Agritrop
Home

Data mining, a promising tool for large-area cropland mapping

Vintrou Elodie, Ienco Dino, Bégué Agnès, Teisseire Maguelonne. 2013. Data mining, a promising tool for large-area cropland mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 (5) : pp. 2132-2138.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_571503.pdf

Télécharger (682kB)

Quartile : Q1, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q1, Sujet : REMOTE SENSING / Quartile : Q2, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q2, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

Abstract : The northern fringe of sub-Saharan Africa is a region that is considered to be particularly vulnerable to climate variability and change, and it is a location in which food security remains a major challenge. To address these issues, it is essential to develop global data sets of the geographic distribution of agricultural land use. The objectives of this study were to test an original data mining approach for classifying and mapping the cropped land in West Africa using coarse-resolution imagery and to compare the classification results with those obtained from a classic ISODATA approach. The data mining approach is able to handle large volumes of data and is based on different descriptors (65) of the land use, including the spatial and temporal satellite-derived metrics of 12 MODIS NDVI 16-day composite images and the static attributes taken from field surveys. The classic ISODATA method showed that 68.3% of pixels from a SPOT reference map were correctly classified in three validation sites versus 57.8% for the data mining approach. Validation by field observations showed equivalent results for both methods with an F-score of 0.72. The results of this study demonstrated the relevance of the use of data-mining tools for large-area monitoring. (Résumé d'auteur)

Mots-clés Agrovoc : sécurité alimentaire, Télédétection, Analyse de données, Classification, Utilisation des terres, Terre agricole, Modèle mathématique, Cartographie, Distribution géographique, Zone climatique, Changement climatique, Imagerie par satellite, Image spot

Mots-clés géographiques Agrovoc : Afrique occidentale, Afrique au sud du Sahara

Classification Agris : U30 - Research methods
U10 - Computer science, mathematics and statistics
P31 - Soil surveys and mapping
E90 - Agrarian structure

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Vintrou Elodie, CIRAD-PERSYST-UPR SCA (REU)
  • Ienco Dino, LIRMM (FRA)
  • Bégué Agnès, CIRAD-ES-UMR TETIS (FRA)
  • Teisseire Maguelonne, LIRMM (FRA)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/571503/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-23 ]