TECNOLOGIAS PDSCV SOBRE MANEJO MAIS ECOLÓGICO E MAIS EFICIENTE DOS SOLOS E DAS CULTURAS

3.1.1 Sistemas PDSCV de uma biodiversidade funcional crescente:

- → mais servicos ecossistemicos gratuitos em benefício das culturas e do meio ambiente,
- → custos de produção em baixa

Programa mínimo instalado na Fazenda Mourão II em Campo Verde, tendo como objetivo principal: mostrar que as plantas de serviços associadas ao milho ou ao sorgo de safrinha podem ser plantadas na própria da cultura de milho ou de sorgo, sem concorrência negativa para as 2 culturas, nos primeiros 20 dias de crescimento

- ⇒ Novas opções de plantas de serviço (funções: fixação N, eliminação de nematóides, seqüestro de carbono) consorciadas com Milho ou Sorgo:
 - Stylosanthes guianensis (CIAT 184) → Styl. g.,
 - Styl. g. + Brachiaria ruzi → Styl. g. + Brach. R.,
 - Centrosema pascuorum → Centro p.,
 - Centro. p. + Pé de galinha → Centro p. + P.G.,
 - Centro. p. + Brachiaria ruziziensis (integração Lavoura pecuaria),
 - Crotalaria spectabilis (Crot.sp.),
 - Crotalaria spectabilis (Crot. sp.) + Pé de galinha (PG) → Crot. sp.+ PG,
 - Crotalaria spectabilis (Crot. sp.) +PG + Centrosema p.,
 - Siratro (Macroptilium atropurpureum),
 - Siratro + Brachiaria ruziziensis (integração Lavoura-Pecuária),
 - Siratro + Crotalaria spectabilis,
 - Siratro + PG + Crotalaria spectabilis,

- Macrotyloma axillare (Macro ax.) → Cobertura viva permanente para algodão, milho, soja,
- Crotalaria juncea (Crot. J.) consorciado com sorgo (porte médio ou alto)
- Guandu anão consorciada com sorgo.

Resultados principais

- Nenhuma concorrência negativa observada sobre o desenvolvimento das 2 culturas milho e sorgo safrinhas durante os 20 primeiros dias de crescimento do consórcio;
- A aplicação do herbicida pós-emergente Tembotriona (Soberan) aplicado no talhão de milho em volta do experimento, eliminou todas as plantas de serviços (*deriva*).

Milho consorciado com Crotalaria spectabilis + Centrosema pascuorum

Sorgo consorciado com *Brachiaria ruzi + Crotalaria juncea*

Deriva do herbicida pós Tembotriona (Soberan)

3.1.2 Recuperação/regeneração da fertilidade e saneamento dos solos arenosos das chapadas da região de Alto Garças — MT — Grupo Torre — Primeiros resultados

- (*) Este trabalho de difusão de tecnologias PDSCV providas de elevada biodiversidade funcional e em particular de um forte, eficiente e rápido poder de biorremediação, como ferramenta operacional de recuperação imediata da fertilidade e de saneamento do solo, poderia ser matéria pertinente para uma "circular técnica" do IMA-MT, após coleta das performances que os diversos sistemas PDSCV propostos proporcionarão para as culturas de soja e milho da safra seguinte 2012/13.
- "Fadiga do solo", solos arenosos dominantes com baixo poder tampão (nível baixo de matéria orgânica), monocultura de algodão, proliferação de nematóides (gêneros Meloidogyne, Pratylenchus), acúmulo de produtos agrotóxicos são as palavras e expressões chaves que caracterizam a perda progressiva e contínua de capacidade de produção deste solo → Vide em anexo I onde estão reunidos:
 - Elementos de diagnóstico agronômico: análise do solo, análise nematológica,
 - Propostas de sistemas PDSCV que devem restaurar o mais rapidamente possível a capacidade de produção deste solo.

• A produtividade de algodão caroço nesta área era de 293,4 @/ha em 2003/04 e baixou de modo contínuo até 80 @/ha em 2010/11.

- No total, 4 sistemas PDSCV diversificados foram instalados: 3 sistemas PDSCV com forte poder de biorremediação a base de milho, sorgo e milheto(variedades) consorciados com mistura de plantas de serviço, um sistema PDSCV a base de *Brachiaria ruziziensis* + *Crotalaria spectabilis*, **foram implantados em janeiro de 2012, nesta área agora improdutiva:**
 - As sementes desses consórcios foram tratadas com bioprodutos = extrato concentrado de neem (repelente de insetos, controle nematóides) + Trichoderma sp [biorremediação + controle dos fungos do solo tipo Fusarium, Rhizoctonia] + Metarhizium an. + Beauveria b. [cepas eficientes contra pragas do solo inclusive percevejo castanho] + amino-ácidos e humus líquido (bioestimulantes).
 - Adubação mineral mínima dos consórcios, sem herbicidas pré nem pós, o objetivo essencial sendo sanear, recuperar a fertilidade do solo com uma produção de milho e sorgo que permita, ao mínimo, cobrir os custos (caso do sorgo) e mesmo ter lucro (caso do milho).
 - As plantas de serviços consorciadas com as culturas de sorgo, milho e milheto foram respectivamente:
 - Milho variedade + Brachiaria ruziziensis + Crotalaria spectabilis,
 - Sorgo variedade (BF 80) + Pé de galinha + *Crotalaria juncea* + *Crotalaria spectabilis*.
 - Milheto + Crotalaria spectabilis.

→ Primeiros resultados

Após 80 dias de crescimento, as biomassas aéreas dos 4 sistemas PDSCV estavam muito desenvolvidas (*biomassa seca superior a 15 t/ha*) e perfeitamente sadias; do mesmo modo, os perfis de solo debaixo dos 4 sistemas mostraram uma forte colonização pelas raizes dos consórcios sobre mais de 1,20 m de profundidade (*forte injeção de carbono no perfil, efeito reestruturador, ciclagem profundo de nutrientes*) como o mostram as fotos ilustrativas a seguir;

« Fadiga de solos », em extensão nas chapadas arenosas da região de Alto Garças –MT-2012 .

SCV: Milho + Brachiaria ruzi. +Crotalaria spectabilis

➡ Produtividade de grãos dos sistemas PDSCV a base de milho e sorgo variedades, com nível mínimo de insumos:

Milho: 61,3 sacos/ha ou seja 3.678 kg/ha,
Sorgo: 38,8 sacos/ha ou seja 2.328 kg/ha

Em resumo, primeiras conclusões:

Os sistemas PDSCV dotados de alta biodiversidade funcional + tratamentos de sementes com bioprodutos (*custo mínimo*), permitem em um ciclo de cultivo de 90 a 120 dias:

- Restaurar a capacidade de produção do solo com baixo custo, e sanea-lo, com nível mínimo de adubação, sem herbicidas pré ou pós (as biomassas controlam naturalmente os inços), nem inseticidas;
- Incorporar ao solo de quantidades expressivas de carbono (*em quantidade e qualidade*) e cobrir perfeitamente a superfície (controle dos inços), reestruturá-lo graças a sistemas radiculares diversificados e potentes;
- Reciclar nutrientes da profundidade para superficie.
- * Estes sistemas restauradores da fertilidade são descritos no "manual de boas práticas de manejo do algodoeiro em Mato Grosso –IMA-MT /AMPA" Novembro de 2012
- (*) Precisamos agora avaliar as performances econômicas destes sistemas PDSCV como ferramenta de restauração global rápida da capacidade de produção do solo e os impactos destes sistemas de recuperação sobre as culturas comerciais em seqüência. Estes sistemas PDSCV com forte poder de biorremediação são de suma importancia, até porque a estratégia de desenvolvimento brasileira, exclusivvamente baseada nas biotecnologias, que ignora a importância da gestão ecológica nas próprias parcela de cultivo e que faz um uso crescente de insumos químicos, a "fadiga do solo" vai se multiplicar, em particular nos solos arenosos que tem um fraco poder tampão.

3.1.3 Tratamento químico tradicional de sementes de algodão versus tratamento com bioprodutos em área infestada de percevejo castanha – Faz. Caimbé - MT

(*) Lembrete: A biodiversidade funcional associado a tratamento biológico de sementes podem ser ferramentas muito eficientes, mesmo em solo arenoso, infestado de percevejo castanha como o mostra o exemplo já citado no ano passado (Relatório 2010/11).

Os objetivos deste teste realizado em condições de lavoura comercial sobre solos muito arenosos, altamente infestados de percevejo castanha no ano anterior, na Faz. Caimbé, eram:

- Comparar a eficiência de 2 modos de tratamento de sementes sobre o stand inicial do algodão;
- Verificar se tem ou não consequências sobre a produtividade final e a qualidade da fibra.
- (*) O tratamento biológico é composto dos bioprodutos seguintes utilizados com baixa dosagem por ha (nos 15kg/ha de sementes de algodão):
 - 300 g de TY 10 (extratos de Neem + pirolenhoso),
 - 300 g de Bioinseto + (extratos de crisântemo + timbó),
 - 200 g de Metarril (Metarhizium anisopliae),
 - 200 g de Boveril (Beauveria bassiana),
 - 200 g de Trichodermil (*Trichoderma harzanium*),
 - 200 g de SS3 (amino-ácidos bio-estimulantes),
 - 80 a 120 ml de Húmus Líquido (HL) para colar- peletizar estes produtos nas sementes.

- → TY 10, Bioinseto+, enxofre coloidal, SS3, HL: bioprodutos da firma ELVISEM.
- → Metarril, Boveirl e Trichodermil: bioprodutos da firma ITAFORTE.
 - ⇒ Os resultados são expostos nas tabelas 1 e 2 a seguir e evidenciam que não tem diferença significativa entre os 2 tratamentos diferenciados de sementes, nem no stand inicial, nem na produtividade final e na qualidade de fibra
 - Este resultado obtido em grande área comercial mostra que alternativas biológicas de tratamento de sementes de algodão são possíveis e de igual eficiência ao tratamento químico vigente.
 - ⇒ O custo por ha no final de 2010 com os preços vigentes dos produtos era de 34,00 R\$ para o tratamento biológico contra mais de 60,00 R\$ para o tratamento químico comercial.

É o primeiro passo de uma gestão mais ecológica dos sistemas algodoeiros atuais submetidos a uma carga química cada dia mais importante e de impacto crescente sobre o meio ambiente.

TABELA 1 COMPARAÇÃO ENTRE BIOTRATAMENTO DAS SEMENTES DE ALGODÃO E TRATAMENTO QUÍMICO VIGENTE - FAZENDA CAIMBÉ – 2010/11 STAND INICIAL (Cultivar FMT 701)

DATA PLANTIO: 26/11/2010 DATA AVALIAÇÃO: 13/12/2010 ESTADIO: Plantas VI a V2. METODOLOGIA:

Onze pontos de 5 m distribuídos aleatoriamente nas três repetições onde o tratamento foi implantado.

PONTOS	BIOLÓGICO		MÉDIA	QUÍMICO		MÉDIA
1	61	36	9,7	48	51	9,9
2	68	59	12,7	63	66	12,9
3	52	44	9,6	64	59	12,3
4	73	63	13,6	48	39	8,7
5	59	59	11,8	61	49	11
6	72	50	12,2	53	39	9,2
7	69	58	12,7	76	57	13,3
8	53	54	10,7	61	55	11,6
9	83	71	15,4	64	65	12,9
10	59	74	13,3	56	48	10,4
11	73	77	15	69	51	12
MÉDIA			12,4			11,3

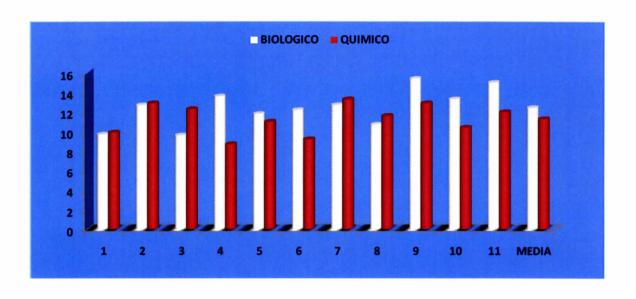
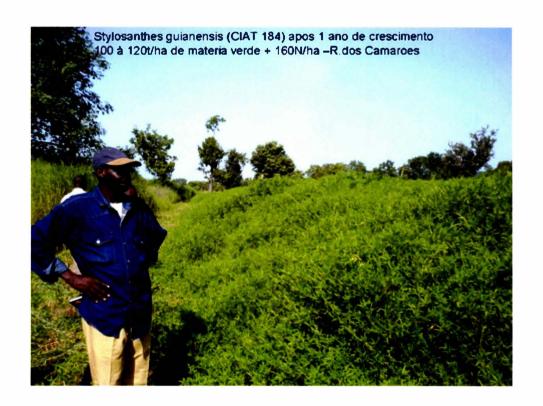
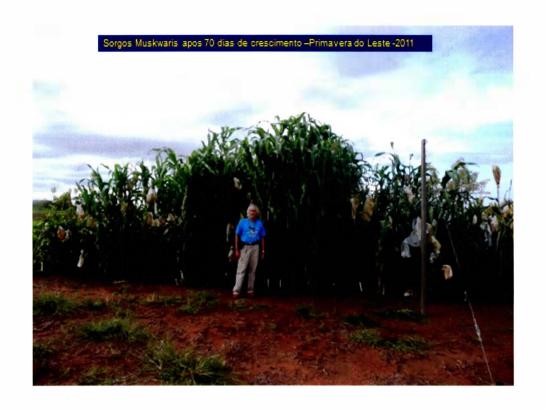


TABELA 2 COMPARAÇÃO DA PRODUTIVIDADE DO ALGODÃO (cv FMT 701) E DAS CARACTERÍSTICAS DE FIBRA, ENTRE BIOTRATAMENTO DAS SEMENTES E TRATAMENTO QUÍMICO VIGENTE – FAZENDA CAIMBÉ – 2010/11


	BIOTRATAMENTO DAS	TRATAMENTO QUÍMICO
	SEMENTES	DAS SEMENTES
PRODUTIVIDADE ¹ (@/ha)	291,7	299,4
UHM	1,12	1,12
Uniformidade	81,39	81,65
Fibra curta	10,01	9,83
RD	77,52	76,3
Resistência	28,65	31,02
Micronaire	4,43	4,28

1-Produtividade avaliada em 2,3 ha para o tratamento Bioprodutos e 2,45 ha para o tratamento químico, cada área sendo composta de 3 repetições (faixas de plantadeira).

