Análisis de la dinámicas socio-ecológicas en las Cabeceras de Cuenca de los ríos Cautín y Bio-Bio

Informe sobre el Bosque Modelo Araucarias de Alto Malleco (Chile) para el Deliverable 2.5 “Socio-Ecological Dynamics”

Tarea 2.4
<table>
<thead>
<tr>
<th>Project</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project acronym:</td>
<td>EcoAdapt</td>
</tr>
<tr>
<td>Project full title:</td>
<td>“Ecosystem-based strategies and innovations in water governance networks for adaptation to climate change in Latin American Landscapes”</td>
</tr>
<tr>
<td>Grant agreement no.:</td>
<td>283163</td>
</tr>
<tr>
<td>Project web-site:</td>
<td>www.ecoadapt.eu</td>
</tr>
<tr>
<td>Document</td>
<td></td>
</tr>
<tr>
<td>Deliverable number:</td>
<td>2.5</td>
</tr>
<tr>
<td>Deliverable name:</td>
<td>Socio-ecological dynamics</td>
</tr>
<tr>
<td>Due date of deliverable:</td>
<td>2013</td>
</tr>
<tr>
<td>Actual submission date:</td>
<td>October 2013</td>
</tr>
<tr>
<td>Led beneficiary</td>
<td>CIRAD</td>
</tr>
<tr>
<td>Nature:</td>
<td>Working Paper (Case Study: BMCh)</td>
</tr>
<tr>
<td>Participating beneficiaries:</td>
<td>BMAAM, SEPADE, SEI, CATIE</td>
</tr>
<tr>
<td>Work Package no.:</td>
<td>2</td>
</tr>
<tr>
<td>Work Package title:</td>
<td>Filling knowledge gaps about the context</td>
</tr>
<tr>
<td>Work Package leader:</td>
<td>SEI</td>
</tr>
<tr>
<td>Work Package participants:</td>
<td>BMAAM, SEPADE, CIRAD, CATIE</td>
</tr>
<tr>
<td>Task N°</td>
<td>2.4</td>
</tr>
<tr>
<td>Task name:</td>
<td>Analysis of the social-ecological dynamics</td>
</tr>
<tr>
<td>Task leader:</td>
<td>CIRAD</td>
</tr>
<tr>
<td>Dissemination level:</td>
<td>Internal document</td>
</tr>
<tr>
<td>Version:</td>
<td>01</td>
</tr>
<tr>
<td>Draft/Final:</td>
<td>Final</td>
</tr>
<tr>
<td>Authors:</td>
<td>Lorena Vilugrón, Abigail Fallot, Jean-François Le Coq</td>
</tr>
<tr>
<td>Reviewers:</td>
<td>Tahia Devischer</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Integrated assessment, inter-linkages, drivers of change, social-ecological dynamics, ecosystem services, water resources management. Includes databases</td>
</tr>
</tbody>
</table>
Análisis de las dinámicas socio-ecológicas en las Cabeceras de las Cuencas del Imperial y del Bio Bio

Este documento analiza las dinámicas socio-ecológicas en las cabeceras de las cuencas del Imperial y del Bio Bio, respectivamente las comunas de Curacautín y de Lonquimay, que conforman el Bosque Modelo Araucarias de Alto Malleco.

La primera sección introduce al análisis. Presenta su contexto, su problemática y su objetivo, siempre en el marco del proyecto EcoAdapt.

La segunda sección explica cómo se desarrolló el análisis de las dinámicas socio-ecológicas en las comunas de Lonquimay y de Curacautín. Detalla el método PARDI (Problemática, Actores, Dinámica e Interacciones) y presenta entonces el trabajo de campo realizado para llegar a la construcción de modelos conceptuales PARDI.

La tercera sección presenta los resultados, en términos de problemática compartida; de caracterización y ubicación de los actores y los recursos participando de esa problemática; de representación de las principales dinámicas e interacciones que vinculan esos actores y recursos.

La cuarta sección del informe está dedicada a reflexionar sobre las principales amenazas percibidas en las comunas de Curacautín y de Lonquimay para la adaptación al cambio climático basado en servicios ecosistémicos.

La conclusión del informe destaca los principales insumos de la tarea 2.4 para los pasos siguientes del proyecto EcoAdapt.
Contenido

Índice de tablas .. 5
Índice de las ilustraciones ... 5
Agradecimientos .. 6

1. Introducción .. 7
1.1 El territorio del Bosque Modelo AAM y sus dos cabeceras de cuenca 7
 1.1.1 Lonquimay, donde nace el Río Bio-Bio ... 7
 1.1.2 Curacautín, donde nace el Río Cautín (llamado Imperial río abajo) 7
1.2 Contexto del análisis de las dinámicas socio-ecológicas ... 7

2. Desarrollo del análisis .. 10
2.1 Co-construcción de los modelos conceptuales PARDI .. 10
 2.1.1 La metodología PARDI .. 10
 2.1.2 Actividades para la construcción de los modelos PARDI 12
2.2 Limitantes metodológicas .. 14

3. Resultados ... 15
3.1 Problemática .. 15
 Agua para uso residencial ... 15
 Agua para uso silvoagropecuario .. 17
 Agua para piscicultura .. 21
 Agua para el desarrollo del turismo .. 22
 Agua para generación de energía ... 23
 Normativa que regula el acceso al recurso .. 25
3.2 Actores y recursos .. 27
 3.2.1. Actores ... 27
 3.2.2 Recursos .. 44
3.3 Dinámicas e interacciones .. 46
 3.3.1 Enfoque biofísico .. 46
 3.3.2 Enfoque legal ... 58
 3.3.3. Integrando ambos enfoques: los principales problemas abordados en la modelacion PARDI ... 69
3.4 Análisis complementarios .. 71

4. Los impactos del cambio climático .. 75
4.1 Las amenazas del Cambio Climático .. 75
 4.1.1 Por los cambios en las precipitaciones y las temperaturas 75
4.2 Incertidumbres principales .. 78
 Código Minero .. 78
 Derechos de Agua, anteriores al Código de Agua .. 79
 Situación del agua subterránea .. 80
 Centrales de pasada .. 80
 Calidad de Agua ... 80

5. Conclusión ... 81

Referencias bibliográficas ... 82

Anexo: Lista de acrónimos ... 84
Índice de tablas

Tabla 1: Principales insumos para el análisis de las dinámicas socio-ecológicas en el BMAAM 8
Tabla 2: Clientes Aguas Araucanía conectados a Red de Agua Potable y Alcantarillado 28
Tabla 3: Sistemas de Agua Potable Instalados, comuna de Curacautín y Lonquimay 30
Tabla 4: Número de propietarios por superficie agropecuaria .. 31
Tabla 5: Derechos de Agua Asignados para riego .. 32
Tabla 6: Número de explotación con riego en Curacautín .. 32
Tabla 7: Explotaciones con sistemas de riego y superficie, comuna de Lonquimay 33
Tabla 8: Número de empresas de servicios turísticos, en Curacautín y Lonquimay 35
Tabla 9: Total de derechos de aprovechamiento otorgados en Curacautín y Lonquimay 38
Tabla 10: Total de derechos de aprovechamiento otorgados en Curacautín y Lonquimay 39
Tabla 11: Equivalencias de requerimiento de agua por actividad ... 62
Tabla 12: Empresas Hidroeléctricas con aguas inscritas, comunas de Curacautín y Lonquimay 67
Tabla 13: Total derechos otorgados y pago de patentes, comunas de Curacautín y Lonquimay 68
Tabla 14: Costos asociados a la inscripción de agua ... 73
Tabla 15: Tendencia de las precipitaciones comuna de Curacautín ... 76

