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ABSTRACT:

Aroids corms and cormels are chemically very variable and there is significant variation of their major
constituents (starch, sugars, cellulose, proteins, minerals) between genotypes. A fairly common
difficulty for breeding programmes is to assess precisely these compounds as chemical analyses are
too expensive for routine screening. These programmes are often based on mass recurrent selection
and great numbers of hybrids have to be screened to achieve some progress. However, the wrong
selection of a parent can cause a serious constraint to the development of new varieties for
processing purposes. Likewise, if the table quality is not acceptable for consumers, years of intense
and expensive breeding efforts can lead to complete failure. Low-cost methods for rapid evaluation
of numerous hybrids are urgently needed. The present paper, assess the potential of NIRS (Near
Infrared Reflectance Spectroscopy) as an alternative method for predicting these major constituents
and evaluating corms and cormels quality. Models have been developed using data from 642 root
crops accessions and their predictive potential has been tested on 100 varieties and hybrid lines of
taro, Colocasia esculenta. The NIRS calibration results for major constituents, and their practical
applications for aroids breeding and genetic improvement of quality traits, are discussed.
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Introduction

Aroids are foods of great cultural and economic importance throughout the humid tropics. In many
countries, there is a desire to strengthen production by breeding for improved nutritional quality and
agronomic performance. All species (Alocasia macrorrhyzos, Amorphophallus campanulatus,
Colocasia esculenta, Cyrtosperma chamissonis, Xanthosoma sagittifolium) are vegetatively
propagated and are highly polymorphic. Morphological characterisation of germplasm collections is
usually conducted on hundreds of accessions, each represented by few plants. Once the promising
genotypes are identified, agronomic evaluation involves randomized field designs which allow the
study of only a limited number of clones and genotypes. Their results are often biased by the
heterogeneity of the clonal material (headsets, corms, cormels, suckers) needed to compose a plot
treatment.

Breeding programmes start with the evaluation of germplasm followed by crossing the
selected accessions. Crosses can be done in polycross plots where natural open pollination is used to
produced half-sib progenies and when bulked together, populations for recurrent selection. Crosses
are then conducted between parents chosen on their performance per se and presenting
complementary traits. Controlled crosses done and aroid inflorescences can produce numerous full-
sib progenies, often with several hundreds individuals per family. Controlled pollination allows the
production of numerous seedlings but seedling growth is very slow and it takes about four years for a
new genotype to be properly evaluated because of the time needed to produce enough homogenous
clonal propagules for accurate agronomic comparison (lvancic and Lebot, 2000). Once seedlings are
obtained, they must be clonally propagated and multiplied through clonal generations before



accurate assessment of their performance can be conducted. The corm yield of the taro plant, for
example, is correlated to the weight of the propagule planted and genotype performance is
therefore, difficult to assess in F1s (seminal generation) or even the first (C1) or second (C2) clonal
generations. It is necessary to reach a propagule weight comparable to those used in traditional
cultivation before an accurate assessment can be made. The screening of large populations for major
traits is consequently, a laborious and expensive operation which leads taro breeders to develop
visual tools to speed up the process (lvancic et al., 2003) and these traits are efficient for most agro-
morphological traits. The significant genotype x environment interactions are limiting the relevance
of complex field layouts and adding complexity to the evaluation process. Simple methodological
alternatives are therefore needed for rapid and efficient evaluation and screening of numerous
genotypes, prior to clonal distribution or use as parents in breeding programmes.

Depending on financial means, there is some variation between the existing programmes but
the rationale is the same. Heavy selection pressure is applied at the seedling stage for resistance to
diseases. This selection process is visual without any data recording in order to minimize the costs
and maximize the number of genotypes assessed. The selected clones are then released as new
varieties. A new selection cycle can begin, in which the new selected varieties are used as parents.
Unfortunately, chemotypes with very attractive properties can be eliminated at an early stage
because of the high selection pressure on other traits (Figure 1).

Each selected offspring individual can represent a new potential cultivar. However, the chances
of getting a high yielding hybrid with excellent eating quality are very low and they become much
lower when the selection procedure includes resistance against diseases. Corm vyield and corm
quality appear to be negatively correlated. Soft corms, with high water content, generally
characterize high yielding early maturing hybrids. Unfortunately, the physico-chemical characteristics
determining the quality of the corms are very expensive and laborious to assess. Low-cost methods
for evaluation of numerous accessions need to be developed.