Stylosanthes g. en saison sèche - Forêts



Coix lacryma jobi (Adlai) 24 t.ha⁻¹ de matéria seca total

PD-SCV: Milho en cultura pura a esquerda; milho + pé de galinha., 2/3 foto a direita
 Cerrados- Campo Verde- -2008

3.2 RESULTADOS DO PROGRAMA "MELHORAMENTO ARROZ"

(*) Programa conduzido pela Dra. Érica Tieme Mine com o técnico Wanderley Cavalcante do IMA em colaboração com os Drs L. Séguy e S. Bouzinac do CIRAD

Lembrete

• Linhas de pesquisas

- VCUs multi-regionais, multiplicações melhores variedades, produção G0, G1.
- Melhoramento arroz de altas performances e de alto valor agregado, na presença de um nível mínimo de insumos (*sem fungicidas em particular*), a partir da exploração de grupos genéticos afastados [*(japônicas x indica), Brasil x japônicas Laos*]: heterosis, melhor resistência ás agressões climáticas, fúngicas, pragas, etc.....

- Seleção para e dentro de sistemas de cultivo em PDSCV:

- Ciclos curtos para integrar as sucessões anuais intensivas : Arroz ciclo curto + algodão safrinha, Soja ciclo intermediário + Arroz ciclo curto em sobressemeadura, Arroz ciclo curto + safrinha de soja (*produção sementes*), Arroz ciclo curto + milho safrinha consorciado com plantas de serviços;
- Ciclos médios e longos, de maior produção de biomassa (*maior injeção de carbono no solo*), para diversificar as rotações de culturas e integrar as sucessões anuais: arroz ciclo médio + Sorgo e Milheto consorciados com plantas de serviços.
- Métodos de seleção convencionais: cruzamentos, seleção genealógica, bulk, pedigree, etc...,seleção de materiais de resistência horizontal aos fungus principais (brusone, escaldadura, mancha de grãos), seleção de arroz não senescentes "stay-green" que permitem adiar a colheita apos a maturação fisiológica sem perda de produtividade, sem acamamento e com rendimento no beneficiamento mantido; este tipo de material genético revela-se também mais resistente a seca.

3.2.1 VCUs

Lembrete

• Em 2009/10, os primeiros VCUs conduzidos com um número limitado de variedades e sem discriminação de ciclo, evidenciaram 5 variedades SEBOTAs, expostas na Tabela 3 a seguir, que expressam um alto nível de produtividade média: entre 5.400 e 7.000 kg/ha, muito superiores ao das testemunhas de ciclos intermediário e curto (Cambará e Primavera), num ano climático muito favorável

Tabela 3 - COMPARAÇÃO DAS MÉDIAS - 2009/10 MÉDIA GERAL dos 3 ensaios = 5.765,5 kg/ha

F1	LIBELOS	MÉDIAS GERAIS	GRUPOS
			HOMOGÊNEOS
6	SBT 364 (ex INT 231)	7019	A
2	CIRAD 141	6508	A
7	SBT 70	6046	A
8	SBT 93	6038	A
5	SBT 175	5886	A
4	SBT 172	5407	A
1	CAMBARÁ	5338	A
3	PRIMAVERA	3881	В

TABELA 4 ANÁLISES ESTATÍSTICAS RESUMIDAS DOS VCUs ARROZ DE CICLO CURTO NO MT DOS ANOS 2010/11 E 2011/12
ANO 2010/11

CAMPO	O VERDE	NOVA (GUARITA	PARAN	NATINGA	PRIMAV	ERA LESTE
Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.
	kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)
SBT 401	3.345 (a)	Cambará	7.216 (a)	SBT 70	4.289 (a)	SBT 70	3.851 (a)
SBT 406	3.305 (a)	SBT 70	7.161 (a)	Primavera	3.909 (a)	Cambará	3.595 (ab)
SBT 412	3.107 (a)	SBT 406	7.101 (a)	SBT 406	3.833 (a)	SBT 411	3.245 (ab)
Cambará	3.101 (a)	SBT 405	6.969 (a)	Cambará	3.778 (a)	SBT 414	3.116 (ab)
SBT 94	3.051 (a)	SBT 414	6.443 (ab)	SBT 414	3.513 (a)	SBT 94	2.628 (ab)
Primavera	2.855 (a)	SBT 411	6.371 (ab)	SBT 413	3.505 (a)	SBT 407	2.476 (ab)
SBT 70	2.844 (a)	Primavera	6.369 (ab)	SBT 412	3.484 (a)	SBT 413	2.321 (ab)
SBT 405	2.610 (ab)	SBT 413	6.168 (ab)	SBT 401	3.389 (a)	SBT 412	2.304 (ab)
SBT 414	2.584 (ab)	SBT 407	5.815 (ab)	SBT 405	3.211 (a)	SBT 401	1.903 (b)
SBT 413	2.573 (ab)	SBT 94	5.183 (b)	SBT 407	3.193 (a)	SBT 405	1.891 (b)
SBT 411	2.220 (ab)	SBT 401	5.068 (b)	SBT 411	1.971 (b)	Primavera	1.884 (b)
SBT 407	-	SBT 412	- `	SBT 94	1.540 (b)	SBT 406	1.793 (b)

CV% = 20 X= 2.755 kg/ha CV% = 13 X= 6.351 kg/ha CV% = 15 X= 3.301 kg/ha CV% = 35 X= 2.584 kg/ha
ANO 2011/12

CAMPO	VERDE	NOVA C	GUARITA	PARAN	ATINGA	SO	RRISO	SI	NOP
Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtividade	Cultivar	Produtividade
	kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)
SBT 412	4.121 (a)	SBT406	4.949 (a)	SBT 406	5.312 (a)	SBT 406	4.294 (a)	SBT 412	6.207 (a)
Cambará	4.033 (a)	Primavera	4.945 (a)	Primavera	4.996 (ab)	SBT 405	4.201 (a)	SBT 406	5.542 (ab)
SBT 405	4.029 (a)	SBT 405	4.543 (ab)	SBT 70	4.912 (ab)	Primavera	4.024 (ab)	SBT 401	5.370 (ab)
SBT 406	4.010 (a)	SBT 70	4.532 (ab)	SBT 387	4.630 (ab)	Cambará	3.744 (ab)	Primavera	4.978 (ab)
Primavera	3.970 (a)	SBT 412	4.382 (ab)	SBT 405	4.611 (ab)	SBT 387	3.366 (b)	SBT 405	4.967 (ab)
SBT 413	3.722 (ab)	SBT 387	4.357 (ab)	SBT 401	4.047 (abc)	SBT 401	3.350 (b)	Cambará	4.544 (ab)
SBT 70	3.586 (ab)	SBT 94	4.340 (ab)	SBT 412	3.829 (bc)	SBT 412	3.340 (b)	SBT 407	4.436 (ab)
SBT 94	3.417 (ab)	SBT 414	4.095 (ab)	Cambará	3.700 (bc)	SBT 94	2.583 (c)	SBT 413	4.310 (ab)
SBT 407	3.376 (ab)	SBT 413	3.997 (ab)	SBT 414	3.640 (bc)	SBT 70	2.570 (c)	SBT 414	4.281 (ab)
SBT 414	3.266 (ab)	Cambara	3.906 (ab)	SBT 413	3.151 (cd)	SBT 414	2.498 (c)	SBT 94	3.998 (ab)
SBT 401	2.220 (b)	SBT 401	3.741 (ab)	SBT 407	2.926 (cd)	SBT 407	2.375 (c)	SBT 70	3.744 (b)
SBT 387	2.411	SBT 407	3.083 (b)	SBT 94	2.371 (d)	SBT 413	2.351 (c)	SBT 387	3.312 (b)
	(c)								
CV% = 11	= 3.578 kg/ha C	V% = 17 X=	1.239 kg/ha CV	% = 15 X= 4	.011 kg/ha CV	$V_0 = 14$ X= 3.2	225 kg/ha CV% =	X = 4.642	kg/ha

TABELA 5 ANÁLISES ESTATÍSTICAS RESUMIDAS DOS VCUs ARROZ DE CICLO MÉDIO NO MT DOS ANOS 2010/11 E 2011/12
ANO 2010/11

CAMPO	VERDE	NOVA	GUARITA	PARAN	NATINGA	PRIMAVERA LESTE	
Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.
	kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)
Cirad 141	3.790	SBT 364	9.094 (a)	SBT 387	3.906 (a)	SBT 93	4.349 (a)
SBT 87	3.245	Monarca	8.481 (ab)	Monarca	3.226 (ab)	SBT 415	3.424 (ab)
SBT 48	3.221	Cirad 141	8.326 (abc)	SBT 364	3.219 (ab)	SBT 364	2.923 (bc)
SBT 172	3.108	SBT 93	8.168 (abc)	Cirad 141	2.825 (abc)	Monarca	2.843 (bc)
SBT 93	3.054	SBT 387	7.451 (abc)	SBT 48	2.611 (bc)	SBT 87	2.785 (bc)
SBT 175	2.865	SBT 87	7.346 (abc)	SBT 172	2.501 (bcd)	SBT 172	2.767 (bc)
SBT 364	2.785	SBT 175	7.158 (bc)	SBT 415	2.500 (bcd)	SBT 224	2.610 (bc)
SBT 387	2.694	SBT 48	7.128 (bc)	SBT 175	2.474 (bcd)	SBT 175	2.586 (bc)
Monarca	2.650	SBT 172	6.951 (bc)	SBT 87	2.239 (bcd)	Cirad 141	2.236 (bc)
SBT 415	2.558	SBT 415	5.902 (c)	SBT 93	1.925 (bcd)	SBT 387	1.925 (bc)
SBT 224	2.544	Sén Pidao	4.971 (d)	SBT 224	1.601 (cd)	Sen Pidao	1.790 (bc)
Sen Pidao	2.222	SBT 224	4.910 (d)	Sén Pidao	1.116 (d)	SBT 48	1.516 (c)

CV% = 20 X= 2.895 kg/ha CV% = 11 X= 7.207 kg/ha CV% = 15 X= 2.512 kg/ha CV% = 26 X= 2.646 kg/ha

ANO 2011	ANO 2011/12								
CAMP	O VERDE	NOVA	GUARITA	PARAN	IATINGA	SO	RRISO	SIN	NOP
Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.	Cultivar	Produtiv.
	kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)		kg/ha (Cl)
Monarca	4.307 (a)	Sen Pidao	5.460 (a)	Monarca	4.505 (a)	SBT 411	4.907 (a)	Cirad 141	5.232 (a)
Cirad 141	3.740 (b)	SBT 364	4.840 (ab)	SBT 364	4.145 (ab)	Monarca	4.837 (a)	SBT 411	4.630 (ab)
SBT 87	3.597 (b)	SBT 411	4.448 (ab)	SBT 48	3.952 (ab)	SBT 93	4.585 (a)	SBT 224	4.374 (ab)
SBT 364	3.382 (bc)	SBT 93	4.336 (ab)	SBT 172	3.392 (b)	SBT 172	4.557 (a)	Sen Pidao	4.294 (ab)
SBT 93	3.325 (bc)	Cirad 141	4.294 (ab)	SBT 175	3.267 (b)	SBT 364	4.352 (a)	SBT 172	4.049 (ab)
SBT 48	3.178 (bc)	SBT 175	4.137 (ab)	SBT 415	3.261 (b)	Sen Pidao	4.344 (a)	SBT 175	4.039 (ab)
SBT 172	3.143 (bc)	SBT 415	4.130 (ab)	SBT 93	3.229 (b)	SBT 87	4.172 (a)	SBT 87	3.897 (ab)
Sen Pidao	3.028 (bc)	SBT 172	4.074 (ab)	SBT 224	3.185 (b)	Cirad 141	4.083 (a)	SBT 364	3.620 (ab)
SBT 224	2.712 (cd)	Monarca	3.703 (b)	SBT 87	3.160 (b)	SBT 415	4.055 (a)	SBT 415	3.572 (ab)
SBT 415	2.696 (cd)	SBT 224	3.671 (b)	Cirad 141	3.032 (b)	SBT 48	3.296 (b)	SBT 48	3.557 (ab)
SBT 175	2.651 (cd)	SBT 48	3.668 (b)	SBT 411	2.886 (b)	SBT 175	3.083 (b)	Monarca	3.548 (ab)
SBT 411	2.220 (d)	SBT 87	3.538 (b)	Sen Pidao	2.863 (b)	SBT 224	3.037 (b)	SBT 93	3.215 (b)
V% = 11	X = 3.165 kg/hg	CV% = 17 X =	4 192 kg/ha C	$V^{0/6} = 16$ $V = 3$	407 kg/h CV%	= 12 X= 4 10	17 kg/ha $CV% = 2$	N = 4.002 L	o/ha

As tabelas 6 a 17 reunem a análise completa e detalhada dos VCUs 2011/12, por ciclo [CC = ciclo curto, CM = ciclo médio] e cada localidade. Uma análise de estabilidade /variedade é apresentada para cada ciclo sob a forma de 2 graficos por ciclo para preservar uma leitura discriminante de boa qualidade.

