Use of Vegetable Oils as Fuel in Combustion Engine: Engineering options

G.O.M. Vaïtilingom

M.F.M. Nogueira
SCOPE

• Introduction

• Vegetable oils as fuel for diesel engines

• Constraints to overcome

• Engineering options

• Example

• Engineering options for tomorrow
Introduction

Necessity of new fuels

Source: IEA 2008
Introduction

NECESSITY OF NEW COMING FUELS AROUND 2010 !!

AT THE ENGINEERING LEVEL, CAR MANUFACTURERS ARE CONSIDERING 2030 (with 20-30 % non fossil fuel)

TO DAY TARGET IS ONLY CO$_2$ REDUCTION
Introduction

The place of diesel and gasoline as unique liquid fuels for engines will decline soon.

Existing biofuels are:

- Ethanol ⇔ spark ignition engines (Brazil has made it famous worldwide)
- Vegetable oils pure and esterified ⇔ compression ignition engines
History of vegetable oils as fuel

SINCE NEOLITHIC PERIOD: 9000 before J.C.

BUT: APARITION OF PETROL LAMPS IN 1853
History of vegetable oils as fuel

Rudolf DIESEL (1858 – 1913)

1900 : test of some vegetable oils in his engine
Natural Crude, pure, neat,…Vegetable oils

• Characteristics close to diesel oil
 - LCV coconut oil: 41 MJ/kg
 - LCV Diesel oil: 44 MJ/kg
 - Density coconut oil: 0.92
 - Density Diesel oil: 0.83

• History:
 - Mr. Diesel himself in 1900
 - World War II
 - Banned from research in the 50’
 - interest renewed at the end of 70’
Overall performance

CONSUMPTION L/H
- Direct injection New Holland LM430

POWER OUTPUT kW
- Direct injection New Holland LM430

BRAKE THERMAL EFFICIENCY
- Direct injection New Holland LM430
Vegetable Oils as Fuel for Diesel Engines

Well known for their tendency for thermal or oxidative polymerisation… leading to carbon deposits.

Piston after 200 hrs. with diesel fuel at idle speed-no load
Piston after 21 hrs. with sunflower oil at idle speed-no load

WHY?
CONSEQUENCES (1)

Long term operation eventually leads to engine breakdown.

CARBON DEPOSIT

MECHANICAL DAMAGES

Injection pumps, rings, cylinder liner,...
CONSEQUENCES (2)

CARBON DEPOSITS valves, ...
CONSEQUENCES (3)

CARBON DEPOSITS nozzle,

Nozzle tip after 21 hours running on pure refined sunflower oil
Idle speed – no load
VEGETABLE OILS / DIESEL FUEL

\[CH_2\!-\!O\!-\!CO\!-\!R \]
\[CH\!-\!O\!-\!CO\!-\!R' \]
\[CH_2\!-\!O\!-\!CO\!-\!R'' \]

TRIGLYCERIDES > 90 %

HEATING VALUE : 35 - 41 (MJ/kg)
HEATING VALUE : 43 - 44 (MJ/kg)

DENSITY : 0.91 - 0.94 (20°C).
DENSITY : 0.83 (20°C).
CONSTRAINTS (1)

PHYSICAL CONSTRAINTS

VISCOSITY AT 40 °C:
- gazole < 5
- Crude Palm Oil = 38 (mm²/s)

SENSITIVITY to COLD COND.
- Beginnings of solidification

TEMPERATURE (°C):
- DIESEL : -35 °C
- RAPESEED : -11 °C
- Coconut Oil : +23 °C
Vegetable Oils as Fuel for Diesel Engines

Crude palm oil at 26°C; fractionating in two phases
CHEMICAL CONSTRAINTS

1. EVAPORATION OF DROPLETS at 630 °C
 At 440 °C, only Diesel is totally evaporated.

3. BAD PROPERTIES: siccativity
 (sunflower: yes, rapeseed oil: no)

2. MINOR COMPONENTS:
 GUMS, WAXES, ...

 • partial Glycerides (1 – 10 %)
 • Free Fatty Acids (0.5 – 5 %)
 • non-saponifiables, pigments... (0.5 – 2 %)

 • Phosphatides (0.1 – 1 %)

 • tocopherols

 • Sterols
Vegetable Oils as Fuel for Diesel Engines

Both physical and chemical constraints must be « overcome »

Making biodiesel (esterification) is a solution!
Reducing the viscosity is a necessity:

1. To keep a nominal flow rate in feeding line
2. To avoid mechanical damage on injection pumps (lack of lubrication due to high visco)
3. To keep an average droplet size and spray pattern respecting atomization conditions