NIRS (Near Infrared Reflectance Spectroscopy) has been used to predict major constituent
contents in maize (Berardo et al. 2009), rapeseed (Amar et al. 2009), sorghum (De Alencar Figueiredo
et al. 2006), sugar beet (Roggo et al. 2004), malt (Marte et al. 2009), wheat (Rakszegi et al. 2008),
potato (Haase, 2006) and tropical root and tuber crops (Lebot et al. 2009). NIRS has been intensively
used for quality testing of hybrid lines from cereal breeding programmes around the World since the
late 1970s with great success (Osborne 2006). More recently, Lebot et al. (2011) developed models
based on 245 accessions of taro to predict concentrations in a 58 varieties with encouraging results.
The rpred values were 0.76 for starch, 0.74 for sugars, 0.85 for both proteins and minerals but
amylose and cellulose could not be predicted.

These various studies indicate that NIRS could be a useful tool for aroids breeding, selection
and quality control. However, the limiting factor for predictive models development remains the cost
of chemical analyses (approx 100 euros per sample for five major components) which limit the
number of accessions that can be used for comparison between chemical and spectral data. In the
present study, we attempt to investigate the potential of new models developed on samples
originating from different root crop species (cassava, sweet potato, yam, taro) and to test their
predicating values on a set of 100 randomly chosen taro varieties. The results and their practical
applications for breeding and improving the quality of Aroids corm and cormels are discussed.

Materials and Methods

Chemical analyses. Overall, 742 accessions representing varieties as well as hybrid lines from four
different species and various geographical origins, were chemically analyzed (Table 1). One full corm,
root or tuber was peeled and cut. Approximately 0.5-1 kg of fresh weight, corresponding to the
central part of the underground organ, were manually sliced into chips and oven dried at 60°C for 48
h. Dry matter samples were split into two sub-samples: one sub-sample was used for chemical
analysis and the other for NIRS. Samples of 200g were sent to Laboratoire d'Analyses Agricoles
Teyssier, Bourdeaux, France, for chemical analyses. Samples of approximately 50g of dried chips



were milled into flour just after oven drying and dried chips were ground in a stainless kitchen steel
mill (SEB, France) prior to NIRS analysis in Vanuatu.

Major constituents (starch, sugars, cellulose, total N and ash) were analyzed according to
AFNOR (Association Francaise, the French standards association) and EEC methods (AFNOR, 2011).
Following NF (Norme Francaise) V 18-109 for dry matter (DM) determination, samples were dried
again to remove residual moisture (measured as % of total dry weight) and the powder was analyzed
on an oven-dried air basis. Moisture was therefore expressed as a measurement of the sample prior
to drying. All measurements were then expressed in %DM and the data were adjusted by the
residual moisture following oven drying.

Starch was quantified using Ewers protocol (NF ISO 10-520) corresponding to hydrolysis in
HCI, filtration and polarimetric measurement (specific rotation: 185.7°). Total sugars were quantified
through the colorimetric method of Luff Schoorl (CEE 98\54\CE). Crude cellulose (total fibers) was
measured by Weende method (NF V 03-040) which corresponds to non soluble organic residue
obtained by sulfuric acid and alkaline treatments. Total N content (considered as equivalent total
proteins) was calculated using the Kjeldahl method (NF V 18-100). Estimation of total minerals
content was obtained from ashes produced at 550°C (NF V 18-101). All analyses were performed in
duplicate with accepted mean coefficient of variation (SEL) of + 3% for starch, sugars, cellulose, and
residual moisture and £ 2% for proteins (equivalent N), and ashes (minerals).

NIRS measurements and data pre-treatment. Dry matter samples were milled into flour and
granules size was homogenized using four sieves with decreasing diameters until granules passed
through the 106 um sieve. An ASD LabSpecPro spectrophotometer from Analytical Spectral Devices
Inc. (ASD Inc., Boulder, Colorado, USA) fitted with a “muglight” or High Intensity Source Probe (HISP)
(ASD Inc.) was used for the measurement of all spectra over the wavelength range of 350-2500 nm
(Figure 2). On average, six grams of homogenized taro flour were placed in an individual cell and
compacted with a tea spoon to eliminate air voids within the sample. Each spectrum was obtained by
averaging three different cells (repetitions) per sample with 25 scans for each. A reference reading
(baseline) was taken when starting a session and another every 30 min. All of the spectra were
recorded in diffuse reflectance as log(1/R) with respect to a Labsphere’s Spectralon material
reflectance standard (Labsphere Inc., North Sutton, New Hampshire) which is a Lambertian reflective
PTFE (thermoplastic resin) with high overall reflectance. For each sample, corresponding to individual
accession, three sub-samples were scanned 25 times each and then averaged. The resulting averaged
spectrum was recorded for the accession. Overall 742 spectra were recorded and converted to
absorbance using the Indico software (ASD Inc.). In order to assess the performance of the
calibration, samples were separated in two sets: the calibration and the prediction sets. The
prediction set was created by randomly selecting 100 taro (Colocasia esculenta) accession numbers
(approx. 13% of total 742 acc.) and the calibration set contained 642 samples.