TABELA 6 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CC CAMPO VERDE - 2011/12

	R1	R2	R3	R4	Média	RDT/X	SNK5%	
SBT 412	3335	4050	4050	5050	4121	115%	A	
Cambará	4330	4125	3860	3820	4034	113%	A	
SBT 405	4250	4425	3530	3910	4029	113%	A	
SBT 406	3665	3940	4025	4410	4010	112%	A	
Primavera	3660	3980	4235	4005	3970	111%	A	
SBT 413	3595	3710	3980	3605	3723	104%	AB	
SBT 70	4000	3545	3765	3035	3586	100%	AB	
SBT 94	2940	4020	3810	2900	3418	96%	AB	
SBT 407	3300	3785	3045	3375	3376	94%	AB	
SBT 414	3655	3285	3140	2985	3266	91%	AB	
SBT 401	2550	3455	3175	2795	2994	84%	В	
SBT 387	2550	2470	2795	1830	2411	67%	С	
	Média geral X 3578 CV = 11.0%							

	ANÁLISE ESTATISTICA VCU ce CAMPO VERDE										
	ddl	ddl Sum Sq Mean Sq F p>F									
REP	3	530323	176774	1.124	3.54E-01						
VAR	11	1111734181	1066744	6.782	8.35E-06						
RES	33	5190277	157281								

TABELA 7 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CC NOVA GUARITA - 2011/12

	RI	R2	R3	R4	Média	RDT/X	SNK5%
SBT 406	4872	4284	5292	5348	4949	117%	A
Primavera	5698	4732	5194	4158	4946	117%	AB
SBT 405	3556	4200	5558	4858	4543	107%	AB
SBT 70	4298	3990	4718	5124	4533	107%	AB
SBT 412	5656	4284	4270	3318	4382	103%	AB
SBT 387	5068	3472	4620	4270	4358	103%	AB
SBT 94	4200	5600	4200	3360	4340	102%	AB
SBT 414	3136	4116	4914	4214	4095	97%	AB
SBT 413	4830	3192	4004	3962	3997	94%	AB
Cambará	4508	3836	2716	4564	3906	92%	AB
SBT 401	3150	4284	4312	3220	3742	88%	AB
SBT 407	3290	3024	3122	2898	3084	73%	В
1.5			Média	geral X	4239	CV =	17.0%

ANÁLISE ESTATISTICA VCU ec NOVA GUARITA									
	ddl	Sum Sq	Mean Sq	F	p>F				
REP	3	1005721	335240	0.644	5.90E-01				
VAR	11	11997466	1090679	2.094	5.00E-02				
RES	33	4.132	0.1252						

TABELA 8 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CC PARANATINGA - 2011/12

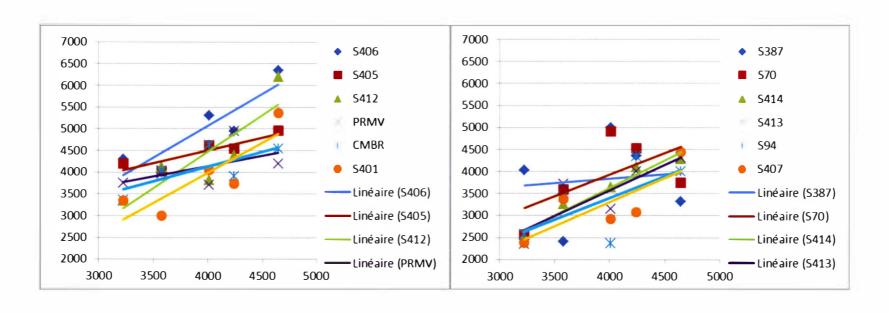
	RI	R2	R3	R4	Média	RDT/X	SNK5%
SBT 406	4765	6288	5780	4417	5312	132%	A
Primavera	4939	5227	5205	4614	4996	125%	AB
SBT 70	4326	5167	4841	5318	4913	122%	AB
SBT 416	5568	4303	3992	4659	4631	115%	AB
SBT 405	4795	4939	3992	4720	4612	115%	AB
SBT 401	3788	5545	3841	3015	4047	101%	ABC
SBT 412	3932	3902	3114	4371	3830	95%	BC
Cambará	4386	3538	3833	3045	3701	92%	BC
SBT 414	3492	3750	3439	3879	3640	91%	BC
SBT 413	2955	3114	3379	3159	3152	79%	CD
SBT 407	3227	2811	2841	2826	2926	73%	CD
SBT 94	2879	1523	1750	3333	2371	59%	D
			Média g	geral X	4011	CV=	15.1%

ANÁ	ANÁLISE ESTATISTICA VCU ce PARANATINGA											
	ddl	Sum Sq	Mean Sq	F	p>F							
REP	3	821705	273902	0.752	5.29E-01							
VAR	11	36381579	3307416	9.077	3.60E-07							
RES	33	12024748	364386									

TABELA 9 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CC SORRISO - 2011/12

	R1	R2	R3	R4	Média	RDT/X	SNK5%				
SBT 406	3452	4526	4348	4852	4294	133%	A				
SBT 405	3156	3504	4985	5163	4202	130%	AB				
Primavera	3593	3585	4607	4311	4024	125%	AB				
Cambará	3304	2993	4244	4437	3744	116%	AB				
SBT 416	2481	3000	3637	4348	3367	104%	BC				
SBT 401	2852	2800	4156	3593	3350	104%	BC				
SBT 412	1837	3504	3911	4111	3341	104%	BC				
SBT 94	1541	2941	2778	3074	2583	80%	С				
SBT 70	1467	1985	3022	3807	2570	80%	С				
SBT 414	2081	2807	2459	2644	2498	77%	С				
SBT 407	1222	3081	2370	2830	2376	74%	С				
SBT 413	837	2178	2963	3430	2352	73%	С				
	Média geral X 3225 CV = 13.9%										

	ANÁLISE ESTATISTICA VCU ce SORRISO											
	ddl	Sum Sq	Mean Sq	F	p>F							
REP	3	17235406	5745135	28.52	2.75E-09							
VAR	11	23629101	2148100	10.66	5.48E-08							
RES	33	6646481	201409									


TABELA 10 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CC SINOP - 2011/12

	RI	R2	R3	R4	Média	RDT/X	SNK5%
SBT 406	6051	7193	5818		6354	137%	A
SBT 412	7240	6361	5104	6125	6208	134%	AB
SBT 401	5336	4402	7115	4626	5370	116%	ABC
SBT 405	5818	5881	4909	3263	4968	107%	ABC
Cambará	5206	3459	4887	4625	4544	98%	ABC
SBT 407	3695	3475	5957	4619	4437	96%	BC
SBT 413	4647	4797	3706	4093	4311	93%	BC
SBT 414	3908	4367	4655	4195	4281	92%	BC
Primavera		4429	3729	4422	4193	90%	BC
SBT 94	3865	4034	4408	3683	3998	86%	С
SBT 70	4354	4737	2776	3109	3744	81%	С
SBT 387	3938	2324	4428	2560	3313	71%	С
ш	CV=	18.7%					

	ANÁLISE ESTATISTICA VCU ce SINOP											
	ddl	Sum Sq	Mean Sq	F	p>F							
REP	3	2402027	800676	1.07	3.74E-01							
VAR	11	34835398	3166854	4.25	7.08E-04							
RES	31	23101217	745201									

TABELA 11 ANALISE DE ESTABILIDADE VARIETAL NOS VCUs CICLOS CURTOS 2011/12

	MEDIA	SBT	SBT	SBT	Prima-	Camba	SBT						
LOCALIDADES	GERAL	406	405	412	vera	-rá	401	387	70	414	413	94	407
CAMPO VERDE	3578	4010	4029	4121	3970	4034	2994	2411	3586	3266	3723	3418	3376
NOVA GUARITA	4239	4949	4543	4382	4946	3906	3742	4358	4533	4095	3997	4340	3084
PARANATINGA	4011	5312	4612	3830	3701	4631	4047	4996	4913	3640	3152	2371	2926
SORRISO	3225	4294	4202	3341	3744	3367	3350	4024	2570	2498	2352	2583	2376
SINOP	4643	6354	4968	6208	4193	4544	5370	3313	3744	4281	4311	3998	4437

TABELA 12 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CM CAMPO VERDE 2011/12

	R1	R2	R3	R4	Média	RDT/X	SNK5%
Monarca	4725	3875	4320	4310	4308	136%	A
CIR. 141	3515	3930	4075	3440	3740	118%	В
SBT 87	3525	3370	3990	3505	3598	114%	В
SBT 364	3595	3235	3570	3130	3383	107%	BC
SBT 93	3590	3375	3030	3305	3325	105%	BC
SBT 48	3135	2805	3600	3175	3179	100%	BC
SBT 172	2860	3245	2780	3690	3144	99%	BC
Sén Pidao	2560	3115	3660	2780	3029	96%	BC
SBT 224	2810	2405	2360	3275	2713	86%	CD
SBT 415	2630	3030	2430	2695	2696	85%	CD
SBT 175	3120	2600	2410	2475	2651	84%	CD
SBT 411	2205	1735	2815	2125	2220	70%	D
			eral X	3165	CV=1	1.1%	

ANÁLISE ESTATISTICA VCU em CAMPO VERDE											
Here I	ddl	Sum Sq	F	p>F							
REP	3	233406	77802	0.621	6.00E-01						
VAR	11	13986177	1271471	10.154	9.80E-08						
RES	33	4132238	125219								

TABELA 13 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CM NOVA GUARITA 2011/12

	R1	R2	R3	R4	Média	RDT/X	SNK5%				
Sén Pidao	5838	6020	4718	5264	5460	130%	A				
SBT 364	5054	5824	3892	4592	4841	115%	AB				
SBT 411	4158	5964	3990	3682	4449	106%	AB				
SBT 93	3416	5208	4256	4466	4337	103%	AB				
CIR. 141	3892	6440	3598	3248	4295	102%	AB				
SBT 175	3024	5824	3570	4130	4137	99%	AB				
SBT 415	2842	5656	3710	4312	4130	99%	AB				
SBT 172	2660	5712	2548	5376	4074	97%	AB				
Monarca	3584	4410	3878	2940	3703	88%	В				
SBT 224	3430	3388	4018	3850	3672	88%	В				
SBT 48	3290	4690	3584	3108	3668	88%	В				
SBT 87	3472	3752	2912	4018	3539	84%	В				
	Média geral X 4192 CV = 16.8%										

ANÁL	ANÁLISE ESTATISTICA VCU em NOVA GUARITA											
	ddl	ddl Sum Sq Mean Sq F p										
REP	3	18637150	6212383	12.47	1.30E-05							
VAR	11	13432109	1221101	2.45	3.30E-02							
RES	33	16444596	498321									

TABELA 14 PRODUTIVIDADE E CLASSIFICAÇÃO DO **VCU CM PARANATINGA** - 2011/12

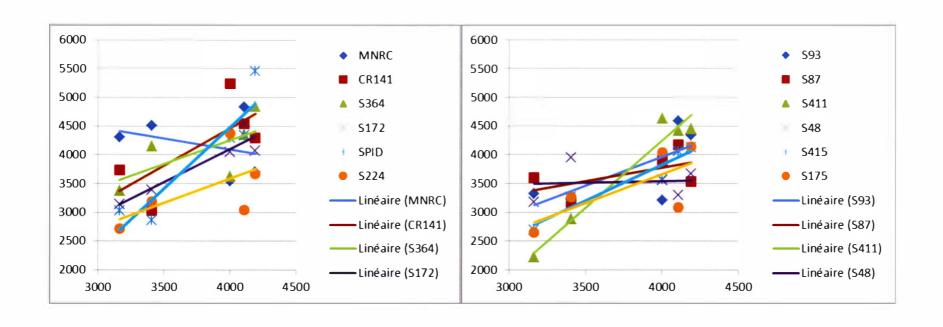
	R1	R2	R3	R4	Média	RDT/X	SNK5%
Monarca	4530	4947	5492	3053	4506	132%	A
SBT 364	3598	4621	4136	4227	4146	122%	AB
SBT 48	4455	3280	4523	3553	3953	116%	AB
SBT 172	3833	3909	3553	2273	3392	100%	В
SBT 175	2864	3220	3553	3432	3267	96%	В
SBT 415	3008	3288	2803	3947	3261	96%	В
SBT 93	3591	3583	2848	2894	3229	95%	В
SBT 224	3348	3311	3348	2735	3186	94%	В
SBT 87	3447	4152	3106	1939	3161	93%	В
CIR. 141	3439	2553	3561	2576	3032	89%	В
SBT 411	3348	2220	3568	2409	2886	85%	В
Sén Pidao	2712	2636	3205	2902	2864	84%	В
			geral X	3407	CV =	16.7%	