Índice de las ilustraciones

Ilustración 1: Marco analítico de las dinámicas socio-ecológicas .. 9
Ilustración 2: Ajustes del método PARDE en EcoAdapt ... 12
Ilustración 3: Superficie Silvoagropecuaria Comuna de Curacautín ... 18
Ilustración 4: Superficie Silvoagropecuaria Comuna de Lonquimay .. 20
Ilustración 5: Capacidad Instalada Sistemas Interconectados .. 24
Ilustración 6: Mapa ubicando captaciones de agua para riego, Comuna de Curacautín 33
Ilustración 7: Mapa ubicación de captaciones de agua para riego, Comuna de Lonquimay 34
Ilustración 8: Mapa ubicando pisciculturas, comuna de Curacautín .. 38
Ilustración 9: Recursos Cuenca del Imperial: Comuna de Curacautín ... 45
Ilustración 10: Recursos Cuenca del Bio Bio: Comuna de Lonquimay .. 45
Ilustración 11: Modelo Biofísico Cuenca del Imperial, Comuna de Curacautín 46
Ilustración 12: Modelo Biofísico Cuenca del Bio Bio, Comuna de Lonquimay 47
Ilustración 13: Modelo Legal Cuenca del Imperial, Comuna de Curacautín 59
Ilustración 14: Modelo Legal Cuenca del Rio Bio Bio, Comuna de Lonquimay 60
Ilustración 15: Uso de derechos de aprovechamiento, Cabecera Cuenca del Bio Bio 65
Ilustración 16: Uso de derechos de aprovechamiento, Cabecera Cuenca del Cautín 65
Ilustración 17: Números de derechos de aprovechamiento no consuntivo otorgados, distribuidos por rango de caudales (litros/segundo), para las comunas de Curacautín y Lonquimay 67
Agradecimientos

Al Equipo de Bosque Modelo Araucarias Alto Malleco y SEPADE, en especial a Diego González, Washington Alvarado, Claudio Sandoval, Samuel Cayul, Marco Sepúlveda, Sergio Arévalo y Verónica Aedo, por el apoyo y acompañamiento constante para la realización de todas las actividades de recogida de datos en el territorio, por sus aportes a la construcción de conocimiento, por compartir sus experiencias y por dedicar el tiempo que fuese necesario para mejorar el trabajo realizado.

A todos quienes nos brindaron datos valiosos para guiar nuestro trabajo: Elisa Ruedi, Pamela Marín, Richard Cifuentes, César González, Eduardo Fuentes.

A todos, muchas gracias por sus contribuciones, reflexiones y entusiasmo.
1. Introducción

1.1 El territorio del Bosque Modelo AAM y sus dos cabeceras de cuenca

En el este de la novena región, Sur de Chile, el territorio del Bosque Modelo Araucarias de Alto Malleco (BMAAM) ocupa una superficie total de 557.800 hectáreas, abarcando las comunas de Curacautín y Lonquimay, separadas por la cordillera de las Raíces pero vinculadas por rutas y desde los años 1930’s, el túnel "Las Raíces". Poblado en parte por Mapuches, el BMAAM se caracteriza por sus paisajes de volcanes, serranías y múltiples cuerpos de agua, así que por la presencia de Araucarias (Araucaria araucana), o Pehuén como lo llaman los Pehuenches, árbol milenario y fuente alimenticia (por los piñones), instituido monumento natural en los 1970’s. Las actividades tradicionales en la región, ganaderas y forestales, enfrentan la necesidad de proteger esos recursos. Otras actividades, en la agricultura, la piscicultura y el turismo, tienen dificultades en desarrollarse, dejando la Araucanía con una alta incidencia de la pobreza. La migración estacional al Norte del país que tiene más dinamismo económico, genera ingresos adicionales.

1.1.1 Lonquimay, donde nace el Río Bio-Bio
Fronteriza con Argentina, la comuna de Lonquimay tiene un clima de la estepa patagónica marcado por inviernos duros. Los suelos son pobres, con 4 micro cuencas, cruzadas de Sur a Norte por el Río Bio-Bio, e incluye a su nacimiento en dos lagos. Durante el verano, comunidades generalmente Mapuches, llevan su ganado a las veranadas y viven allí hasta la cosecha de piñón y la llegada del frío.

1.1.2 Curacautín, donde nace el Río Cautín (Llamado Imperial río abajo)
En la vertiente occidental de la Cordillera de Las Raíces, la comuna de Curacautín esta conformada por 2 micro cuencas, en donde se produce el nacimiento del Río Cautín, correspondiente a la cabecera de la gran cuenca del Río Imperial. Menos alejada de la costa que Lonquimay, la comuna de Curacautín tiene más actividades económicas y comerciales. Hasta los años 1970’s, la comuna de Curacautín ha sido un importante polo de actividades forestales, pero sufre hoy en día también de dificultades en desarrollarse.

1.2 Contexto del análisis de las dinámicas socio-ecológicas

En mayo 2012 durante el taller de Concepción, Bolivia, dedicado a preparar las actividades de investigación-acción del proyecto EcoAdapt y su paquete de trabajo WP2, el equipo representando el BMAAM1 explicitó su visión a 10 años para el territorio.

1 Sergio Arévalo, Jenia Jofré Canobra, Pablo Labrín, Claudio Sandoval.
Visión

- Los habitantes del territorio tienen las capacidades y herramientas para participar en la toma de decisiones y trabajan unidos para proveer el desarrollo local basado en el manejo sustentable de los Recursos Naturales.

- BMAAM articula actores y contribuye a generar conocimiento e incidencia en escalas local, regional y nacional, para la toma de decisiones en relación al uso y manejo de los recursos agua y suelo en el contexto de cambio climático.

Fuente: EcoAdapt WP1 - Informe Semana II, Mayo 2012

Para contribuir a hacer de esa visión una realidad, se llevó varios estudios que permiten conocer mejor el territorio y sus características biofísicas o socio-económicas (cf. Tabla 1). Este proceso de llenar los vacíos de conocimiento se apoya sobre diversos procesos de recolección de datos y de análisis llevados por el BMAAM y SEPADE.

Con el propósito de construir sobre el conocimiento existente, el análisis de las dinámicas socio-ecológicas empezó por reconocer los trabajos realizados y sus posibles insumos.

Tabla 1: Principales insumos para el análisis de las dinámicas socio-ecológicas en el BMAAM

<table>
<thead>
<tr>
<th>Autor y fecha</th>
<th>Tema central</th>
<th>Insumos para la tarea 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAAM</td>
<td>Términos de referencia WP2 (D 2.3)</td>
<td>Objetivos, y preguntas de investigación</td>
</tr>
<tr>
<td>Melissa Cuevas, oct.2012</td>
<td>Análisis socio-económico BMAAM</td>
<td>Datos socio-económicos</td>
</tr>
<tr>
<td>Lorena Vilugron, nov. 2012</td>
<td>Informe Final: “Llenando vacíos de conocimiento sobre el Contexto: Análisis de los conocimientos y experiencias en relación al Cambio Climático y sus impactos en el Territorio BMAAM</td>
<td>Encuestas</td>
</tr>
<tr>
<td>Alejandra Real, dic 2012</td>
<td>Reporte resumen mini-taller BMAAM</td>
<td></td>
</tr>
<tr>
<td>Sergio Arévalo, dic. 2012</td>
<td>Informe</td>
<td>Código de Aguas</td>
</tr>
<tr>
<td>Vignola et al., 2013</td>
<td>D2.4 Análisis del contexto socio-institucional</td>
<td>Mapeo de actores, elementos de problemática</td>
</tr>
</tbody>
</table>

El análisis de las dinámicas socio-ecológicas constituye la tarea 2.4, la última del paquete de trabajo dedicado a llenar los vacíos de conocimiento para el análisis del contexto en el cual se quiere implementar medidas de adaptación al cambio climático.

En resumen, se trata de definir y caracterizar el socio-ecosistema conformado por las cabeceras de cuenca de los ríos Imperial y Bio Bio, aclarando cómo se vinculan los componentes sociales, económicos y ecológicos del territorio.