Data analysis. Major constituents chemical data were subjected to multivariate analysis using XLSTAT
(version 6.02, 2009). Multivariate analysis (Principal Component) of the spectra was conducted with
GRAMS/AI (version 8.0). The spectra and reference data were mathematically modeled using with
PLSPlus/IQ spectroscopy software (Thermo Electron Corporation, Ohio, US). Using the values
obtained with chemical analyses as the analyte value, a separate calibration was made for each of
the six major constituents. Calibration of residual moisture was not attempted because spectra were
recorded in Vanuatu, just after oven drying the samples, while residual moisture was measured in
France on hygroscopic dry raw material. Partial least-squares (PLS) regression technique was used to
develop a predictive model of the near-infrared part of the spectra. The optimum number of PLS
factors used for prediction was determined by full cross-validation and PRESS (Prediction Residual
Error Sum of Squares). Additionally, light scattering effects due to particle size differences were
corrected by multiplicative scatter correction (MSC). The data was mean-centered and the average
spectrum calculated from all of the calibration spectra and then subtracted from every calibration
spectrum.



As part of the model process a Principal Component Analysis (PCA) was used to check for
gross spectroscopic outliers. The Mahalanobis distance of each spectrum to the mean spectrum of
the group was calculated and the removal of outliers was based on distance H > 3 from the average
spectrum of the file. Spectra and concentration outliers were removed and PLS was run again until
the highest r°., (determination coefficient for cross validation) corresponding to the smallest SECV
(Standard Error of Cross Validation) were obtained. At that point, factor loadings were used to
determine which wavelengths were important to correlate with concentrations in order to narrow
down the spectroscopic region. The loading plots showed which wavelengths were important to
correlate with concentrations. The loading weights showed how much each wavelength point
contributed to explaining the response along each model component. For starch, proteins and
minerals, the regions used were 800-2400nm, while for sugars, and cellulose the region was 1200-
2400nm. The PLS analysis was then conducted again on these new regions in order to obtain for each
constituent, equations with higher explanation of the total variability in the calibration values
without increasing the number of PLS factors used.

Statistical parameters used to evaluate models performances included the standard error of
calibration (SEC), the determination coefficient for cross validation (r%,), the standard error of cross-
validation (SECV), the determination coefficient for prediction (rz,,,ed), and the standard error of
prediction (SEP). SEC and SEP were calculated using Excel spreadsheet by squaring the differences of
the actual minus the predicted concentrations for each sample in the calibration (SEC) and test (SEP)
sets. These values were then summed and the sum was divided by the number of samples (n). The
square root of this value was used for SEC and SEP. SEC describes the calibration set (642 acc.) and
SEP describes the test set composed of 100 taro samples not included in the calibration set. The ratio
of performance to deviation (RPD= SD/SECV) was also used to evaluate performances of the models
(with SD as the standard deviation of the original chemical data in the calibration set (Williams,
2003).

Results

Overall, 742 accessions were analyzed for the chemical variation of their major constituents. Results
of the chemical analyses are presented in Table 1. Significant variation was observed for all major
constituents. The least variable constituent was starch (CV%= 10.50) and the most variable was total
sugars (CV%= 83.25). Correlation coefficients calculated between major constituents indicate that
starch content is positively correlated with %DM but negatively correlated with sugars, cellulose,
proteins and minerals contents (Table 2).

Principal Component Analysis conducted on the data matrix (742 acc. x 5 major constituents)
reveals the respective contribution of the five variables to the projection, with axes 1 and 2 totalizing
72.49% of the total variance (Figure 3).