ANÁLISE ESTATISTICA VCU cm PAR ANATINGA								
	ddl	Sum Sq	Mean Sq	F	p>F			
REP	3	2893747	964582	2.993	4.48E-02			
VAR	11	11758695	1068972	3.317	3.70E-03			
RES	33	10635955	322302					

TABELA 15 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CM SORRISO - 2011/12

	RI	R2	R3	R4	Média	RDT/X	SNK5%
Monarca	4541	4570	5163	5074	4837	118%	A
SBT 93	4289	4889	5193	3970	4585	112%	A
SBT 172	4674	4037	5052	4467	4557	111%	Α
CIR. 141	4489	5926	3807	3956	4544	111%	A
SBT 411	5081	4933	4708	2956	4420	108%	A
SBT 364	3963	4434	4593	4422	4353	106%	AB
Sén Pidao	4437	3600	4756	4585	4344	106%	AB
SBT 87	4385	3778	4400	4126	4172	102%	AB
SBT 415	4348	3978	3852	4044	4056	99%	AB
SBT 48	3022	3511	3926	2726	3296	80%	BC
SBT 175	2570	3348	3393	3022	3083	75%	C
SBT 224	3422	3000	3156	2570	3037	74%	C
Média geral X					4107	CV=	12.7%

ANÁLISE ESTATISTICA VCU em SORRISO								
	ddl	Sum Sq	Mean Sq	F	p>F			
REP	3	1600704	533568	1.963	1.39E-01			
VAR	11	16908956	1537178	5.655	4.94E-05			
RES	33	8970868	271844					


TABELA 16 PRODUTIVIDADE E CLASSIFICAÇÃO DO VCU CM SINOP - 2011/12

1 10 I KODO	1111211			CITYIIO	20 .00	CMI BILLOI	- 2011/12
	R1	R2	R3	R4	Média	RDT/X	SNK5%
CIR 141	5729	5986	5774	3437	5232	131%	A
SBT 411	4835	4490	5414	3781	4630	116%	A
SBT 224	4408	4176	5394	3518	4374	109%	A
Sén Pidao	3039	5353		4490	4294	107%	A
SBT 172	3987	3883	4402	3926	4050	101%	A
SBT 175	3268	4435	3999	4456	4040	101%	A
SBT 87	3528		3975	4189	3897	97%	A
SBT 364	4208	3735	3758	2780	3620	90%	A
SBT 415	4234	3993	4183	1876	3572	89%	A
SBT 48	3956	3741	2309	4221	3557	89%	A
Monarca	4654	3047	4181	2309	3548	89%	A
SBT 93	4266	3243	3544	1805	3215	80%	A
		4002	CV=	19.7%			

ANÁLISE ESTATISTICA VCU cm SINOP								
	ddl	Sum Sq	Mean Sq	F	p>F			
REP	3	5882177	1960726	3.147	3.90E-02			
VAR	11	14060670	1278243	2.051	5.71E-02			
RES	31	19316013	623097					

TABELA 17 ANÁLISE DE ESTABILIDADE VARIETAL NOS VCUs CICLOS MÉDIOS 2011/12

	Cultiv	Monar-	CIRAD	SBT	Sén	SBT							
Localidade	X geral	ca	141	364	Pidao	172	93	87	411	48	415	175	224
CAMPO VERDE	3165	4308	3740	3383	3029	3144	3325	3598	2220	3179	2696	2651	2713
NOVA GUARITA	4192	3703	4295	4841	5460	4074	4337	3539	4449	3668	4130	4137	3672
PARANATINGA	3407	4506	3032	4146	2864	3392	3229	3161	2886	3953	3261	3267	3186
SORRISO	4107	4837	4544	4353	4344	4557	4585	4172	4420	3296	4056	3083	3037
SINOP	4002	3548	5232	3620	4294	4050	3215	3897	4630	3557	3572	4040	4374

Performances varietais

As tabelas 4, 5, 11 e 16 resumem as performances varietais dos VCUs ciclos curtos e ciclos médios, em 4 localidades em 2010/11: Campo Verde (CV), Nova Guarita (NG), Paranatinga (PAR) e Primavera do Leste (PMV); em 5 localidades em 2011/12: Campo Verde (CV), Nova Guarita (NG), Paranatinga (PAR), Sorriso (SOR) e Sinop (SP).

Os principais fatores limitantes identificados nestes 2 últimos anos, foram, entre os mais frequentes:

- Deficiência a carência de manganês (Mn) devido a uma saturação de bases excessiva e/ou ao uso também excessivo e ininterrupto de glifosato: caso das localidades de Campo Verde em 2010/11 e 2011/12 e Sinop em 2011/12;
- Períodos de seca (*veranicos*), muitas vezes acompanhados por ataque de *Elasmo*, cigarrinhas, cupins, quanto mais prejudiciais á produtividade final que os solos são mais arenosos (*campo do IMA em Primavera do Leste em 2010/11, Paranatinga onde os VCUs e a área de arroz estão no meio de grandes áreas de Brachiaria r.);*
- Derivas frequentes de herbicidas totais tais como o Gramoxone, Glifosato (*dessecação do milheto em volta para PD algodão*), nas localidades de Campo Verde e Primavera do Leste em 2010/11, e em Sorriso em 2011/12.
- Acompanhamento e monitoramento deficientes dos VCUs, especialmente em Nova Guarita em 2011/12.

(*) Estes diversos fatores negativos e de impacto irregular sobre o desempenho dos VCUs, levaram a coeficientes de variação as vezes elevados que limitam o rigor da interpretação estatística

- Interpretação síntetica resumida dos VCUs 2010/11 e 2011/12 (Tabelas 4, 5, 11 e 17)
- A ecologia de florestas úmidas do Centro Norte Mato Grosso (Nova Guarita em 2010/11, Sorriso, Sinop e Nova Guarita 2011/12) permite expressar as maiores produtividades interanuais.
 - Média geral dos experimentos (cc = ciclos curtos; cm = ciclos médios):

```
2010/2011 Nova Guarita => P/ cc = 6.350 kg/ha - P/cm = 7.200 kg/ha.

2011/2012 Nova Guarita => P/ cc = 4.240 kg/ha - P/cm = 4.200 kg/ha.

Sorriso => P/ cc = 3.220 kg/ha - P/cm = 4.107 kg/ha.

Sinop => P/ cc = 4.642 kg/ha - P/cm = 4.000 kg/ha.
```

A média geral de produtividade é mais baixa nos Cerrados das chapadas do Sudeste do Mato Grosso de média altitude (600-700 m): Campo Verde (CV), Paranatinga (PAR), Primavera do Leste (PMV):

```
2010/2011 Campo Verde => P/ cc = 2.750 kg/ha - P/cm = 2.895 kg/ha.
Paranatinga => P/ cc = 2.510 kg/ha - P/cm = 4.011 kg/ha
Primavera do Leste => P/ cc = 2.580 kg/ha - P/cm = 2.646 kg/ha

2011/2012 Campo Verde => P/ cc = 4.240 kg/ha - P/cm = 4.200 kg/ha.
Paranatinga => P/ cc = 3.220 kg/ha - P/cm = 4.107 kg/ha.
```

- Melhores variedades:
- Na ecologia de florestas úmidas de baixa altitude (Centro Norte MT)
- + Nos ciclos curtos: SBT 70, SBT 405, SBT 406 confirmados, SBT 412 novo promissor;
- + Nos ciclos médios: SBT 364, SBT 93 confirmados, SBT 411 e SBT 172 novos promissores e Nos arrozes especiais de alto valor agregado: Sén Pidao aromático "jasmin", SBT 415, SBT 224 e SBT 175 aromático "Basmati".
- Nas chapadas de média altitude do sudeste MT

Nos ciclos curtos: SBT 387, SBT 405, SBT 406, SBT 401, SBT 412;

Nos ciclos médios: SBT 87, SBT 93, SBT 364, SBT 172 e Nos arrozes especiais de alto valor agregado: SBT 175 aromático "Basmati".

- (*) No final de 2013, ou seja após o 3° ano de VCUs, será realizada uma análise de estabilidade das melhores variedades para oferecer uma dupla escolha:
 - As variedades mais estáveis (homeoestaticas) em todas as regiões do Mato Grosso,
 - As melhores variedades para cada região ou ecologia.

3.2.2 MULTIPLICAÇÕES DAS MELHORES VARIEDADES E NOVAS PROMISSORAS EM MAIOR ESCALA – 2011/12

Em resumo, principais produtividades avaliadas (t/ha)

Em Sinop:

- -SBT 387 > 3 t/ha
- $-SBT 364 \pm 4 t/ha$
- Sén Pidao 4 t/ha
- SBT 95 6 t/ha

Em Nova Guarita, com forte concorrência heterogênea dos inços durante os 40 primeiros dias do ciclo que afetou negativamente a produtividade final (*interpretação duvidosa*→ *tendências*): Em relação a produtividade média de Primavera e Monarca em 5 parcelas, respectivamente de 4 t/ha e 4,9 t/ha:

 $SBT\ 422 = 6.2\ t/ha$; $SBT\ 419 = 5.8\ t/ha$, $SBT\ 425 = 8.3\ t/ha$; $SBT\ 421 = 5.2\ t/ha$; todas variedades promissoras.

Em Campo Verde, na Fazenda Mourão: SBT 93 ultrapassa 3,5 t/ha, confirmando as suas boas performances de 3 anos nos VCUs.

Em Goiânia (fazenda perto de Goiânia – Área protegida)

VARIEDADES	Produtividade
	(t/ha)
SBT 412	6,58
SBT 93	6,30
SBT 172	6,20
SBT 364	6,10
SBT 413	5,90
SBT 406	5,80
SBT 401	5,15
SBT 405	5,15
SBT 387	4,70
SBT 411	4,40 (*)
SBT 407	4,10
SBT 415	3,90 (*)

^(*) Variedades de ciclo mais longo afetado pelo veranico na fase reprodutivo.

3.2.3 PRINCIPAIS CARACTERÍSTICAS FENOLÓGICAS E TECNOLÓGICAS, ESPECIFICIDADES

Elas são expostas nas Tabelas 18 e 19 e mostram:

- As variedades SBT de ciclos curtos, substitutas possíveis de Primavera (agora muito sensível a brusone → necessita de aplicações de fungicidas; sensível ao acamamento a baixa altitude), SBT 412, SBT 405, SBT 406, SBT 387 de fenotipo similar ao de Primavera, mais produtivas e mais resistentes a brusone e a ao acamamento, apresentam qualidade de grão excelente, exceto o SBT 401 que tem um teor de amilose baixo (arroz provavelmente pegajoso na panela a verificar);
- Dentro dos ciclos médios, os SBT 93, SBT 411 apresentam boa qualidade de grão como também os aromáticos: SBT 415, SBT 224, SBT 175; o SBT 364 tem um grão bonito, menos longo fino que os precedentes; o SBT 95 e SBT 172 muito produtivos apresentam teores de amilose baixos (*fazer teste de panela*).

Nas Tabelas 20 e 21, são apresentadas as características tecnológicas principais das variedades muito promissores SBT novamente nomeadas. No total, dispomos agora de uma larga gama de variedades tanto de ciclo curto (o SBT 387 é mais curto de 5 a 7 dias que Primavera) quanto de ciclo médio, mais produtivas que o material genético atualmente disponível no mercado, de resistência estável a brusone (que dispense o uso de fungicidas), resistente ao acamamento e de excelente qualidade de grão no padrão "arroz irrigado do Sul" apreciada dos brasileiros. Com emprego de nível de adubação mais alto, o potencial das variedades de tipo índica pode atingir e ultrapassar 8 t/ha; dentro destes materiais genéticos índica, muito produtivos, diversos de ciclo médio integram a categoria "arroz especial" de alto valor agregado (arroz aromático tipo Basmati, tipo jasmin, arroz preto de ciclo curto).