Options:
1. Over sizing tubes, lines and filters
2. Not necessary with inline pumps and Bosch rotary type VE
3. Increasing opening pressure (bars: 150 ➔ 200 IDI; 220 ➔ 300 DI)
Vegetable Oils as Fuel for Diesel Engines

If vegetable oil temperature can be under 100°C => larger surface of filtration
If vegetable oil can become solid => heated filters and feeding lines
Vegetable Oils as Fuel for Diesel Engines

AC electrical heaters under and inside a coconut oil tank
Vegetable Oils as Fuel for Diesel Engines

Heating and filtration unit – coconut oil

2004 GENSET. 300KVA Power Station of ENERCAL (Utility)
New Caledonia
Vegetable Oils as Fuel for Diesel Engines

Heating and filtration unit – coconut oil

2004 GENSET. 300KVA
Power Station of ENERCAL (Utility)
New Caledonia
Vegetable Oils as Fuel for Diesel Engines

IDI: opening pressure 200 bars; DI opening pressure 300 bars
How to reduce viscosity?

- HEATING UP THE VEG OIL

GOOD! BUT TEMP. Must be > 120°C

COLD STARTING??

![Graph showing viscosity reduction with temperature increase]
How to reduce viscosity?

MIXING WITH A LESS VISCOUS FUEL (diesel fuel, Biodiesel, kero, …)

OVER 20%, heating up the mixture is a necessity

COLD STARTING ????

![Graph showing viscosity of different fuel mixtures at varying temperatures.](image-url)
Means to reduce viscosity are a necessity for technical reasons.

BUT: Unless the « additive » is chemically modifying the vegetable oil, there is no lowering in chemical constraints.

Vegetable oils do not distillate completely. Some part is not evaporated and polymerize on combustion chamber walls. Then pyrolysis is occurring leading to carbon deposit formation.

If the average temperature of the chamber is above 500°C then remaining veg oil is sublimating: combustion is complete and there is no carbon deposit.
Vegetable Oils as Fuel for Diesel Engines

Movies: evaporation of a droplet of mixture diesel fuel/refined rapeseed oil

- 1: pure diesel fuel @ 350°C
- 2: mixture 50/50 @ 350°C
- 3: mixture 50/50 @ 500°C
Vegetable Oils as Fuel for Diesel Engines

DIESEL FUEL 350°C

MIXT 50/50 350°C

MIXT 50/50 5 00°C
Vegetable Oils as Fuel for Diesel Engines

In conclusion:

1. Atomization conditions must be respected,

2. Average temperature of combustion chamber must be $> 500^\circ C$
Vegetable oils:

1. **In standard Diesel engines** by either:
 - adapting the “fuel” and making *Biodiesel* (esterification with methanol or ethanol).
 - using pure vegetable oils or mixtures under internal thermal conditions allowing their complete combustion (2- tank systems)
 - using IDI engines (Indirect injection system)

2. **In specifically designed engines** modified to burn vegetable oils at any percentage
Engineering Options

Vegetable oils:

1. In standard Diesel engines by either:
 - adapting the “fuel” and making Biodiesel (esterification with methanol or ethanol).
 - Viscosity is close to diesel fuel one → atomization
 - Distillation of Biodiesel is total (almost) (chemical structure is modified)
METHYL ESTER OF VEGETABLE OIL

Biodiesel Plant
Vegetable oils:

1. **In standard Diesel engines** by either:
 - adapting the “fuel” and making *Biodiesel* (esterification with methanol or ethanol).
 - using **pure vegetable oils or mixtures** under internal thermal conditions allowing their complete combustion using a 2- tanks system
 - using **IDI engines** (Indirect injection system)

2. **In specifically designed engines** modified to burn vegetable oils at any percentage
HOW IS IT POSSIBLE TO OBTAIN THE REQUESTED TEMPERATURE IN ORDER TO USE VEGETABLE OIL?

INDIRECT INJECTION: YES
As soon as engine at idle: $T_{moy} > 500 \, ^{\circ}C$

DIRECT INJECTION: YES, IF
Power output > 70 % of MAX.
If not NO!