Como propuesto en el documento del proyecto EcoAdapt (DoW, 2011) y especificado en el documento marco del WP2 y la nota de trabajo por Le Coq & Fallot (2012), la tarea 2.4 trata de "entender las interacciones entre los actores (caracterizados por sus intereses, capacidades, etc.... así como sus estrategias) y las dinámicas de los ecosistemas, usando un marco analítico dinámico donde los actores influyen sobre los dinámicas de los ecosistemas a través de acciones y prácticas, y donde los actores son afectados por los resultados económicos y sociales de sus acciones así como la evolución de
los servicios ecosistémicos. Se tratará también de identificar los factores externos (oportunidades y amenazas) a los sistemas, que afectan la situación y la toma de decisión de los actores, así como los factores biofísicos que pueden afectar el funcionamiento de los ecosistemas (en particular ligados a Cambio Climático).

Ilustración 1: Marco analítico de las dinámicas socio-ecológicas

El BMAAM y SEPADE precisaron en sus términos de referencias (cf. EcoAdapt D2.3) el objetivo general de "Conocer las dinámicas actuales e históricas en la dimensiones social-ecológica en la zona de influencia de BMAAM." Para alcanzar los objetivos planteados, la tarea 2.4 se implementa en tres fases sucesivas:

- de mayo 2012 a abril 2013, una fase preliminar de insumos iniciales (cf. Tabla 1) y de ajustes metodológicos;
- de abril a octubre 2013, una fase central de desarrollo del análisis sistémico presentado en el presente informe;
- a partir del segundo semestre del 2012, una fase complementaria constituida por varios estudios biofísicos.

El presente informe presenta el análisis llevado hasta octubre 2013.

2. Desarrollo del análisis

2.1 Co-construcción de los modelos conceptuales PARDI

2.1.1 La metodología PARDI\(^2\)

PARDI, originalmente ARDI, es un método de modelación conceptual enfocado en representar cómo se vinculan diferentes procesos en los cuales se encuentran los actores y los recursos de un mismo territorio ligados en una misma problemática de gestión de recursos naturales. El nombre del método es explícito, constituido por las iniciales de sus pasos sucesivos: P de Problemática; A de Actores; R de Recursos; D de Dinámica; I de Interacción.

El método ARDI fue desarrollado en los años 1990's y 2000's por un colectivo pluridisciplinario de investigadores (Etienne et al., 2009) trabajando en modelación de acompañamiento, un tipo de modelación participativa donde el investigador se implica en el proceso de decisión colectiva. La modelación de acompañamiento considera las interacciones de actores con diferentes pesos o importancias y diversas representaciones. Pide a los actores explicar sus enfoques, sus hipótesis, cf. guía PARDI (Fallot, 2013). Modelos ARDI o PARDI se desarrollan previamente a la elaboración de modelos informáticos multi-agentes, en casos de: reserva de biosfera (creación, revisión); conservación de ambientes abiertos o mantenimiento de praderas; sensibilización (poblaciones locales al manejo de barbechos, políticas para la prevención de incendios), etc.

PARDI es un proceso de modelación, de representación simplificada de la realidad como la percibe un grupo de actores involucrados o concernidos por un tema de gestión de recursos naturales. Resulta en diagramas con etiquetas y flechas. Varios diagramas para una misma problemática en un territorio pueden corresponder a varios elementos de la problemática (por porción del territorio: cuenca alta, media y baja por ejemplo) o a varios puntos de vista. De varios diagramas, siempre se busca llegar a uno solo y evidenciar las interrelaciones. PARDI es también un proceso de generación de información y discusión de la misma, por lo tanto da lugar a un análisis a partir de esa información, con la condición de aprovecharla y profundizar siempre el entendimiento de los vínculos entre actores y el ambiente que los rodea, siempre en relación a la problemática.

PARDI procede por paso, cada cual corresponde a las letras P de Problemática; A de Actores; R de Recursos; D de Dinámica; I de Interacción. Para cada paso se plantea una pregunta, un resultado esperado u objetivo y comentarios o consejos (cf. presentación en abril 2013 por Le Coq & Fallot con Aguilar, Vilugrón o Rixen) con la posibilidad de referirse a ejemplos (material de Etienne, 2011 disponible en la Dropbox).

\(^2\) La sección 2.1.1 es idéntica en los dos informes D2.5-BMCh y D2.5-BMAAM.
P de Problemática

Resultado esperado: una problemática de intervención que define la pregunta de trabajo y los objetivos específicos de la intervención con respecto a la decisión colectiva y al desarrollo de conocimiento.

- la pregunta que podrá contestar el modelo, debe corresponder a una demanda social, a un problema percibido por los actores.
- se formula en términos entendibles por todos los actores
- definición de la pregunta y la identificación clara del objetivo del acompañamiento deben de construirse en el marco de un diálogo implicando los actores.

A de Actores

Pregunta: ¿Cuáles son los actores principales interactuando en este territorio con respecto a la problemática?

Resultado: identificación de los actores concernidos directamente o indirectamente por la problemática o pregunta.

Comentarios: pensar en la relevancia de la problemática. Ajustar el nivel de precisión de la tipología de actores utilizada con respecto a esa problemática.

R de Recursos

Pregunta: ¿Cuáles son los principales recursos de la cuenca/del territorio y los indicadores claves para la problemática definida?

Resultado: un diagrama de los recursos del territorio

Un recurso es un bien o un producto utilizado por un actor en el territorio. Los recursos se pueden agrupar en categorías, según el nivel de entendimiento que requiere la problemática: infraestructura, agua, piedra, vegetal, animal. Hay obligatoriamente una relación con un actor: si un organismo o una materia prima no se usa, ni se protege por nadie, entonces no se considera como un recurso.

D de Dinámica

Pregunta: ¿Cuáles son los principales procesos que afectan la situación con respecto a la problemática?

Formato de las respuestas: flechas con palabra (evento, actividad u otro proceso...).

Un proceso puede ser social, económico o ecológico (cambios de estado, crecimiento vegetal, ciclo agronómico, dinámica de población de un ganado, frecuencia de incendio, procesos que afectan la circulación del agua (infiltración, sedimentación...)). Esa etapa sobre las dinámicas es particularmente esencial para precisar los aspectos ecológicos de la problemática.

I de Interacción

Pregunta: cómo utiliza cada actor los recursos y modifica las dinámicas? Cómo los actores interactúan?

Formato de las respuestas: flechas con verbo y posiblemente indicador.
Este paso es generalmente la fase más interesante del proceso PARDI. Para sacar provecho de la riqueza de este paso, es esencial conservar el histórico de la construcción de los cuatro diagramas.

AJUSTES

El punto de ser participativo es tanto de facilitar el entendimiento por todos de una misma representación conceptual como de aprender compartiendo información, datos, actualizaciones. La participación reside en el diálogo ciencia-sociedad que acompaña el proceso de modelación. Ese diálogo se puede llevar a cabo de diferentes formas, según los espacios de participación. El formato taller se recomienda por el principal autor del método, en su guía donde sugiere llevar todo el proceso con talleres (Etienne, 2009). Existen casos de procedimientos diferentes, por ejemplo Mathevet et al. (2011) realizaron un PARDI por encuestas individuales. En EcoAdapt, se hizo los ajustes necesarios, tomando en cuenta por ejemplo que se había consultado recientemente a los actores, entre otros sobre los problemas que percibían en tema de gestión del agua y que era necesario reconocer los insumos así generados antes de convocar nuevamente a los actores. También se tomó en cuenta la dificultad de acceso a los lugares de reunión o de encuesta. Por lo tanto, se juntaron e implementaron los pasos A y R, y D e I, como presentado por la Ilustración 2 y explicado en mayor detalle en la sección 2.1.2

Ilustración 2: Ajustes del método PARDI en EcoAdapt

2.1.2 **Actividades para la construcción de los modelos PARDI**

La primera actividad consistió en identificar los actores que participarían de dicho proceso, para lo cual se definió que debían cumplir con el siguiente perfil:

1. Ser participativo y reflexivo
2. Ser validado en su propio grupo y entorno
3. Integrar distintos espacios y saberes
4. Tener tiempo y compromiso

La construcción de los modelos de las dinámicas socio ecológicas en las cabeceras de cuencas de los ríos Imperial y Bio Bio, se realizó siguiendo del método PARDI que permitieron comprender el contexto y las relaciones entre los distintos elementos que componen el sistema socio-ecológico, y cómo estos influyen en la disponibilidad de agua en el territorio; lo que resultó en modelos explicativos. Siguiendo estos criterios y a través previo análisis bajo el WP2 (D 2.4), se invitó a actores de ambas cuencas y se conformó dos grupos denominados “agentes de cambio”, para las comunas de Curacautín y Lonquimay.