É importante ressaltar que os melhores Sebotas de fenótipo "índica" (porte baixo, ereto, muito perfilhado), são também muito produtivos em condições irrigadas e muito mais rústicos que as variedades estritamente irrigadas atualmente utilizadas tanto no Sul como no Tocantins ou Norte do Brasil – [Vide livro: "Saga Sebota" S. Bouzinac, L. Séguy, J. Taillebois et al. 2009;]

TABELA 18 RESUMO DAS PRINCIPAIS CARACTERÍSTICAS TECNOLÓGICAS (1) DOS ARROZ SEBOTA E TESTEMUNHAS NOS EXPERIMENTOS MULTILOCAIS VCUs

I - Ciclos curtos

Cultivar	Rendimento no Beneficiamento	Teor de amilose	Temperatura de	Comprimento do grão (C)	Largura do grão (L)	C/L	Gesso (%)	Especificidades
"fenótipo"	Intervalo (%inteiro)	(em %)	gelatinização	(em mm)	(em mm)			
"japônica"	(**************************************							
SBT 387	65 - 69	18,1	4	6,2	1,83	3,4	3,0	Grão excepcional Longo Fino
SBT 401	60 - 67	12,5	3	6,5	1,86	3,5	2,2	Teor de amilose baixo
SBT 405	57 – 64	19,3	4	6,2	1,72	3,6	3,4	Grão excepcional Longo Fino
SBT 406	61 – 65	15,3	4	6,1	1,72	3,6	1,9	Grão excepcional Longo Fino
SBT 407	58 - 62	16,4	3	6,8	1,85	3,6	1,4	
SBT 412	63 - 64	16,8	4	6,2	1,81	3,4	1,8	Grão bonito Longo Fino
SBT 413	64 - 67	17,0	4	6,3	1,77	3,6	1,6	Grão bonito Longo Fino
"índica"								
SBT 94	38 – 44	19,0	4	6,4	1,74	3,7	5,9	Grão bonito Longo Fino
SBT 70	58 - 61	21,1	3	5,8	1,83	3,2	1,2	Grão bonito Longo Fino
Testemunhas	7.4							
Primavera	64	16,7	5	(2)	(2)	(2)	(2)	Grão bonito Longo Fino
Cambará	65	17,3	5	(2)	(2)	(2)	(2)	Grão bonito Longo Fino

⁽I) Resultados extraidos de 2 anos de VCUs. Analises realizadas pela Embrapa Arroz e feijão de Goiânia.

⁽²⁾ Não analizado.

TABELA 19 RESUMO DAS PRINCIPAIS CARACTERÍSTICAS TECNOLÓGICAS (1) DOS ARROZ SEBOTA E TESTEMUNHAS NOS EXPERIMENTOS MULTILOCAIS VCUs

II - Ciclos médios

Cultivar "fenótipo"	Rendimento no Beneficiamento Intervalo (%inteiro)	Teor de amilose (em %)	Temperatura de gelatinização	Comprimento do grão (C) (em mm)	Largura do grão (L) (em mm)	C/L	Gesso (%)	Especificidades
"japônica"								
SBT 87	44	18,2	(2)	(2)	(2)	(2)	(2)	Fraco rendimento de inteiros
SBT 172	57 - 63	12,5	3	6,6	1,83	3,6	3,3	Amilose baixa
SBT 224	59 – 64	19,7	(2)	(2)	(2)	(2)	(2)	Aromático, grão branco Longo Fino
SBT 175	62 - 69	19,1	3	(2)	(2)	(2)	(2)	Aromático, grão branco Longo Fino
"índica"								
SBT 48	57 - 62	21,3	7	6,7	1,92	3,5	1,6	Grão branco Longo Fino
SBT 95	55 – 57	13,0	3	5,8	2,04	2,8	17,3	Grão intermediário, amilose baixa
SBT 364	63 - 69	22,5	7	5,5	1,84	3,0	2,8	
SBT 93	54 – 57	20,5	4	6,7	1,93	3,5	20,2	Grão gessado em função condições colheita
SBT 411	50 - 60	21,4	7	6,4	1,86	3,4	6,1	Grão branco Longo Fino
SBT 415	56 - 58	17,0	6	6,7	1,75	3,8	0,6	Aromático, grão branco Longo Fino
Sen Pidao	52 – 54	15,0	6	5,8	1,89	3,0	1,9	Aromático, "jasmin" excepcional
Testemunha					1 11 11			
Cirad 141	62 - 64	12,2	2	(2)	(2)	(2)	(2)	Grão intermediário, amilose baixa
Monarca	45 - 46	19,5	3	(2)	(2)	(2)	(2)	Fraco rendimento de inteiros

⁽I) Resultados extraidos de 2 anos de VCUs. Analises realizadas pela Embrapa Arroz e feijão de Goiânia.

⁽²⁾ Não analizado.

TABELA 20 NOVOS SEBOTAS NA FAZENDA MOURÃO - Maio 2012-05-15

VARIEDADE (origem)	Produtividade (em kg/ha)	Grãos inteiros (em %)	OBSERVAÇÕES SOBRE GRÃOS
MN I		40,0	Grão longo fino – bb> 20%
Precocinho (AgroNorte)	3.445	15,4	Grão longo fino – bb> 20% Rendimento muito baixo
Aromatique India		57,0	Grão longo muito fino – bb> 10% - aromático
SBT 95		58,2	Grão intermediário – Translúcido - B bb < 3%
MA43 Cx 18.8.3.1.1.1.1.2	4.689	64,6	Grão longo - Translúcido - bb< 1% - B
MA51 (Cx 168.B.2.1.2)	4.344	62,9	Grão longo fino Translúcido – bb entre 3 -5% - B
MA52 (Cx 167.B .7.2.1)	4.300	65,0	Grão longo Translúcido – bb <1% - TB
MA 58 (16 P3.1.1)	3.833	68.1	Grão longo fino -Translúcido - bb <1% - TB
MA 85 (V9 FX 147)	4.178	66,1	Grão longo fino -Translúcido – bb 0 - TB
MA 92 (HT SBT 273)	3.411	62,8	Grão longo fino -Translúcido - bb <1% - TB
MA 93 (HT SBT 273)	4.288	60,8	Grão longo fino -Translúcido – bb 0% - TB
MA 102 (SBT 273.1.2.6)	3.478	63,6	Grão longo fino -Translúcido - bb 0% - TB
MA 107 0LP.49.B.B.2.1.3.2.2.1)	4211	65,5	Grão intermediário – Translúcido Bbb < 2%
MA 145 (Cx 18.8.4.2.2.B.2.1)	4.822	62,5	Grão intermediário - Translúcido B bb < 1%
MA 146 (Cx 18.4.2.3.1.B.1.1.1)	5.444	64,8	Grão longo fino – Translúcido TB bb < 1%
MA 205 - SBT 118	2.878	40,6	Grão longo muito fino – gessado opaco bb> 20%
MA 209 - SBT 156	2.811	60,6	Grão longo fino – Translúcido – TB bb> 20%
MA 241 - SBT 197	3.611	58,8	Excepcional - Grão longo muito fino - Translúcido - TTB bb 0%
MA 257 - SBT 224	2.800	69,3	Excepcional - Grão longo muito fino - Translúcido - TTB bb 0%
MA 256 - SBT 225	4.155	73,1	Grão longo - Translúcido - B bb < 1%
MA 255 - SBT 227	2.689	69,8	Grão longo – Translúcido – TB bb < 1%
MA 253 - SBT 238	2.211	74,4	Grão longo - Translúcido - TB bb 0 %
VARIEDADE (origem)	Produtividade (em kg/ha)	Grāos inteiros (em %)	OBSERVAÇÕES SOBRE GRÃOS
SBT 247	2.155	59,6	Grão longo muito fino fantastico - Translúcido bb 0 %
SBT 252	2.833	28,5	Grão longo muito fino- gessado opaco Aromático
SBT 254	1.444	47,5	Grão longo fino-todo gessado opaco Aromático
SBT 260	2.389	41,4	Grão longo muito fino- gessado opaco Aromático
SBT 330	4.144	62,3	Grão longo - Translúcido TB bb 0%
SBT 386	3.022	68,3	Grão longo fino- Translúcido B bb < 3%
SBT 387	3.077	66,8	Grão longo fino- Translúcido TB bb 0 %

Melhores grãos: Longos Finos Translúcidos, com muito pouca barriga branca (bb) com ótimo rendimento de engenho, acima de 59 % Grãos aromaticos

TABELA 21 ULTIMAS VARIEDADES NOMEADAS COMO SEBOTA

VARIEDADE (origem)	Produtividade (em kg/ha)	Grãos inteiros (em %)	OBSERVAÇÕES SOBRE GRÃOS
SBT 418	2.633	32,9	Grão longo fino quase totalmente gessado opaco
SBT 419	4.255	56,2	Grão longo fino totalmente gessado opaco
SBT 420	3.455	55,6	Grão longo – bb> 10%
SBT 421	4.066	54,0	Grão intermediário – gessado bb> 30%
SBT 422	1.466	57,2	Grão longo fino – gessado bb> 30%
SBT 423	2.655	40,8	Grão intermediário a longo – gessado bb> 30%
SBT 424	1.777	46,7	Grão longo fino – TB - bb> 1 %
SBT 425	3.833	60,0	Grão intermediário – branco bb < 5 %
SBT 426	2.944	66,5	Grão intermediário B – branco bb < 5 %
SBT 427	3.611	66,8	Grão intermediário B – branco bb < 3 %
SBT 428	2.666	54,6	Grão longo fino TB Translúcido bb< 1 %
SBT 429	3.389	50,5	Grão longo TB Translúcido bb 1-3 %
SBT 430	-	66,6	Grão longo TB Translúcido bb < 1 %
SBT 431	3.500	57,1	Grão longo TB bb < 1 %
SBT 432	4.311	64,1	Grão intermediário – bb< 10%
SBT 433	2.155	61,7	Grão longo fino TB Translúcido bb< 1 %
SBT 434	2.000	59,6	Grão longo B Translúcido bb 2-4 %
SBT 435	5.866	66,1	Grão longo fino TB Translúcido bb< 0-1 %
SBT 436	3.177	50,7	Grão muito fino TB Translúcido bb<1 %
SBT 437	4.689	55,8	Grão longo muito fino TB Translúcido bb< 1%
SBT 438	4.277	67,4	Grão longo intermediário- Translúcido B bb> 30%
SBT 439	3.044	53,7	Grão longo fino TB bb< 1 %
SBT 445	3.444	60,7	Grão longo muito fino TB bb < 3-5 %
SBT 444	4.578	65,0	Grão intermediário – bb 5- 10%
SBT 446	5.389	59,3	Grão redondo bb > 40%
SBT 447	3.722	61,7	Grão redondo bb > 40%

Melhores grãos: Longos Finos Translúcidos, com muito pouca barriga branca (bb)

3.2.4 ALGUMAS RECOMENDAÇÕES IMPORTANTES PARA UM MONITORAMENTO BEM SUCEDIDO DAS VARIEDADES SEBOTAS

RECOMENDAÇÕES PARA PLANTIO DAS VARIEDADES SEBOTAS

1/ OS CICLOS CURTOS (cc): SBT 387, SBT401, SBT 405, SBT 406, SBT 412, fenótipos tipo Primavera

- Espaçamento entre linhas: entre 40 e 50 cm (*tipo soja*) ; para o **SBT 70 de fenótipo índica**, espaçamento entre linhas pode variar de 17cm para 40-45 cm.
- N° de sementes nascidas /m linear : 60 para espaçamento soja, 30 para espaçamento de 17cm.

- Datas de plantio x Sistemas de cultivo:

- . *Sucessão anual em PD*: Arroz cc + Feijão ou Caupi em PD na palha de arroz (*final fevereiro inicio março*): plantio arroz cc de final de outubro até final de novembro.
- . Sucessão anual em PD: Arroz cc + Algodão safrinha adensada ou não (final de janeiro): plantio precoce arroz cc final de outubro.
- . Em rotação com Algodão safra ou safrinha ou em rotação com a successão soja + milho safrinha, em PD: plantio precoce de biomassas de cobertura → Crotalaria spectabilis (Crot.sp.) (8kg/ha) + Milheto (12kg/ha) ou Crot.sp. (8kg/ha) + Sorgo BF 80 (12kg/ha) ou Crot.sp. (8kg/ha) + Brachiaria ruziziensis (10kg/ha). Dessecar e plantar arroz cc em final de dezembro.
- . A Lanço, em sobressemeadura da soja de colheita precoce prevista em final de janeiro: semear nas primeiras folhas da soja amarelando bem no início da desfolha ou seja 20-25 dias antes da colheita → semear à lanço (com Vicon no rastro do pulverizador) 120 kg/ha de arroz ccsem insumo nenhum: produtividade esperada entre 30 e 50 sacos
- * Cuidado : Não aplicar desfolhante químico na soja !

2/ OS CICLOS MÉDIOS(cm) : SBT 364, SBT 93, SBT 172, SBT 175, SBT 224, SBT 411, SBT 415, Sén Pidao

Excelentes variedades que respondem com elevados lucros a alto nível tecnológico – ciclo medio entre 120 dias para SBT 364, SBT 175, SBT 224 até 125-130 dias para SBT 93, Sén Pidao, SBT 415, SBT 411. **O potencial produtivo** destes materiais excepcionais e poli-aptidões (*muito produtivo tanto em condições irrigadas quanto de sequeiro favorecido*) **é superior a 6-7 t/ha** (*até mesmo superior à 8-9 t/ha para SBT 364, SBT 411*) em condições de sequeiro favorecido com resistência total ao acamamento. Estes cultivares tem também resistência estável a brusone, boa tolerância a mancha de grão, os SBT 93 e Sén Pidao sendo os menos tolerantes a este respeito quando o tempo permanece nublado (*mormaço*), fresquinho e chuvoso durante a fase de emergência das panículas.