The comparison of the NIRS spectra and the chemical values allowed the establishment of
equations of calibration for the prediction of starch, sugars, proteins (equivalent N) and minerals. The
results are presented in Table 3. For starch, the SECV (2.11%) and SEC (2.11%) values are identical
indicating robust fitting. The SEP (2.34%) is not too distant and the rzp,ed of 0.79 indicates an
acceptable estimation of the equation accuracy on the 100 validation samples. Deviations of single
samples are visualized in a scatter plot between measured and predicted starch values of the 58 acc.
in the test set (Figure 5A). In terms of predictive performance, the equations for starch could be
considered as good with RPD parameters close to 4. Some authors claim that a RPD value of at least
3 is necessary for efficient NIR reflectance predictions with values above 3.5 indicating a very good
predictive model (Williams, 2003).

The total sugars model also presents similar SECV (1.30) and SEC (1.32) values but the SEP is
not too far (1.40) and the rzpred is of 0.80. The RPD value of 4.11 indicates a good predictive potential
for this equation. Deviations of single samples are visualized in a scatter plot between measured and
predicted sugars values (Figure 5B). Cellulose could not be satisfactorily predicted and a poor r*,
(0.31) was obtained, with very low rz,,,ed (0.13) and RPD (1.91). Proteins, (measured as total N



equivalent) produce similar SECV, SEC and SEP values (respectively 0.51, 0.53 and 0.63) and a rzp,ed of
0.78 indicating good and robust prediction with 78% of confidence. However, the RPD value above
6.0 confirms a very good potential of prediction for this model. If the rzpred value is not higher than
0.78, this might be due to the fact that the samples selected for the validation test were first of all
chosen on the decreasing value of their starch contents, not on proteins, and that therefore they
might not represent properly the extent of variation found in proteins. Deviations of single samples
are visualized in a scatter plot between measured and predicted proteins values (Figure 5C). Minerals
are known to have a poor relationship with NIRS but they presented similar SECV, SEC and SEP values
(respectively 0.46, 0.51, 0.38) and could be predicted with 87% of confidence with a good RPD value
of 2.52. Deviations of single samples are visualized in a scatter plot between measured and predicted
minerals values (Figure 5D).

The rz,,,ed values of starch, sugars, proteins and minerals are high enough to allow good
estimates of their contents. RPD between 3.90 and 4.11 for the starch and sugars models, also allow
good quantitative predictions to be made. Values above 2.5 for proteins are considered to be good
models (Williams, 2003) and the value here is above 6.0. The number of terms is also relatively low if
we consider a general recommendation of 1 factor for every 10 samples in a model (Table 3).

Models for starch, sugars, proteins and minerals present good potential but will need to be
further tested on independent samples. When SECV and SEP values differ significantly, this could be
an indication that too many samples (HT >3 = 21) were removed during the modeling process.

The models developed in the present study show good accuracy but it remains to be seen
whether larger sample sets will improve them to enable more precise prediction. When comparing
the performance of the new calibration models (with n=642 from different species), with the values
reported by Lebot et al. (2011) for taro with 245 accessions in the calibration set and only 58
accessions in the validation set, high r?,, and RPD values were confirmed. Determination coefficients
(rzp,ed) generally improve as the working range increases. Consequently, if more range is added in the
same model then it could improve coefficient values. Additionally, when different samples are
added, a larger spectroscopic diversity is described and, therefore, some samples might actually be
better spectrally described as the number of samples in the calibration set increases. However,
determination coefficients for the prediction set (rzp,ed) cannot reflect the whole situation because
the range of the 100 accessions values affects the coefficient values. These values change according
to the type and number of validation samples and it is necessary to consider the long term effects.
Errors of prediction values have been shown to have uncertainties and it is therefore recommended
to be cautious while reporting prediction errors because they may change according to the validation
set used (Sileoni et al., 2011). SEP is, therefore, a better overall indicator. A better sample selection
might be helpful by selecting, for example, on constituent concentration rather than a random
selection of numbers. Further work should concentrate on validating the results over different years.

The models for starch, sugars, proteins and minerals present potential for improvement if
more samples could be added. The protein content calibration is particularly interesting as it can be
further improved. Proteins content is usually estimated by multiplying the total N content by a
standard conversion factor of 6.25. However, the nitrogen to protein ratio does vary according to the
species considered and change with amino acid content and mineral nitrogen and non-protein
nitrogen. For the present study, we decided to present our results measured as total N as proteins. In
the future, it would of interest to improve the calibration models on the real protein content of taro
which vary according to amino acids. Once known, the values obtained by the Kjeldahl method could
be converted into more accurate measurements for NIRS calibrations on taro.