El paso P, se inició con la identificación de las principales demandas e inquietudes expuestas por actores locales de ambas cuencas, en entrevistas y actividades grupales realizadas en el marco del proyecto EcoAdapt lo que permitió definir preliminarmente una serie de preguntas de trabajo que respondería el modelo. Luego, con preguntas tentativas y con la información recopilada analizada, se determinó la problemática. Es este proceso participaron actores pertenecientes al Bosque Modelo y luego fue validada con los agentes de cambio de ambas cuencas en una primera reunión realizada por separado en las comunas de Curacautín y Lonquimay.

Para el desarrollo de los siguientes pasos (A, R, D e I) se planificaron reuniones de trabajo con los agentes de cambio en ambas comunas. Para pasos A y R se presentó a los actores y recursos organizados por actividad productiva o doméstica (uso doméstico, uso silvoagropecuario, uso acuícola, uso hidroeléctrico). Este listado fue elaborado luego de una revisión previa de la información secundaria y de los estudios realizados, como mapeo de actores, en el marco del Deliverable 2.4. Todo esto fue presentado en la reunión con los agentes de cambio, quienes fueron interviniendo, con el fin de especificar la labor de cada actor en relación a la disponibilidad de agua e identificar el recurso asociado. Esto permitió avanzar en el análisis y comprensión de las interacciones entre actores y recursos.

A partir de esta actividad se trabajó en un primer modelo presentado por uso del agua, para ambas cuencas. Sobre esta base se trabajó en el paso D. Para la identificación de las dinámicas, se solicitó a ambos grupos que respondieran a la pregunta: ¿Qué procesos relevantes han provocado cambios en el territorio en relación a la disponibilidad de agua?

Las respuestas fueron entregadas por cada actor, quienes las fueron presentando y aportando información para respaldarla, lo que permitió generar retroalimentación entre los actores presentes y debates frente a temas controversiales en el territorio. Esto sirvió como una fuente importante de información para ajustar cada dinámica e interacción. Los datos aportados por los agentes de cambio fueron complementados con información secundaria, relacionada a reportes estadísticos de censos de población y agropecuarios, catastros de clima y caudales, y estudios de las distintas temáticas identificadas. Estos documentos constituyeron insumos para la construcción de biofísicos y legales.
Dada la naturaleza de las dinámicas e interacciones que se discutieron con los agentes de cambio, se decidió elaborar un modelo biofísico y un modelo legal, cuya construcción fue presentada y validada por los profesionales del Bosque Modelo y luego, trabajada con los mismos agentes de cambio.

Para la etapa de análisis y validación de los modelos con los agentes de cambio se utilizó una metodología más dinámica y participativa. Esta consistió en crear etiquetas donde se identificaban actores, recursos y dinámicas, y se solicitó a cada participante que indicara las interacciones por medio de cintas de colores, que indicaban ya sea extracción, manejo o contaminación, y que además, tenía diferentes anchos para diferenciar intensidad de cada uso. Esta actividad permitió la co-construcción de los modelos, donde se trabajó sin considerar los modelos que habían sido construidos antes, para no interferir en la labor e intercambio de los actores. Como resultado, se obtuvieron dos modelos en cada cuenca, uno biofísico y uno legal, que fueron casi idénticos a los elaborados anteriormente.

2.2 Limitantes metodológicas

La co-construcción de los modelos se realizó respetando el orden de los pasos P,A,R,D e I, a manera de no interferir en la correcta aplicación de la metodología, lo cual permitió un ordenamiento sistemático de la información, excluyendo aquella que era irrelevante para la problemática.

Sin embargo, esta rigurosidad en la co-construcción dificultó la presentación de los resultados, puesto que todas las etapas del proceso (P,A,R,D e I) se interrelacionan y por tanto, ciertacierta información de cada uno se repite en cada descripción. Esto se visualizó cuando en la identificación de dinámicas (D) se evidenciaba la posibilidad de incorporar nuevos actores, que hacían retroceder hacia el paso A, reincorporar o analizar información que ya había sido trabajada Y, una vez que se finalizaban los pasos, se tenía redundancia de información, lo que se tradujo en un retraso para la correcta presentación de los resultados en los informes, y que mucha de esta tuviera que incorporarse en cada capítulo.

Esto se visualizó, además, en el trabajo con los actores locales, que participaron de la co-construcción, puesto que los pasos se realizaron en tres sesiones (P, AyR, D e I), en cada una de las cuales se retomaba la información, y muchas veces se discutía sobre la misma información de la sesión anterior, no permitiendo la posibilidad de nuevos análisis y retrasando el trabajo; porque además, muchos de los temas eran sensibles para los actores, muy difícil de excluir de los debates. Muy por el contrario de lo que podría pensar en cuanto a la posibilidad de profundizar el análisis e incluir detalles que podrían no haberse vislumbrado en sesiones anteriores, muchas de las posturas de los agentes de cambio eran muy difícil de cambiar y por tanto las opiniones al cabo de dos sesiones eran repetitivas.
3. Resultados

3.1 Problemática

El territorio que comprende el Bosque Modelo Araucarias del Alto Malleco (BMAAM), ocupa una superficie total de 557.800 hectáreas, abarcando las comunas de Curacautín y Lonquimay. La diversidad de sus recursos naturales constituyen sus potencialidades productivas, que han propiciado el desarrollo de diversas actividades económicas que demandan agua, las que constituyen una fuente de análisis en torno a los impactos que estas tienen en la disponibilidad de los recursos hídricos.

Para los grupos impulsores (agentes de cambio) de las comunas de Curacautín y Lonquimay, el aumento en la demanda de agua es una consecuencia del sostenido crecimiento económico y desarrollo social que se ha experimentado a nivel nacional y que tiene repercusiones a nivel local; que se caracteriza por el desarrollo en diferentes sectores económicos que requieren mayores volúmenes de agua, por el mejoramiento de los estándares de vida de la población y por la tecnificación de la agricultura, todo lo cual sucede en un contexto donde los recursos hídricos de ambas comunas se encuentran legalmente comprometidos. (Grupo de agentes de cambio Curacautín y Lonquimay, 2013)

Antes de continuar, es importante señalar que dada la naturaleza de estas actividades, los requerimientos de agua se distinguen según el uso que se quiera hacer, diferenciándose en extractivos (o consuntivos), cuando quién la utiliza está facultado para consumirla o extraerla desde su fuente de origen; en no extractivos (o no consuntivos), que permiten el uso del agua sin consumirla y, por tanto, obligan a quién la utilice a restituirlo en iguales o similares condiciones a las iniciales; e in situ, donde el uso del agua es para fines recreacionales, de navegación, escénicos, ambientales, y muy especialmente como receptor de efluentes contaminados de origen doméstico, industrial o minero. Luego de esta distinción, a continuación se contextualizan los usos del agua, a partir de la descripción de las actividades domésticas y productivas presentes en el territorio, que permitirá precisar la información para identificar la problemática.