- **-Espaçamento entre linhas**: entre 17cm (*plantadeira arroz da Semeato TD*) e 40-45 cm (*igual a soja*)
- (*) Sabendo que um plantio mais fechado permite controlar melhor os inços.
- Nº de semente nascidas/m linear: de acordo com espaçamento entre linhas: 60 sementes nascidas/m para espaçamento entre 40 e 45 cm entre linhas, 30 sementes com espaçamento de 17cm, etc..

-Datas de plantio X sistemas de cultivo :

- -Em plantio direto (PD), estes cultivares podem ser plantados em rotação com algodão safra ou safrinha, ou em rotação com a sucessão soja + milho solteiro ou milho consorciado com plantas de serviços; em todos os casos, o plantio direto do arroz deverá ser feito entre 15 de novembro e no maximo 5 de dezembro em cima de biomassa precedente dessecada, implantada nas primeiras chuvas em outubro, como descrito para arroz de ciclo curto no 1/: Crotalaria spectabilis ou Crotalaria spectabilis em consórcio com milheto ou com sorgo BF 80 ou com Brachiaria ruzi.
- Estas variedades são ideais também para elevadíssima produtividade de arroz em áreas novas recém desmatadas com preparo de solo e adubação de mineral de bom nível, tipo: $80 \text{ N} + 100 \text{ P}_2\text{0}_5 + 80 \text{ a } 100 \text{ K}_2\text{0}$.

(*)É importante ressaltar que a variedade SBT Sén Pidao, além de ser super produtiva, é aromática; seu aroma delicado "jasmin" é excepcional, tornado este cultivar um produto especial com alto valor agregado!

3/ RECOMENDAÇÕES PARA CONTROLE DE ERVAS DANINHAS

Em solo preparado, a melhor opção já antiga, fica o Ronstar 250 (Oxadiazon) aplicado em Pré-emergência do arroz, na dosagem de 4 L/ha (1.000g de princípio ativo/ha) ...até porque controla tanto folhas largas como folhas estreitas; se não tiver Ronstar, utilizar Herbadox (Pendimethaline) na dosagem de 3 L/ha (1.500g de princípio ativo/ha) em PRE e completar com o controle de folhas largas com 2-4 D amina (600 à 800g de princípio ativo/ha) na fase de pleno perfilhamento (entre 30 e 50 DAP).

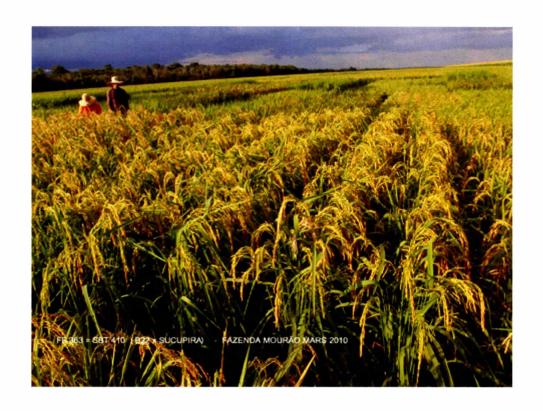
Em Plantio Direto, utilizar em Pós precoce (15-20 DAP) a mistura 4 g de Ally + 300g de Cobra/ha; esta mistura (fitotoxicidade média que desaparece em 5-7 dias) controla as folhas largas no estágio precoce de 2-3 folhas e é eficiente sobre trapoeraba, leiteiro, erva quente, poia; o basagran (Bentazone) também pode ser utilizado, sem fito, mas num estágio bem precoce das ervas daninhas (1-3 folhas) na dosagem de 720 g /ha de princípio ativo (1,2 L/ha de Basagran 600); o Basagran controla também o "junquinho" (parada do seu crescimento).

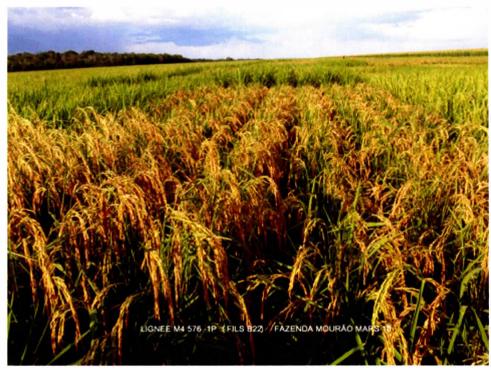
Para o controle de folhas estreitas, aplicar Clincher (Cyhalofop butyl) em POS na dosagem de 1,0 L/ha de produto comercial até 1,3 L/ha se os inços forem mais desenvolvidos (2-3 perfilhos).

• No caso de presença maciça de tiririca (Cyperus rotondus, esculentus) aplicar 100 à 133 g/ha de produto comercial Gladium (Etoxysulfurom).

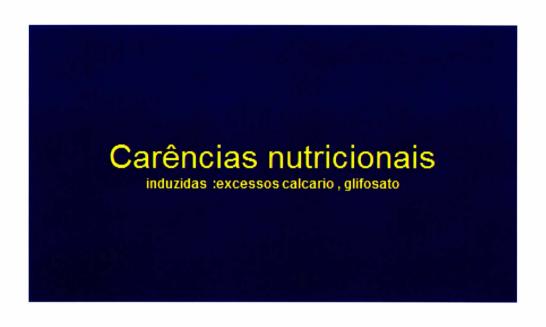
4/ RECOMENDAÇÕES PARA CONTROLE DE DOENÇAS

- Todas as variedades são resistentes estável a brusone e dispensam de tratamento fungicida contra esta doença; todas são também resistentes a escaldadura (*Rynchos porium o.*).
- Para as variedades SBT 93, SBT 364, Sén Pidao, em caso de tempo que permanece nublado, sem sol, fresquinho e chuvoso (mormaço) durante a fase de emergência das panículas é recomendado aplicar: ½ dose de fungicida na saída das primeiras panículas e renovar a aplicação de ½ dose de fungicida uma semana depois se for preciso (Triazol ou Strobilurina ou mistura dos 2).





Mesmas variedades promissoras em sequeiroX PD Madagascar-2010 cruzamentos laosX Sebotas



3.3) APOIO A PEQUENA AGRICULTURA FAMILIAR NOVA GUARITA

Por falhas recorrentes de acompanhamento e monitoramento, este programa foi interrompido em 2012, após a colheita dos VCUs que foram afetados negativamente pelas ervas daninhas nos 40 primeiros dias de ciclo ou seja durante a fase de concorrências mais efetiva dos inços. Apesar desse fracasso por falta de apoio responsável, restaram na região:

- Algumas espécies forrageiras de grande interesse para a pecuária dominante: *Stylosanthes guianensis*, Bana Grass, *Tripsacum laxum*, alguns cultivares de sorgo de grande desenvolvimento vegetativo para silagem (*BF 80 e outros*).
- Nos sistemas em Plantio Direto (PDSCV), os consórcios de milho e sorgo de safrinha com espécies forrageiras, como o mostra a foto a seguir na fazenda do Sr Gilberto, parceiro deste programa: milho safrinha + colonião em plantio Direto em sucessão de soja de ciclo intermediário.

Stylosanthes guianensis

Consórcio Milho + Colonião

3.4) ATIVIDADES DE APOIO E CONSELHOS A PESOUISADORES DO IMA

- Entregue de materiais genéticos:
 - Cultivares de soja oriundo da Ásia, Colômbia, África para enlargar a base genética da soja brasileira e identificar possíveis fontes de tolerância á ferrugem asiática, á nematóides, etc...
 - Espécies forrageiras de alta performance (Bana Grass, *Tripsacum laxum*)
- Palestra sobre "Potencial agronômico de bio-produtos em beneficio da agricultura matogrossense"

3.5) DIFUSÃO DE TECNOLOGIAS SOBRE MANEJO MAIS ECOLÓGICO DOS SOLOS E DAS CULTURAS

- **Por memória:** Sistemas PDSCV com elevada biodiversidade funcional e forte poder de biorremediação para recuperar num espaço de tempo mais curto possível, a capacidade de produção dos solos arenosos das chapadas da região de Alto Garças MT (Vide cápitulo).
- **Publicações do CIRAD de grande interesse** científico, didático e prático sobre a agricultura de conservação (*AC Sistemas PDSCV*) destinada a pequena agricultura familiar do estado do Mato Grosso:
 - O plantio direto sobre cobertura vegetal permanente (SCV) como funciona?
 - Manual Guia de Plantio Direto para a pequena agricultura familiar em Madagascar que reune todas as ecologias tropicais e sub-tropicais do planeta
- (*) Estas publicações disponíveis em português e em inglês poderiam ser incorporadas á biblioteca cientifica do site do IMA para uma difusão em larga escala.

ANEXO I

DOSSIÊ

" SISTEMAS PDSCV RESTAURADORES DA FERTILIDADE DOS SOLOS ARENOSOS DAS CHAPADAS ARENOSAS DA REGIÃO DE ALTA GARÇAS" - 2011/12 - GRUPO TORRE.

•	Reunião técnica IMA-MT e grupo Torres do 21/10/11 - Alto Garças - MT	71	
•	Resultados da ánalise nematologicas;	. 73	;
	Analises de solos 2008/2009/2012		
Di	iagnóstico do problema de "fadigua do solo" e propostas para restauração rápida	da	4
	rtilidade do solo – 03/12/2011		

Reunião Técnica IMAmt e Grupo Torre – Alto Garças, MT

Dia 21/10/11 estivemos em reunião com o Eng Agr Diego Miranda Cunha, responsável técnico pelo setor de pesquisa do Grupo Torre em Alto Garças - MT, onde foram discutidos alguns pontos:

A Região 2, onde está localizada a Fazenda Torre 3, Alto Garças – MT, representa uma área de 12571 ha cultivados com soja e algodão. Dessa área, aproximadamente 1.200 ha apresentaram na ultima safra, danos de intensidade variável em função de nematóides. Esse fato resultou no Departamento Técnico do Grupo Torre, em grande preocupação e foco na busca de soluções para esse problema;

O Grupo Torre demonstrou interesse e disponibilidade de apoio operacional, em um trabalho de pelo menos 3 anos em uma área com histórico de problemas por nematóides na Fazenda Torre 3, em Alto Garças, MT, sendo essa fazenda, a que apresenta problema mais crítico;

O Grupo Torre se compromete a analisar a proposta de trabalho (projeto) e conforme parecer técnico e operacional, prestar apoio logístico, que incluiria disponibilidade de trator, plantadeira, pulverizador, insumos e mão de obra, em comum acordo e com planejamento prévio.

O local para a realização do trabalho é o Talhão 47, com 25 ha, onde inclusive já se desenvolveu um trabalho de Difusão das Cultivares do IMAmt, com os materiais IMA 8221, IMA 8276 e IMA 1318, na Safra 2010/2011 (Anexos 1 a 3);

A textura do solo apresenta teor aproximado de 20% de argila, com topografia levemente ondulada, sem problemas aparentes de erosão;

A média histórica de produtividade do talhão encontra-se na Tabela 1;

Tabela 1 Histórico de produtividade de algodão caroço T 47, Fazenda Torre 3 - Alto Garças - MT

SAFRA	CULTURA	@ / ha
S 10/11	Algodão	80,0
S 09/10	Milheto	
S 08/09	Milheto	
S 07/08	Algodão	217,5
S 06/07	Algodão	182,4
S 05/06	Algodão	186,9
S 04/05	Algodão	280,5
S 03/04	Algodão	293,4

Os resultados preliminares de análise nematológica encontram-se na Tabela 2

Tabela 2 Resultados de análise nematológica – Variedade IMA 8221, Talhão 47, Fazenda Torre 3 Alto Garcas Fitonematóides

Meloid	dogyne	P brac	hyurus	irus H glyc		cines R. reniformis		Ou	tros	Cistos	
Solo	Raiz	Solo	Raiz	Solo	Solo Raiz		Raiz	Solo Raiz		Solo	Raiz
1560	180	430	40	Zero	Zero	Zero	Zero	10	Zero	Zero	Zero

Amostragem realizada dia 01/04/2011, Laudo de Diagnóstico Nematológico realizado pela Aprosmat, Rondonópolis – MT. Solo: 200 cc Raiz: 5g Cistos: 100 cc de solo.

Estão sendo compilados os dados sobre análise química do solo e pluviometria;

O IMAmt responsabilizaria pela elaboração e parte da condução de uma proposta de trabalho (projeto) a ser apresentada ao Departamento Técnico do Grupo Torre, que contemple avaliações químicas, físicas e microbiológicas do solo em busca da recuperação do potencial produtivo da área, via práticas de manejo, objetivando o sistema soja – algodão;

Acordos Tomados

Informar a Diretoria do IMAmt sobre o interesse e a disponibilidade do Grupo Torre, para que o IMAmt conduza trabalhos de difusão de tecnologias na área do Talhão 47;

Conforme as decisões da Diretoria do IMAmt, visitar a área de estudo para ajustar detalhes técnicos e operacionais que facilitem a elaboração da proposta de trabalho (projeto) e programação das atividades, bem como elucidar as devidas responsabilidades;

Apresentar e explicar a proposta de trabalho (projeto) aos representantes do Grupo Torre, encarregados pela parte da condução dos trabalhos;

A elaboração da proposta de trabalho (projeto) deve considerar aspectos operacionais e a aplicabilidade dos resultados, bem como apontar parâmetros econômicos.