PUISANCE MOTEUR

![Graph showing kW vs. tr/mn for different temperature ranges.](image)
SYSTEM OF DOUBLE CIRCUIT or 2 TANKS SYSTEM

KIT for 2-TANKS SYSTEM

Renault dci 270 Ch (2006)

Common Rail injection
SUNFLOWER OIL
SYSTEM OF DOUBLE CIRCUIT

Renault dci 270 Ch (2006)

BUT RUNNING ON SUNFLOWER OIL only WHEN LOAD > 65%
SYSTEM OF DOUBLE CIRCUIT or 2 TANKS SYSTEM

Genset 320 kVA – crude Palm Oil (2006)

BUT RUNNING ON PALM OIL only WHEN LOAD > 50 % => 160 kVA
EXAMPLE OF MIXTURES OF COCONUT OIL
in STANDARD DIRECT INJECTION ENGINES

BUT RUNNING ON CNO AT LOAD > 50 % => > 200 kVA

Cummins genset, 400 KVA, 10-20 % CNO in DIESEL FUEL

Savai’i EPC Power station, Samoa (2005)
EXAMPLE OF MIXTURES OF COCONUT OIL in STANDARD DIRECT INJECTION ENGINES

Figure 21: UNELCO Generators in Port Vila running on coconut oil fuel blend (Source: UNELCO)

4MW MAN 9L32/40 generators on blends fuel/coconut oil
UNELCO Port Vila – 2006
Coconut oil is mixed or not to diesel fuel according to the load. (similar to a 2 tank-system)

BUT RUNNING ON 15 to 20 % CNO only WHEN LOAD > 50 %
Engineering Options

Vegetable oils:

1. In standard Diesel engines by either:
 • adapting the “fuel” and making Biodiesel (esterification with methanol or ethanol).
 • using pure vegetable oils or mixtures under internal thermal conditions allowing their complete combustion (2-tank systems)
 • using IDI engines (Indirect injection system)

2. In specifically designed engines modified to burn vegetable oils at any percentage
INDIRECT INJECTION (IDI)

No modifications, only adaptation
Up to 100% vegetable oil.
Heat exchanger and/or mixture with diesel fuel to reduce vegetable oil viscosity
& Some settings
EXAMPLE

400 000 km with rapeseed oil (CIRAD)

SETTINGS

- injectors opening pressures: 200 bars

DIESEL INDIRECT INJECTION

IDI coconut oil powered car in PNG. (Atul Raturi, 2006)
CRUDE COCONUT OIL AS FUEL
IDI ADAPTED ENGINES

RURAL ELECTRIFICATION:

Coconut Oil as fuel (10 nuts = 1 litre equivalent Diesel Fuel)

* First place in the World to produce grid electricity with its own vegetable oil (April 2000).
Vegetable oils:

1. In standard Diesel engines by either:
 • adapting the “fuel” and making Biodiesel (esterification with methanol or ethanol).
 • using pure vegetable oils or mixtures under internal thermal conditions allowing their complete combustion (2-tank systems)
 • using IDI engines (Indirect injection system)

2. In specifically designed engines modified to burn vegetable oils at any percentage
Vegetable Oils as Fuel for Diesel Engines

Modification of pistons

Example of combustion chamber
Example of combustion chamber
Vegetable Oils as Fuel for Diesel Engines

In specifically designed engines

In specifically designed engines

Tractor Biocombustible Yumz D-65 M, Sunflower or soja

Vegetable Oils as Fuel for Diesel Engines

Tractor Yumz (Camagüey - Cuba)

Spare Piston

modified Piston
Vegetable Oils as Fuel for Diesel Engines

Example of a 60 kVA genset UFPA, Belém, Faculdade de Engenharia Mecânica

1st phase: 2 tanks system
Diesel fuel substitution in vol. ➙ 60%

2nd phase: use of additives to speed up the combustion kinetics

3rd phase: modification of pistons
Diesel fuel substitution ➙ 100%
UFPA, DIESEL DIRECT INJECTION

CRUDE SOYBEAN OIL or PALM OIL

1st phase

SYSTEM OF DOUBLE CIRCUIT or 2 TANK SYSTEM

Genset Cummins 60 kVA (UFPA, Brazil, 2009)

Running on Diesel Fuel from 0 to 30 kVA (load < 50%)

Running on pure vegetable Oil from 30 to 60 kVA (load > 50%)
3rd phase
3rd phase

Example of a modified combustion chamber
Investigation to undertake with HCCI (Homogeneous Charge Compression Ignition) engines + EGR (Exhaust Gas Recirculation). Example: NADI (Narrow Angle Direct Injection). Homogeneous combustion at low load and conventional diesel combustion at high load.

- High injection pressure (1600 b.) and fuel temp. (140°C) → good atomization
- Sophisticated electronic control of injection → can be adapted for 2 tanks system

Advantages:
- Low NOx and particulate at low load (HCCI mode with diesel fuel)
- Low NOx and particulate at high load (conventional mode with vegetable oils)
Thank you for your attention!
Muito obrigado!
Merci de votre attention!