Agua para uso residencial

El sector sanitario corresponde a la producción y consumo de agua potable y no potable para uso doméstico, y el tratamiento de aguas residuales generadas por la población. En tanto, la demanda de agua para uso doméstico incluye a usuarios urbanos y rurales, residentes de ambas cuencas, y población estacional, que no son residentes de la cuenca pero que se abastecen de los recursos hídricos en ciertos periodos del año.

De los residentes, que correspondían a un total de 26 946 personas en el 2009, 10 981 (40,7%) provienen de zonas rurales y 15 965 (59,3%) viven en zonas urbanas; mientras que se estima que la población estacional, que corresponde principalmente a turistas, en 2009, fue de 34942 pernoctaciones, entre los meses de diciembre y febrero. (INE, 2009)

En el sector urbano, la producción de agua potable para uso residencial e industrial incluye el proceso de captación, potabilización y distribución, a cargo de una empresa privada, que para las
comunas de Curacautín y Lonquimay, es Aguas Araucanía S.A. Las fuentes corresponden a aguas superficiales y subterráneas. Según información aportada por la Superintendencia de Servicios Sanitarios, al año 2011 el 100% de las viviendas ubicadas en zonas urbanas de Curacautín y Lonquimay (5 057 y 1 231, respectivamente) se encuentra conectada a la red de agua potable, (Aguas Araucanía, 2011), lo cual representa un aumento de la cobertura del 22% respecto al año 2004 (SISS, 2004).

Respecto de la demanda, Aguas Araucanía S.A.(2011) señala que el gasto promedio de agua potable en la Región de La Araucanía en 2011 fue de 14,5 m³/año por cliente, lo que permite estimar un consumo diario por persona de 193,3 litros en Curacautín y 179,1 litros en Lonquimay, y que en conjunto representan un aumento del 4% en el consumo de agua respecto del año 2004 (Aguas Araucanía, 2011). Cabe señalar que estos valores varían según la época del año. Al respecto, la Superintendencia de Servicios Sanitarios (2011) señala que a nivel regional, el consumo aumenta en un 23% en el periodo estival y disminuye en un 11,7% en el periodo de invierno, según datos del año 2010 (SISS, 2011).

Para los actores locales, el aumento en el consumo de agua se explica por dos factores: las políticas de mejoramiento en el acceso de agua potable que ha permitido que la totalidad de la población urbana cuente con este producto sanitizado y distribuido en cada uno de los hogares, y que además cuenten con instalaciones que contribuyen al “derroche” del recurso, como lavadoras automáticas, cafeteras y llaves en cocina y baño, estanque del inodoro, calefactores de agua para la ducha, entre otros; y por otro, la población estacional, que se concentra en el periodo estival, y que en el marco de las políticas de fomento al turismo como eje productivo para el sector cordillerano de la región, a partir del año 2000, se registra un incremento en el ingreso de turistas al territorio de un 594% entre los años 2001 y 2009. (INE, 2001, 2009)

En el sector rural, la Dirección de Obras Hidráulicas (2010) estima que el consumo promedio de agua para fines domésticos en la región de la Araucanía es 118,7 litros por persona. La demanda de agua de este sector, en ambas cuencas, se cubre a través de organizaciones llamadas Asociaciones de Agua Potable Rural (APRs), que son financiadas por la institucionalidad pública o a través de captaciones que realizan usuarios de manera particular, con recursos propios.

Bajo la primera modalidad (financiación por la institucionalidad pública), se conforman organizaciones de usuarios potenciales que habitan en comunidades concentradas, semiconcentradas o dispersas, y postulan al Programa de Agua Potable Rural, que es financiado por la institucionalidad pública, y permite el abastecimiento de agua a cada una de las viviendas. Actualmente, en la comuna de Curacautín se encuentran establecidos 7 Sistemas de APR e igual número en la comuna de Lonquimay, las cuales son administradas por sus respectivos Comités. En total benefician a unas 1207 viviendas, que equivale a alrededor del 36% de la población rural (DOH, 2013).

Según lo indica la DOH (2011) a la fecha se encuentran cubiertas las demandas de agua potable rural para población concentrada. El desafío es dar respuesta a las solicitudes de poblaciones semi concentradas y dispersas. Al respecto, se encuentran en etapa de prefactibilidad, un proyecto de instalación de agua potable rural en Curacautín, para los sectores Río Blanco-Manchuria, que abastecerá de agua a 68 familias (es decir, unos 327 habitantes) y dos en Lonquimay: el primero en el sector Cruzaco, donde serán abastecidas 90 viviendas (358 habitantes) y Huallen Mapu, Marimenuco y
Galletué, que cubrirá la demanda de agua de 117 viviendas (507 habitantes). Además, se está trabajando en ampliaciones en localidades que cuentan con sistemas, que son: Mallín del Treile en Lonquimay y Malalcahuello, en Curacautín.

Bajo la segunda modalidad (financiación propia), la vivienda, de forma particular, extrae agua desde alguna fuente superficial o subterránea y realiza algún tratamiento de cloración al agua. Bajo esta modalidad no existe concesión de una empresa sanitaria o regulación de la calidad por parte de alguna institución vinculada. A partir de los datos de población rural y cobertura de agua potable rural (DOH, 2013), se estima que la población que se encuentra en este grupo, para las comunas de Curacautín y Lonquimay, es de unas 6 364 personas, es decir, un 57,9% de la población rural total.

Para los actores locales, los problemas de disponibilidad de agua para los sectores rurales del territorio se visualizan en ambas comunas durante los meses de verano, donde camiones aljibe se encargan de distribuir agua. Según los actores, el problema se acentuará en el próximo periodo estival, ya que se presume que la disminución de las precipitaciones de nieve este invierno, que constituyen la reserva de agua, tendrá como consecuencia la disminución de disponibilidad de agua para consumo, lo que podría acentuarse a largo plazo.

A nivel institucional, la Estrategia Nacional de Recursos Hídrico (2012), considera relevante abastecer de agua potable a las comunidades rurales semiconcentradas, lo cual es abordado también en el Plan Araucanía, que busca entre sus objetivos cubrir la demanda de estos sectores al año 2014.

Agua para uso silvoagropecuario

El sector silvoagropecuario se encuentra conformado por las actividades agrícolas, ganaderas y forestales, y para este estudio interesa conocer su relación con la demanda de agua para el desarrollo. El Banco Mundial (2011) señala a este sector como el principal usuario de agua consuntiva, ya que representa el 77,8% de las extracciones de agua a nivel nacional (Donoso y otros, 2012).

Al igual que la mayor parte de las actividades económicas, en este sector se ha generado una demanda de recursos hídricos que ha ido aumentado en las últimas décadas, gracias a una economía basada, entre otros productos, en la exportación de productos renovables de la agricultura y plantaciones forestales, y a la tecnificación de la agricultura, con la incorporación de sistemas de riego. Este aumento en la demanda de agua podría ser una respuesta a la implementación de la ley 18450, en el año 1987, que busca incrementar la superficie regada en el territorio nacional a partir del fomento de la inversión privada en obras menores de riego y drenaje, para mejorar el abastecimiento en superficies regadas deficitarias, la eficiencia de la aplicación del agua o habilitar suelos agrícolas de mal drenaje; otorgando un subsidio directo a la inversión en obras comunitarias o individuales. Este proceso es reforzado en el año 2000 con la declaración que posiciona a Chile como una potencia agroalimentaria, y que busca alcanzar al 33% de la superficie agrícola nacional regada. Ambos fomentos políticos se traducen en un aumento de la superficie de riego a nivel nacional, que en el año 1990 incrementan en un 70% con respecto a la década anterior, y que en la actualidad llega al 27% del total de la superficie agrícola nacional. Para mayor detalle, a continuación se presenta la información para cada cuenca.
La superficie destinada a las actividades silvoagropecuarias abarca un 92% de la superficie comunal (INE, 2007), que se encuentran ocupados según lo indica la Ilustración 3.