Considerações Finais

Dependendo do acordo e das decisões da Diretoria do IMAmt, se procederá a continuidade desse trabalho.

Fica por parte do IMAmt propor um plano de ação conforme aos requerimentos e necessidades do trabalho a realizar nas condições anteriormente expostas.

Elaborado por: Marcio Henkes Caldeira

Simami

Responsável pela coleta:

IMAmt - Instituto Mato-grossense do Algodão - Laboratório de Nematologia - Br 070, Km 265, Primavera do Leste - MT, Cx.P. 149; Fone/Fax: (66) 3498 8841; site: www.imamt.com.br

DIAGNÓSTICO NEMATOLÓGICO N°: 02/2011

Requerente: Márcio Caldeira e Élio Torres

Márclo Caldeira e Élio Torres

Tel: (66) 3498 8841

Cidade/estado: Pva do Leste-MT; Data de recebimento: 19/11/2011; Data de análise: 21/11/2011

Experimento:

Área de produtor: Faz. Torres

Safra: 2011-12

	identificação d	as Amostras				Fitoner	natóldes enco	ntrados			
N° (ficha)	Data	Local/Obs.	Pratylei brach		Rotyler reni fe		Meloido	gyne spp	Heted glyc		Csltos*
			Solo*	Ralz*	Solo	Raiz	Solo	Raiz	Solo	Ralz	
02/2011	21/11/2011	V1N1	30	N.A.	Zero	N.A.	Zero	N.A.	Zero	N.A	N.A.
02/2011	21/11/2011	V1N2	210	N.A.	Zero	N.A.	Zero	N.A.	Zero	N.A	N.A.
02/2011	21/11/2011	V2N1	Zero	Zero	Zero	Zero	30	Zero	Zero	Zero	N.A.
02/2011	21/11/2011	V2N2	30	Zero	Zero	Zero	Zero	Zero	Zero	Zero	N.A.
02/2011	21/11/2011	V3N1	60	N.A.	Zero	N.A.	Zero	N.A.	Zero	N.A	N.A.
02/2011	21/11/2011	V3N2	60	N.A.	Zero	N.A.	30	N.A.	Zero	N.A	N.A.
02/2011	21/11/2011	V4N1	30	N.A.	Zero	N.A.	30	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	V4N2	Zero	N.A.	Zero	N.A.	30	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	1	30	N.A.	Zero	N.A.	Zero	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	2	Zero	N.A.	Zero	N.A.	Zero	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	3	90	N.A.	Zero	N.A.	30	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	4	180	N.A.	Zero	N.A.	60	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	5	120	N.A.	Zero	N.A.	90	N.A.	Zero	N.A.	N.A
02/2011	21/11/2011	6	60	N.A.	Zero	N.A.	120	N.A.	Zero	N.A.	N.A

Observações:

* Solo: 200 cc; Ralz: 5 g; Cistos: 100 cc de solo.

***N.A. = Não avaliado

Metodologia: Solo: (Jenkins, 1964); Raiz: (Coolen & D'Herde, 1972);

Clstos: (Abrantes et al., 1976)

Obs : Esses resultados não tem valor oficial, são destinados a trabalhos de pesquisa

internos do IMA.

Essa análise tem sua validade restrita à amostra entregue no laboratório. A identificação da amostra é de exclusiva responsabilidade do remetente.

Eng. Agr° M.Sc. Rafael Galbieri - Fltopatologista (IMAmt)
Responsável técnico CREA-SP 5062544270

ALEXANDRE AUGUSTINE OF TRO FAZENDA TORRE III AUTO GARÇAS/MI

IAA 25 / 2451 5/7/2008

NO LAD	AMOSTDA	р	Н	P	K	K	Ca	Mg	Al	H + Al	M. O.	Argila	Silte	Areia	
№ LAB.	AMOSTRA	Água	CaCI2	mg	/dm³	cmolc/dm³		nolc/dm³			g/dm³	g/dm³			
8199	T 40 (0-20)	7,01	6,30	79,14	82,11	0,21	3,09	0,79	0,00	1,54	12,61	-	-	-	
8200	T 41 (0-20)	6,56	5,64	96,24	84,07	0,22	2,61	0,70	0,00	2,27	16,18	-	-	-	
8201	T 42 (0-20)	6,53	5,69	131,1	101,66	0,26	2,48	0,56	0,00	2,11	13,88	-	-	-	
8202	T 43 (0-20)	6,73	5,90	116,0	73,31	0.19	2,44	0,74	0,00	1,73	12,61	-	-	-	
8203	T 44 (0-20)	6,50	5,66	128,4	55,72	0,14	2,55	0,66	0,00	1,94	12,53	-	-]	-	
8204	T 45 (0-20)	6,35	5,27	97,97	80,16	0,21	2,20	0,50	0,00	2,72	15,48	-	-	-	
8205	Т 46 (0-20)	6,38	5,50	99,81	65,49	0,17	2,50	0,58	0,00	2,20	13,05	-	-	-	
8206	T 47 (0-20)	6,54	5,61	82,55	78,20	0,20	2,88	0,70	0,00	2,37	16,18	-	-	-	

AID I AD	AMOSTDA	S.B.	C.T.C.	V	m	Satura	ão por Eler	nento (%)		Re	lações		Classe toutural
Nº LAB.	AMOSTRA	cmol	c/dm³		%	K/C.T.C.	Ca/C.T.C.	Mg/C.T.C.	Ca/Mg	Ca/K	Mg/K	Ca+Mg/K	Classe textural
8199	T 40 (0-20)	4,09	5,63	72,66	0,00	3,73	54,89	14,03	3,91	14,71	3,76	18,48	-
8200	T 41 (0-20)	3,53	5,80	60,81	0,00	3,71	45,02	12,07	3,73	12,14	3,26	15,40	-
8201	T 42 (0-20)	3,30	5,41	60,99	0.00	4,81	45,84	10,35	4,43	9,54	2,15	11,69	-
8202	T 43 (0-20)	3,37	5,10	66,09	0,00	3,68	47,89	14,52	3,30	13,01	3,95	16,96	-
8203	T 44 (0-20)	3,35	5,29	63,34	0,00	2,69	48,18	12,47	3,86	17,89	4,63	22,53	-
8204	T 45 (0-20)	2,91	5,62	51,67	0,00	3,65	39,13	8,89	4,40	10,73	2,44	13,17	-
8205	T 46 (0-20)	3,25	5,45	59,60	0,00	3,07	45,88	10,64	4,31	14,93	3,46	18,39	
8206	T 47 (0-20)	3,78	6,15	61,46	0,00	3,25	46,83	11,38	4,11	14,40	3,50	17,90	-

NIO I AD	AMOSTRA	S	В	Zn	Cu	Mn	Fe
N LAD.	AIVIOSTRA				mg/dm³		
8199	T 40 (0-20)	13,02	1,50	9,75	2,57	24,75	183,84
8200	T 41 (0-20)	12,05	1,52	9,96	3,13	18,72	188,51

No LAB	AMOSTRA	S	b	34	5	30
8201	T 42 (0-20)	12,19	1,57	10,71	6,75	20,13
8202	T 43 (0-20)	12,74	1,47	8,11	2,73	15,66
8203	T 44 (0-20)	12,88	0,39	11,62	3,46	20,46
8204	T 45 (0-20)	11,84	0,91	9,62	3,08	18,21
8205	T 46 (0-20)	12,12	0,40	9,78	2,96	15,45
8206	T 47 (0-20)	10,79	1,02	11,74	3,68	19,59

PROPERTY FAZE, NOW TO HAT THE SECTION OF THE SECTIO

N° LAB	AMOSTRA	p	NH.	Р	K	K	Ća	Mg	Al	H + Al	M O	Argila	Selfé	Areia
er LAD	AMUSTRA	SupA	CaCI2	mgi	dm³		CIT	volc/dm²			g/dm³		g/dm³	B. Augusta
12612	CAMPO 40 (0-20)	6.10	5.54	6169	62.56	0.16	2.21	0.53	0.00	1.95	12,68	1		
12613	CAMPO 41 (0-20)	6,41	5.64	150,82	64.52	0.17	2:34	0.59	0.00	2.03	12,46			
12614	CAMPO 42 (0-20)	6,47	3.47	49.92	44.97	0.12	1.88	0.51	0.00	1,99	11,58			
12615	CAMPO 43 (0-20)	6.39	5.49	51.62	45.94	0.12	1.84	0.5.1	0.00	2.01	10.93	,	-	
12616	CAMPO 44 (0-20)	6,62	5,66	45.22	37.15	0.10	1,01	0.64	0.00	1,64	10.22			
12617	CAMPO 45 (0-20):	6.35	5.42	\$7.02	64.52	0.17	2.21	0.46	0,00	2.07	13.20			
12618	CAMPO 46 (0-25)	6,36	5.29	114.35	60.61	0.16	2.11	0.40	0.00	2.18	12.24			-
12619	CAMPO 47 (0-20)	6,33	5,36	36,52	55,772	0.14	2.14	0.46	0.00	2,23	13,50		-	
12620	CAMPO 48 (0-25)	6.32	5,32	72.24	74.29	0.19	2.46	0.51	0.00	2.40	15,10			-

Nº LAB	AMOSTRA	SB	CIC	V	m	Saturaç	ão por Elem	ento (%)		Re	elações		Cinsse lextura
CAD	ANICOMA	CITIO	ic/am²		16	K/C T C	Ca/C T C	Mg/C T.C	Ca/Mg	Cark	Mg/K	Ca+Mg/K	Chisse Hakitala
12612	CAMPO 40 (0.20)	2,91	4.83	60.20	0.00	3,31	45.93	10,96	4,19	13.88	3,34	17,19	1
12613	CAMPO 41 (0-20)	3,10	5.12	60.41	0.00	3.22	45.68	11.52	3,97	14.18	3.58	17.76	
12514	CAMPO 42 (0-20)	2.51	4.49	55.78	0.00	2.56	41.86	11.36	3.69	16.35	4.43	20.78	
12015	CAMPO 43 (0-20)	2.47	4,47	55.15	0,00	2,63	41.12	11,40	3,61	15.66	4.34	20,00	
1.76 Frs	CAMPO 44 (0-20)	2.62	4.26	61.42	0,00	2,23	14.86	14.33	3.13	20.11	6.42	26.53	
125.17	CAMPO 25 (0.20)	2.84	4.91	57,79	0.00	3,36	45.05	9,58	4.80	13.39	2.70	16.18	
(2618	CAS (90 45 to 25)	1.67	4.85	54.97	0,00	3.20	43.52	8.25	5.28	13.61	2.58	16.19	
12619	CAMPO 42 (0.20)	2.74	4,97	55.16	0.00	2,87	43,04	9,25	4,65	15.02	3,23	18,25	
12620	(CASTPIT 48 (II-25)	1.16	5.56	56.83	0.00	3,42	4 4 2 4	9,17	4,82	12.95	2.68	15.63	

N° LAB	AMOSTRA	5	8	Zn	Cu	Mn	Fe
in the	MAIOSIMA				mg/drm³		
126(12)	CAMPO 40 (#20)	12.29	0.90	0.07	3,58	13.26	151.57
12413	CASPO 41 (0-20)	11 14	0.57	8.25	3.14	12,02	111.88
12614	CAMPO 42 (0-20)	10.32	0.46	4.70	2.87	10.10	166.60
12615	CAMPO 43 (0-20)	10.57	0.33	4.63	2.84	10.30	168 99
726 le	CAMPO 44 (0.20)	9.67	0.35	6.83	2.94	9.65	174.33
12617	CAMPO 45 (0-20)	10.65	0.46	7,60	3,54	17.85	127.53
12618	CAMPO 46 (0-25)	10,24	0.35	8.54	4.32	13,70	120,32
12619	CAMPO 47 (0-20)	10.90	0.44	5,74	2,99	11,47	138,65
12620	CAMPO 43 (6-25)	9.67	0.60	7.21	3.55	15.66	127,48

TALHÃO 47 FAZ. TORRE ALTO GARCAS - 2012

40.445	41400704	Р	Н	Р	K	K	Ca	Mg	Ai	H + Al	M. O.	Argila	Silte	Areia
Nº LAB.	AMOSTRA	Água	CaCl ₂	mg/	dm³	- 14	СП	nolc/dm³	1 9	47	g/dm³	g	/dm³	(A 10
43051	VIAI	6,11	5,31	128,37	68,43	0,18	2,13	0,29	0,00	2,28	14,10	140	30	830
43050	V 2 A 2	5,97	5,19	54,37	93,84	0,24	3,03	0,59	0,00	3,00	20,32	265	45	690
43052	V 3 A 3	6,22	5,38	119,54	58,65	0,15	2,47	0,45	0,00	2,18	16,10	140	35	825
43053	V 4 A 4	6,20	5,39	97,09	63,54	0,16	2,23	0,39	0,00	2,09	14,41	130	30	840