In taro breeding programs, mass selection results in the rapid accumulation of suitable genes
but has to be complemented with efficient screening techniques of hundreds of hybrids generated in
controlled crosses. Correlation coefficients between major constituents indicate that breeding for
increased DM and starch contents will reduce sugars, proteins and minerals. These correlations do
not present practical problems as “poor” quality varieties have been shown to present low DM and
starch and high sugars, cellulose, proteins and minerals (Lebot et al., 2011). Obviously, NIRS could
assist taro breeders in their choice and selection of the best genotypes, based on the chemical



composition requested by consumers by predicting simultaneously starch, sugars, proteins and
minerals on a single sample. As starch is significantly negatively correlated with the other three major
constituents, the simultaneous prediction of all four constituents allow for rapid estimation of the
variety chemotype and therefore its quality.

Taro is a diploid species but nothing is known on the segregation of these major constituents.
The problem is rather complex as these constituents are most likely controlled by many sets of
different genes and molecular tools can hardly be used for markers assisted selection and
conventional selection of parents for breeding or selection. NIRS offer interesting perspectives for
spectra assisted selection.

Abbreviations Used

SEC: standard error of calibration,

SECV: the standard error of cross-validation,

SEP: the standard error of prediction,

SEL: the standard error of the laboratory analysis,
2., : the determination coefficient for cross validation,
rz,,,ed the determination coefficient for prediction,
RPD: the ratio of performance to deviation.

H: Mahalanobis distance limit.

HT: number of outliers removed.

%DM.: percentage of dry matter.

CV%: coefficient of variation.
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Table 1. Descriptive statistics on 742 accessions

Spp Stats DM starch sugars cellulose proteins minerals
Dioscorea  min 12.35 58.78 0.40 0.10 4.40 1.58
n=135 max 52.44 90.40 18.30 6.30 21.00 8.10
mean 31.26 77.14 3.62 2.68 10.39 4.36
std 5.89 6.09 3.56 0.98 3.13 1.20
cv% 18.84 7.90 98.19 36.61 30.16 27.56
Manihot min 28.20 60.64 1.52 1.73 1.33 1.24
n=66 max 55.46 91.21 18.32 11.84 7.42 3.96
mean 37.82 85.23 5.07 3.78 2.77 2.53
std 5.08 5.76 3.06 1.96 1.15 0.54
cv% 13.43 6.76 60.35 51.81 41.55 21.33
Ipomoea min 11.62 52.15 1.49 2.39 2.67 1.35
n=227 max 53.29 83.83 25.29 15.80 9.97 8.22
mean 30.94 69.17 10.93 5.11 5.70 3.45
std 5.50 5.95 4.77 2.81 1.19 0.90
cv% 17.79 8.60 43.62 55.09 20.89 26.21
Colocasia min 19.51 44.96 0.21 1.40 2.13 1.47
n=314 max 53.74 89.46 28.05 7.30 14.79 8.85
mean 35.81 78.29 4.23 3.09 4.67 4.18
std 7.01 6.66 4.12 0.92 1.71 1.10
cv% 19.56 8.51 97.28 29.77 36.64 26.41
All spp. min 11.62 44.96 0.21 0.10 1.33 1.24
n=742 max 55.46 91.21 28.05 15.80 21.00 8.85
mean 32.21 75.91 6.25 3.69 5.85 3.84
std 6.42 7.97 5.20 2.06 2.96 1.16
cv% 19.93 10.50 83.25 55.70 50.56 30.22
Table 2. Correlation coefficients (Pearson (n-1)) for 742 accessions:
Variables DM starch sugars  cellulose  proteins
starch +0.425**
sugars -0.286** -0.798
cellulose -0.312%** -0.469 +0.451
proteins -0.183 -0.298 -0.058 -0.038
minerals -0.426%** -0.252 -0.147 +0.010 +0.336
Table 3. Statistical Parameters of the New Calibration and Validation Sets.
Calibration Validation
n =642 n =100
Constituents*
Mean SD SEL HT PLS r%, SECV SEC RPD |F,. SEP
% DM + H>3 terms
starch 7539 821 262 36 20 093 211 211 390|079 234
sugars 6.68 533 020 37 17 093 130 132 411 | 080 1.40
cellulose 3.82 217 0411 43 10 031 114 114 191 | 013 0.78
proteins 6.09 3.07 0.12 44 18 097 051 053 6.03 | 078 0.63
minerals 3.78 1.16 0.08 50 12 080 046 051 252 | 087 038

*starch, proteins, minerals in 800-2400, sugars in 1200-2400
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