Ilustración 3: Superficie Silvoagropecuaria Comuna de Curacautín

Para los actores locales, el desarrollo de la industria de la celulosa más la implementación de la ley 701, que regula la actividad forestal y fomenta la forestación, provocaron cambios en la dinámica económica de la comuna y transformaciones en el paisaje. Los suelos agrícolas y superficie cubierta por bosque nativo fueron reemplazados por suelos forestales, percibiéndose repercusiones en la disponibilidad de agua. Al respecto, CONAF (2007) da cuenta que la superficie cubierta por plantaciones forestales, aumentó en un 95%, entre los años 1997 y 2007, alcanzado las 7.590 ha., lo que equivale a unas 370 ha por año; y por otro, en 10 años, la superficie de bosque nativo disminuyó en 987 hectáreas, la superficie agrícola en 1.964 ha y las praderas-matorrales en 842 ha.

Los actores de la comuna señalan que estas transformaciones repercuten directamente en la disponibilidad y demanda indirecta de agua en el territorio, específicamente en el equilibrio en “... la captura del agua y en la evapotranspiración. A diferencia de los bosques nativos, que están en un estado de equilibrio constante, las plantaciones no alcanzan ese equilibrio, porque los cortan antes... (Grupo de Agentes de Cambio, 2013).

Pese a la disminución de superficie agrícola, la DGA (2011) señala que la demanda de proyectos de riego en la región ha aumentado, lo cual se ve reflejado en el incremento del número de postulaciones a los fondos de la Ley de Fomento al Riego (CNR). “Se están postulando más proyectos a Ley de Riego y a fondos de Conadi e Indap. El riego crece tanto en el sector de la agricultura empresarial, como en la agricultura familiar campesina” (Director Regional DGA, 2011). Esta demanda de incorporación de riego tecnificado y uso de tuberías y de aspersión por parte de los predios de la comuna se debe principalmente a raíz de la promoción de cultivos industriales, como la canola, y de otros, como leguminosas y tubérculos, que han tenido un incremento de 29 ha en 1997 a 118 ha en 2007 (INE, Censo Agropecuario 2007).
La vinculación de este sector con la disponibilidad de agua, que realizan los actores del territorio, tienen que ver, por un lado, con la subvaloración del recurso hídrico, donde cada productor se preocupa de disminuir los riegos para asegurar la producción, dejando en segundo plano los aspectos relacionados a la disponibilidad de agua. Y por otro lado, con la eficiencia del riego, que en el caso de Curacautín, es de 35% en promedio, para el caso del riego tendido, y 75% para el riego por aspersión.

Sumado a esto, “la incorporación de cultivos transgénicos, que requieren mucha agua... ha habido un mejoramiento de las semillas que son más apropiadas para estos suelos que antes no se podían, como cultivar raps. Hoy día existe un nivel de seguridad para producir, disminución de las perdidas, aumento del rendimiento por hectárea que significa que ha aumentado el consumo de agua por hectárea...” (Actor impulsor de Curacautín, 2013)

En el caso de la producción ganadera, esta se concentra principalmente en producción bovina y ovina, que en conjunto corresponden al 92,9% del total de número de cabezas de ganado en la comuna. Al año 2007, es posible advertir que el número de explotaciones dedicadas a la crianza de ganado bovino disminuye en un 8,9%, y por el contrario, la producción ovina, aumenta en un 23%, según datos registrados en el año 1997.

Una de las transformaciones del rubro bovino, que advierten los actores locales, es la entrada en vigencia de la Ley de Carnes (Ley N° 19.162 de 1992, publicada en el Diario Oficial el 7 de septiembre de ese año), que establece el Sistema Obligatorio de Clasificación de Ganado, Tipificación y Nomenclatura de sus Carnes, y que busca entregar un producto de calidad que se adecue a los requerimientos del mercado y que el productor obtenga precios adecuados a la calidad de ganado que entrega al mercado. Ante este contexto, y dado que en la comuna los productores son principalmente pequeños, con bajo número de cabezas, altos costos asociados a la engorda de animales por las características climáticas, es que transformaron sus sistemas productivos, dedicándose a la crianza de vacas y producción de terneros, para venta al destete.

En el caso de la producción ovina, la situación es distinta, ya que la comuna cuenta con las condiciones favorables para la crianza de corderos, donde se inician las pariciones en agosto - septiembre y las ventas son realizadas entre los meses de diciembre y marzo, pasando por las épocas de más abundancia de praderas, que es en primavera.

Las prácticas de la producción ganadera vinculada a la disponibilidad de agua, además de los requerimientos para el establecimiento de praderas, tiene que ver con los requerimientos de bebida para animales, donde se relaciona directamente con el numero.

Cuenca del Río Bio Bio: Comuna de Lonquimay

El marco legal y económico en el cual se contextualiza el sector silvoagropecuario es el mismo que en el caso de Curacautín. La comuna de Lonquimay tiene una superficie de 344.557 hectáreas que corresponden a uso silvoagropecuario, lo que equivale a un 87% de la superficie comunal (CONAF, 2009).
De esto, un 48,5% se encuentra cubierto por bosques, un 38,1% por praderas y matorrales y un 0,5% es superficie agrícola.

Ilustración 4: Superficie Silvoagropecuaria Comuna de Lonquimay

De acuerdo a CONAF (2009), en el año 2007 la comuna tenía 2402 hectáreas de bosques menos que las registradas el año 1997, lo cual representa una pérdida de 1,2% en 10 años. Esta cifra es el resultado del balance entre el aumento de las plantaciones forestales, que se incrementaron en 594 hectáreas, alcanzado una superficie total de 697 hectáreas en 2007; y la reducción de superficie de bosque nativo en 2.987 hectáreas.

CONAF (2011) señala que existe una pequeña recuperación de bosque nativo que alcanza la cifra de 30 hectáreas y atribuye la mayor parte de la pérdida de bosque nativo (78 %) a incendios forestales y por reemplazo a praderas, lo que evidencia un proceso de empobrecimiento de la naturaleza, un 17 % que fue ocupado por nuevos cuerpos de agua de la comuna de Lonquimay, en particular el embalse de la central Ralco y un 2 % a la agricultura. La sustitución por plantaciones no es posible establecerlo con exactitud.

La superficie usada para fines agrícolas y ganaderos el año 2007 corresponde a un 38,6% del total comunal, es decir, unas 152680 hectáreas predominando la superficie de praderas y matorrales. Estos valores presentan una leve disminución con respecto al censo anterior, registrándose una reducción de la superficie en uso de 296 hectáreas, que representa casi el 1% del total comunal.

Las superficies utilizadas para cultivos corresponden a 2.067,9 hectáreas, de las cuales 1.282,7 hectáreas corresponden a forrajeras permanentes y de rotación y 217 a cultivos anuales y permanentes.
Respecto a la década anterior, se registra un aumento del 19% de superficie destinada para fines agrícolas, que corresponden a un aumento de 340 hectáreas. En total, en la Comuna de Lonquimay se han instalado cerca de 2.000 hectáreas con alfalfa y riego en los últimos 12 años.

La superficie regada, en la temporada agrícola 2006/2007, alcanzó las 3.359,45 hectáreas, en un total de 862 explotaciones, lo que equivale al 1,3% de la superficie comunal destinada a explotaciones silvoagropecuarias. Los sistemas de riego corresponden principalmente a riego tendido, que abarca la mayor superficie, sobre 24.534 has, y en el caso del riego mecánico, el principal sistema corresponde al riego por aspersión, para 733,1 has. El número de explotaciones es similar para ambos, 444 y 446, respectivamente.

En el caso de la producción ganadera, esta se concentra principalmente en caprinos, bovinos y ovinos, que representan el 93,8% (82.012 especies) del total de existencias pecuarias en la comuna. La producción ganadera se distribuye de la siguiente manera: un 40,8% está conformado por caprinos, un 29,5% por bovinos y un 23,4% por ovinos (INE, 2007).