Nº LAB.	AMOSTRA	S.B.	C.T.C.	V	m	Saturaç	ão por Eler	nento (%)		Rei	lações		Classe
N' LAB.	AMOSTRA	cmol	c/dm³		%	K/C.T.C.	Ca/C.T.C.	Mg/C.T.C.	Ca/Mg	Ca/K	Mg/K	Ca+Mg/K	textural
43051	V 1 A 1	2,59	4,87	53,22	0,00	3,59	43,65	5,98	7,29	12,15	1,67	13,81	MÉDIA
43050	V 2 A 2	3,86	6,86	56,30	0,00	3,50	44,14	8,65	5,10	12,61	2,47	15,08	MÉDIA
43052	V 3 A 3	3,06	5,25	58,36	0,00	2,86	47,01	8,49	5,54	16,44	2,97	19,41	MÉDIA
43053	V 4 A 4	2,78	4.87	57,01	0,00	3,34	45,68	8,00	5,71	13,69	2,40	16,09	ARENOSA

PROPOSTAS PARA RESTAURAÇÃO DA FERTILIDADE GRUPO TORRE – FAZENDA TORRE III – ALTO GARÇAS/MT 03/12/2011

1/ DIAGNÓSTICO RÁPIDO (TRINCHEIRAS) -PALAVRAS CHAVES (RESUMO) - Parte da parcela onde o algodão não produziu:

- Solo arenoso de parte baixa de declive (toposequência clássica de latossolos sobre arenitos : mais argilosos em cima das chapadas em cima da topografia e mais arenosos na parte baixa dos declives).
- Descontinuidade física brusca no perfil de solo entre 5 25cm de profundidade; consequiências : pivôs do algodão horizontais entre 5 e 10cm de profundidade, raizes da flora daninha localizadas por 95% nos 5 à 10 primeiros cmreserva útil de água e nutrientes muito baixa e limitada para as culturas e flora daninha, esta sendo pouco desenvolvida e amarelada (*Digitaria horizontalis, Cenchrus echinatus, Bidens pilosa*, etc...)
- As análises de solo e nematóides feitas sob indicação da equipe IMA (Élio e Márcio) mostram: teores baixos de materia orgânica, perfil bem provido em nutrientes, apesar todavia de algumas amostras com saturação de bases elevada demais, acima de 60% (análises do 5/7/2008) para este solo sem poder tampão o que facilita o desenvolvimento das bactérias na microflora em detrimento dos fungos e consequentemente a multiplicação de nematóides naturalmente controlados por fungos,
- As análises de nematoïdes (solo+ Raizes), mostram a presença de *Pratylenchus brachyurus e Meloidogyne spp* a nível do solo,
- Galhas foram observadas sobre raizes do algodão muito fraco (Meloidogyne spp)
- * Em resumo: solo arenoso comun de parte final das encostas, com descontinuidade física forte na superfície que impede o enraizamento profundo do algodão e inços, presença de nematóides dos gêneros Meloidogyne e Pratylenchus; a descontinuidade física perto da superfície pode facilitar o encharcamento temporário da superfície, condições de anoxia, concentra 90-95% dos sistemas radiculares nos 5 a 10 cm, sem raizes abaixo de 15-20 cm e leva assim a uma reserva útil de água e nutrientes muito baixa, expondo as culturas aos periodos climáticos excessivos: secas ou ao contrário chuvas prolongadas ...a cultura algodoeira encontra condições adversas de crescimento e fica a mercê de ataques de pragas, doenças, etc...(plantas debilitadas).

2/ PROPOSTAS PARA RESTAURAÇÃO DA FERTILIDADE E SANEAMENTO DO SOLO

2-1. PRINCÍPIOS BÁSICOS

Esta restauração- regeneração de condições favoráveis ao crescimento ótimo das culturas e a capacidade de produção do solo pode ser realizada ràpidamente apos um ciclo de potentes biomassas com alta biodiversidade funcional que terão como funções agronômicas essenciais:

- Criação de uma forte macroporosidade no perfil de solo que permitirá um enraizamento potente e rápido das culturas em profundidade (acesso a uma grande reserva útil de água e nutrientes: ligar a camada superficial e as camadas profundas), evitará tanto escorrimento superficial de água como encharcamento temporário,
- Controle de nematóides ao incluir nas biomassa espécies que não são hospedes de nematóides (*Brachiaria, Sorgo, pé de galinha*) e/ou permitem controlar a sua multiplicação (*Crotalarias*),
- Injeção no perfil de solo de alta quantidades de Carbono oriundo de fontes diversificadas para:
 - . **Dentro do perfil**, injetar altas quantidades de Carbono, criar forte macroporosidade, reciclar eficientemente os nutrientes facilmente lixiviados em solos arenosos (*Bases tais como Ca, Mg, K e nitratos, sulfatos*),
 - . Para cima do solo, fazer uma cobertura importante e douradora para controlar eficientemente as invasoras (sorgo, sorgo + Brachiaria) e assim diminuir os herbicidas na cultura, fornecer um fluxo de nutrientes importante e continuo durante o ciclo das culturas (mineralização da cobertura de solo); a forte cobertura do solo com biomassa aliada a uma forte e diversificada densidade de raizes dentro do perfil permitirão a criação de um perfil de solo elástico, resiliente, capaz de suportar máquinas pesadas sem prejuizos para o estado da superficie e sem risco de compactação.

- Criação de uma intensa e diversificada vida biológica no perfil de solo que ajudará no controle das doenças e pragas diversas das culturas e melhorará a nutrição das culturas.

2-2. ESTRATÉGIA DE TRABALHO

As propostas técnicas devem obedecer a uma regra importante: cada uma deverá tentar assegurar uma produção suficiente para cobrir os custos ; se trata assim de restaurar a fertilidade, sanear o solo, sem custo adicional se for possível.

Diversas técnicas são propostas, para que o grupo Torre possa avaliar junto com o IMA a melhor eficiência e a melhor operacionalidade para aplicações futuras em larga escala, se precisar (Ferramenta técnica reproduzível de baixo custo).

2-3 SISTEMAS DE CULTIVOS EM PD, COM ALTA BIODIVERSIDADE FUNCIONAL, A SEREM IMPLANTADOS :

2consórcios a base de milho, 2 consórcios à base de Sorgo

Nos consórcios com **milho**, seria preferível escolher uma variedade ao invês de um híbrido, par ter um custo menor e um material genético menos exigente em nutrientes e condições climáticas adversas. Todos os consórcios propostos são chamados de "coberturas restauradoras", compostos de alta biodiversidade funcional, tem um alto impacto imediato sobre o sanaeamento do solo (*biorremediação*), reestruturação do solo, a fertilidade de origem organo-biologica, reciclagem de nutrientes, injeção de carbono, fixação gratuita de N, etc..

Nos consórcios com sorgo, o cultivar usado sera o BF 80, variedade com forte desenvolvimento vegetativo (para cima e para baixo da superficie do solo), forte ação alelopática sobre invasoras, de cobertura seca duradora na superfície do solo (controle eficiente e durador de invasoras em particular as resistentes ao glifosato tais como leiteiro, tiriricas), de grãos de alta qualidade alimentar (alto teor de proteinas, sem taninos).

Consórcio 1: Milho (15 kg/ha) + *Crotalaria spectabilis* (15 kg/ha)+ *Brachiaria ruziziensis* (10 kg/ha) + **Consórcio 2**: Milho(15 kg/ha) + *Crotalaria spectabilis* (15 kg/ha) + Pé de galinha (8-10 kg/ha) + *Brachiaria ruziziensis* (10 kg/ha)

Consórcio 3: Sorgo BF80 (10-12 kg/ha) + *Crotalaria juncea* (20 kg/ha) em linhas alternadas (0,45m) + *Crotalaria spectabilis* (15 kg/ha) + Pé de galinha:

Consórcio 4: Sorgo BF80 (10 kg/ha) Consórcio: Sorgo BF80 (10-12 kg/ha) +Crotalária juncea (20kg/ha) em linhas alternadas (0,45 m) + Crotalaria spectabilis (15 kg/ha) + Pé de galinha (8 kg/ha) + Brachiaria ruziziensis (10 kg/ha).

* Nestes consórcios: as Crotalárias tem um alto poder de limpeza dos nematóides e são fortes fixadores de N, os gêneros Brachiaria e Eleusine (Pé de galinha) não são hospedes de nematóides e tem ato poder de reestruturação, forte injecão de C, reciclagem profundo de nutrientes ... o conjunto de espécies genera uma intensa e diversificada vida biológica no solo.

2-4. MODOS DE IMPLANTAÇÃO DOS CONSÓRCIOS "RESTAURADORES"

Todos os consórcios serão plantados com uma plantadeira JUMIL (*equipamento da fazenda*) regulada com espaçamento da soja (0,45 m).

Nos consorcios 2, 3 e 4 que tem pé de galinha na mistura de espécies : jogar as sementes de pé de galinha a lanço na dessecação da área e passar um rolo logo em seguida ou uma grade niveladora fechada, para reapoiar as sementes no solo.

Consorcio I e 2: milho plantado com 0,90 m entre linhas, a mistura Crotalaria spectabilis + Brachiaria ruziziensis (15 kg + 10 kg) sera misturada com o adubo formulado (300 kg/ha tipo 0-20-20 ou 5-20-20) bem na hora do plantio e caira em todas as linhas aos 0,45 m

(*) Atenção : verificar que as linhas do adubo não coincidem com as linhas de milho e são decaladas de 5 cm ao lado ; incorporar adubo + sementes de espécies entre 2 e 4 cm de profundidade).

Consórcios 3 e 4 : Sorgo BF 80 (10 kg/ha) plantado en linhas alternadas aos 0,90 m com Crotalaria Juncea que é de grande porte (20 kg/ha) ; fora o pé de galinha que é jogada a lanço na dessecação, a Crotalaria spectabilis no consórcio 3 e a *Crotalaria spectabilis* + *Brachiaria ruzi*. no consorcio 4, são, como no caso dos consorcios 1 e 2, misturadas junto com o adubo formulado na hora do plantio e serão plantadas em todas as linhas aos 0,45 m (2 à 4 cm de profundidade).

- * verificar a necessidade de aplicar 1 L/ha de Gramoxone ou Gramocil sobre o plantio, em caso de reinfestação de inços entre dessecação e plantio.
- * No caso de forte infestação de folhas largas 10-15 dias após plantio dos consórcios, 0,8 L para 1 L/ha de Basagran 600 poderá ser usado (*em pós precoce*).

2-5 TRATAMENTOS DE SEMENTES DOS CONSÓRCIOS

As sementes de milho, sorgo e espécies consorciadas deverão ser tratadas com os seguintes **bioprodutos** para reforçar o poder de biorremediação dos consórcios e inocular o solo com cepas eficientes contra nematoïdes e percevejo castanho:

Por Ha:

- 1L de TY10 (extrato concentrado de neem eficiente contra os nematoïdes) e repelentes de pragas do solo)
- **200 g de Trichodermil** (*Trichoderma asperelum eficiente para biorremediação em geral, controle de fungos do solo tipo Fusarium, Rhizoctonia*) + 200g de Metarril + 200g de Boveril (*estas cepas são eficientes para o controle de percevejo castanho e outras pargas de solo*) –
- * produtos da empresa ITAFORTE Brasil www.itafortebioprodutos.com.br –TEL :DR Ariclenis 0191231948
- 300g de SS3, amino-acidos, estimulante fisiológico

Todos estes bioprodutos serão colados as sementes com Humus líquido HL : entre 2 e 4 ml/kg de sementes

- * os produtos TY10, HL e SS3 são da firma Elvisem TEL: DR Pierluigi -(061) 30397728 e Cel: (061) 811 62 025.
- * É importante deixar secar as sementes apos tratamento para evitar que elas grudem com o adubo formulado na hora do plantio

2-6 DATAS DE PLANTIO E TRATOS CULTURAIS

Os consórcios com milho podem ser plantados agora no início de dezembro ou seja a metade da área. Os consórcios com sorgos serão plantados entre 20 e final de Janeiro (*outra metade da área*) para ter maturação e colheita em boas condições .

Recomendamos uma adubação de cobertura aos 20-25 DAP de 40 a 60 N + 30 K/ha, para obter uma produtividade de milho e Sorgo suficiente para pagar os custos dos consórcios "restauradores" e produzir também quantidades importantes de biomassas : mais importantes as biomassas e maiores serão os efeitos "retauradores"

Por isso, deixamos a critério do Grupo Torre a iniciativa do nível de adubação de cobertura a ser empregado, a nossa recomendação é à minima possível; mas se um híbrido de milho é usado por exemplo, é obvio que este tipo de material genético é mais exigente e necessitará de mais N em cobertura (mínimo de 80 N/ha).

EM CONCLUSÃO: as coberturas "restauradoras" propostas em PD, construidas sobre forte biodiversidade funcional, devem permitir uma regeneração rápida da fertilidade em geral, um saneamento eficiente do solo.

O solo ficara coberto de biomassa até a proxima safra.

* É importante lembra que a forte cobertura de Brachiaria que será produzida deverá ser dessecada 35 à 45 Dias antes do plantio do algodão para realizar um plantio em condições ideais (dessecação entre 20 e 30 de outubro para um plantio de início de dezembro).

Logo em seqüência da colheita do milho e sorgo, trincheiras serão abertas para descrição precisa do perfil cultural (*enraizamento*, *propriedades fisicas*, *vida biológica*), as biomassas secas (*parte aérea* + *Raizes*) serão avaliadas após dessecação das biomassas como amostras de solos serão tiradas para análise da evolução da fertilidade e sanidade do solo.