Agua para piscicultura

La acuicultura constituye actualmente una de las actividades económicas nacionales que ha experimentado mayor desarrollo, registrando a partir de los años 90 una tasa anual de crecimiento del 22%. Durante el 2006, la producción acuícola representó un 10,8% de las exportaciones no mineras y un 23,8% de las exportaciones de alimentos del país, ubicando al sector en un puesto importante de la diversificación económica nacional.

La Región de La Araucanía presenta una de las reservas de agua dulce más importantes del país, cubriendo el 25% de los recursos hídricos continentales del país. Esto sumado a factores como la calidad del agua, temperaturas eficientes para la reproducción de la especie y la diversificación de fuentes de abastecimiento, generan un escenario propicio para el desarrollo de pisciculturas que se dedican a la producción de ovas embrionarias, alevines y smolt de salmones y truchas. Según el Servicio Nacional de Pesca, a enero de 2013 en La Araucanía existen 26 empresas con producción, con un total de 45 centros. Respecto de esto último, los alevines son los que están otorgando a la región una posición privilegiada en el desarrollo acuícola del país, puesto que dos de cada tres salmones exportados nacen y desarrollan su etapa juvenil en instalaciones de agua dulce de esta zona – 40 al 60% del total nacional- y luego son enviados para su engorde a las regiones X y XI.

En el territorio en estudio, esta actividad solo es desarrollada en la comuna de Curacautín, donde representa el 1,6%, y cuyas instalaciones se registran a partir del año 2002. De acuerdo a lo señalado por actores comunales y lo indagado a partir de las declaraciones de impacto ambiental (SEA, 2013), existen seis pisciculturas dedicadas al desove, incubación y alevinaje de especies salmónidas y está en proyecto una nueva instalación. En el caso de Lonquimay, la inexistencia de actividad acuícola responde a causas como temperaturas bajas, aislamiento producido por condiciones climáticas como la nieve y la dificultad para el transporte.
Las pisciculturas se caracterizan por utilizar grandes volúmenes de agua, y buscan que sea de alta pureza y con altos niveles de oxígeno, para evitar la incidencia de enfermedades en las especies, por lo que se sitúan cercana al nacimiento de los cauces. Por tanto, el desarrollo de esta actividad puede entrar en conflicto con vecinos del sector donde se instalan o comunidades ubicadas rio abajo o rio arriba, que demandan agua para consumo, de fuentes cuyos derechos están entregados a estas empresas y cuyos efluentes tienen residuos orgánicos que pueden afectar la calidad del agua para uso doméstico.

Agua para el desarrollo del turismo

El turismo en el territorio, que comprende ambas comunas, se concentra principalmente en sus atractivos naturales y culturales (Pladeco, 2010-2015). Esto ha propiciado la realización de actividades de esparcimiento y deportivas, que a su vez, han permitido el desarrollo de una planta turística que incluye un conjunto de equipamiento e instalaciones disponibles para hacer posible la permanencia de los turistas en la zona. De acuerdo a la información disponible en Servicio Nacional de Turismo (2013) y en el Plan de Desarrollo del Turismo de Curacautín (2010), el potencial turístico, natural y cultural que poseen ambas comunas permite considerar el turismo como una actividad económica eje de desarrollo del territorio.

Desde esta perspectiva, la disponibilidad del agua se relaciona, por un lado a la oferta de recursos hídricos para la realización de actividades de esparcimiento y deportivas, y por otro, para el abastecimiento de agua para consumo (Agua potable) para el desarrollo de los rubros de alimentación y alojamiento turístico.

Respecto a la oferta de recurso hídricos para turismo se entiende que el uso del agua es no consuntivo, o se clasifica en una nueva modalidad, *in situ*, y su uso se enmarca en la generación de bienestar social, sociológico o estético, al existir una relación directa o indirecta con ella y donde no se consumen volúmenes significativos de agua. Estos usos recreacionales se han dividido en usos con contacto directo, que son todas aquellas actividades que se realizan en contacto con el agua tales como natación, *rafting*, *kayakismo*, canotaje, pesca, y usos sin contacto directo, que incluye actividades como fotografías, caminatas, contemplación, navegación en embarcaciones y esparcimiento (UCH-DGA, 2000).

En cuanto a la demanda de agua para consumo del turista, la disponibilidad de agua se ajusta a los mecanismos legales que regulan su uso para consumo. El agua para establecimientos ubicados en sectores rurales puede provenir de fuentes superficiales o subterráneas, además, pueden incorporarse a un Comité de Agua Potable Rural (donde el acceso a agua potable está determinado por una serie de trámites que incluyen conformación o ampliación del comité, solicitud y aprobación de recursos, instalación; todos los cuales depende de la institución pública encargada de gestionar este procedimiento) o puede ser de forma particular, donde se debe contar con una fuente de agua desde la cual extraer el recurso. Dado que se trata de establecimientos que deben estar formalizados, y contar con resolución sanitaria, según lo establece el Ministerio de Salud, es que se deben tener derechos de agua consuntiva para su uso.

Frente a esto, la disponibilidad de agua apuntaría de asegurar el volumen requerido de acuerdo a los requerimientos de la institucionalidad, frente a un escenario de no disponibilidad de derechos
consuntivos y el enfrentamiento con residentes que también demandan estos derechos para uso doméstico o productivo. Todo esto, en un contexto de aumento en el número de establecimientos/empresas destinados a la atención y estadía de turistas en ambas comunas y a un aumento en el número de turistas que llegan al territorio principalmente en los meses de verano. Por ejemplo, en Curacautín, se prevé un conflicto en Malalcahuello, donde “...se ha hecho un loteo muy grande, de 100 parcelas de ¼ de ha que se están vendiendo, y donde cada uno emprende. Cada uno se está llevando agua desde el único curso de agua que pasa por la zona donde se está urbanizando, incluido las que utiliza el Hotel Termas de Malalcahuello, que es el río Coloradito. Ese es un estero, que está limitado a un territorio, que actualmente se está parcelando. Por tanto, quienes las están adquiriendo, tienen un alto poder adquisitivo, que van a hacer grandes construcciones, y todos van a requerir agua. Esos suelos, además son pobres en aguas subterráneas, porque son suelos arenosos, donde el agua filtra rápidamente, la napa freática está muy abajo, y el único estero que permanece con agua es ese y otro más pequeño, ambos afluentes del Cautín.” (Actor local, 2013)

Agua para generación de energía

La disponibilidad de agua para la generación de energía eléctrica está determinada por la oferta de agua en ambas cuencas, la cual debe contar con algunas características de caudal y pendiente para la instalación de centrales de paso. Actualmente no existen empresas hidroeléctricas ubicadas en las comunas. En el caso de Lonquimay, los cauces son afluentes del río Bio Bio, cuyas aguas son utilizadas en embalses ubicados en la región el Bio Bio, casi en la frontera con la comuna.

En el caso de Curacautín, empresas hidroeléctricas han adquirido derechos no consuntivos con importantes volúmenes de agua y buscan instalar centrales de paso en diferentes puntos de la cuenca. Si bien no existe información que dé cuenta del número de empresas que instalarán estas centrales, la población estima que a la fecha se encuentra aprobado un proyecto para la generación de hidroelectricidad que se ubicará en el río Cautín. Se visualiza que la demanda de agua para la generación de energía eléctrica aumentará debido a la presentación de al menos un proyecto hidroeléctrico y 8 en fase de preparación. Se visualiza, además, un aumento de la demanda debido a la adquisición de derechos de aprovechamiento de agua no consuntiva para este objetivo, que según el catastro de aguas (DGA, 2013) registró un incremento en las solicitudes de derechos de aprovechamiento a contar del año 2005.

En este sentido, es importante señalar que muchos de los derechos adquiridos en la DGA han permitido a sus dueños especular y negociarlos con empresas interesadas en la construcción de centrales de paso. Y es aquí donde radica el principal problema para los habitantes de la comuna, ya que se enfrentan los grandes volúmenes de agua que esta industria requiere frente a los menores volúmenes que se necesitan para fines domésticos, y que ya están comprometidos. Sumado a lo anterior, la alta demanda de agua permite prever que no existe un ordenamiento respecto de los lugares donde se instalarán las centrales, las cuales ejercerán una fuerte presión sobre el caudal del río Cautín, puesto que si las distancias entre una y otra es cercana, podrían impactar negativamente en la disponibilidad de agua entre el tramo de captación y de restitución.
En el contexto nacional, el mercado eléctrico se compone por actividades de generación, transmisión y distribución de suministro eléctrico, las cuales son desarrolladas por empresas controladas en su totalidad por capitales privados. Al año 2011, el país contaba con una capacidad instalada total de 16.970 MW, de la cual un 73,6% corresponde al Sistema Interconectado Central (SIC), que se localiza desde Taltal hasta Chiloé.

Ilustración 5: Capacidad Instalada Sistemas Interconectados

<table>
<thead>
<tr>
<th></th>
<th>SIC</th>
<th>SING</th>
<th>SAyM</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>74</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Desarrollo Energía en Chile, Chile Sustentable, 2013

El parque generador está constituido en un 47,41% por centrales hidráulicas de embalse y pasada; un 51,86% por centrales térmicas a carbón, fuel, diésel y de ciclo combinado a gas natural; y un 0,73% por centrales eólicas. Según un estudio del INE, al año 2010 el sector residencial consumía un 16,3% de la energía, el comercio un 12,3%, el rubro agrícola un 2,2%, las industrias un 23,9%, varios un 10,4% y la minería un 34.9%.

De acuerdo al Ministerio de Energía, el año 2011, la producción de electricidad en el Sistema Interconectado fue de 46.095 GWh, lo que muestra un crecimiento de 6,8% con respecto al año 2010. Para el año 2020 se proyectan en nuestro país tasas de crecimiento del consumo eléctrico en torno al 6 a 7%, lo que significa cerca de 100 mil GWh de demanda total de energía eléctrica a dicho año, lo que requerirá aumentar la oferta, sólo en dicho período, en más de 8.000 MW en nuevos proyectos de generación. (Estrategia Nacional de Energía, 2012).

El aumento en la demanda de electricidad a nivel nacional sumado al potencial hídrico del territorio para la generación eléctrica constituyen un escenario propicio para aumentar las inversiones para producir energía a partir de la instalación de centrales de pasada, las cuales tienen la particularidad de requerir muy bajos costos de operación para producir electricidad, concentrándose la mayor inversión al comienzo.

Si bien las centrales de pasada no tienen la capacidad de generación que las centrales de embalse, por su poca intervención pueden ser instaladas en menor tiempo y poseen variados tamaños, desde micro centrales de pasada de 1MW, hasta centrales que pueden generar 320MW. Además con las
nuevas tecnologías de turbinas es posible aprovechar al máximo la caída y el caudal de los ríos, pudiendo generar una potencia considerable en ríos de poco caudal, utilizando un buen sistema de tuberías.

Sumado a todo esto, tenemos que las fuertes alzas en los combustibles incrementan el precio de nudo de la energía, lo que hace más rentable la inversión en proyectos hidroeléctricos de centrales de pasada. La rentabilidad de esta actividad propicia su desarrollo, está dada por la venta de energía a buenos precios, en momentos de mayor demanda, reduciendo los costos de instalación y de generación de electricidad.

Normativa que regula el acceso al recurso

En Chile el acceso y uso al recurso hídrico se encuentra regulado por el Código de Aguas, el cual fue promulgado en 1981 y que a la fecha ha sufrido algunas modificaciones. Este Código del Agua establece que las aguas que afluyen, continua o discontinuamente, superficial o subterráneamente, a una misma cuenca u hoya hidrográfica, son parte integrante de una misma corriente. Señala además, que la cuenca u hoya hidrográfica de un caudal de aguas la forman todos los afluentes, sub afluentes, quebradas, esteros, lagos y lagunas que afluyen a ella, en forma continua o discontinua, superficial o subterráneamente.

Para la legislación, las aguas son bienes nacionales de uso público y se otorga a los particulares el derecho de aprovechamiento de ellas, de acuerdo a los parámetros que señala el Código de Aguas, facultando a su titular a usar, gozar y disponer de él según lo que establece la ley. De acuerdo a esto, el que tiene derechos de aprovechamiento debe tener los medios para utilizados y las garantías para acceder y hacer uso del agua. Este último punto se refiere a que quién es dueño del agua, no necesariamente es dueño de la tierra que colinda con el cauce, por tanto el dueño de la tierra debe posibilitar al dueño del agua para que ejerza su derecho. Una vez concedidos los derechos de uso, el Estado no interviene, solo a través de la Dirección General de Aguas, que verifica que se están utilizando.

Por otro lado, el uso de las aguas pluviales que caen o se recogen en un predio de propiedad particular corresponde al dueño de éste, mientras corran dentro de su predio o no caigan a cauces naturales de uso público. En consecuencia, el dueño puede almacenarlas dentro del predio por medios adecuados, siempre que no se perjudique derechos de terceros.

Una de las particularidades del Código de Aguas es la diferenciación que realiza según uso y ejercicio del agua. Establece que los derechos de aprovechamiento son consuntivos o no consuntivos; de ejercicio permanente o eventual; continuo, discontinuo o alternado entre varias personas. El derecho de aprovechamiento consuntivo es aquel que faculta a su titular para consumir totalmente las aguas en cualquier actividad, mientras que el derecho de aprovechamiento no consuntivo es aquel que permite emplear el agua sin consumirla y obliga a restituirla en la forma que lo determine el acto de adquisición o de constitución del derecho.

Además, son de ejercicio permanente, cuando facultan al titular a usar el agua en la dotación que corresponda, salvo que la fuente de abastecimiento no contenga la cantidad suficiente para satisfacerlos en su integridad, en cuyo caso el caudal se distribuirá en partes alícuotas. De lo contrario, son eventuales, con lo que uso queda limitado solo en las épocas en que el caudal matriz tenga un
sobrante después de abastecidos los derechos de ejercicio permanente o bien, luego de cubrir los derechos de la misma naturaleza otorgados con anterioridad. Los derechos son continuos cuando permiten usar el agua en forma ininterrumpida durante las veinticuatro horas del día; discontinuos cuando se puede usar el agua durante determinados períodos, y alternado cuando el uso del agua se distribuye entre dos o más personas que se turnan sucesivamente.

En relación a las aguas subterráneas, se establece que cualquiera puede cavar en suelo propio pozos para bebida y/o uso doméstico, aunque ello pueda perjudicar el caudal de otro pozo vecino, pero si este pozo no tuviera alguna utilidad o esta fuera menor al daño provocado, se está obligado a cegarlo. La explotación de aguas subterráneas puede ser realizada por cualquier persona. Este ejercicio deberá efectuarse en conformidad a normas generales, previamente establecidas por la Dirección General de Aguas.

Estos derechos concedidos por el Estado además, están amparados por las garantías constitucionales del derecho de propiedad. En el Artículo 19, N°24 de la Constitución Política de Chile de 1980, se declara que “Los derechos de los particulares sobre las aguas, reconocidos o constituidos en conformidad a la ley, otorgarán a sus titulares la propiedad sobre ellos”. El titular que obtiene este derecho sobre las aguas debe declarar al momento de solicitar a la Dirección General de Aguas donde y cuándo las usará; si lo hará para los fines que los solicitó o para usos alternativos posteriores, pudiendo mantener en forma indefinida el derecho sin utilizarlo. Esta situación cambio con la reforma del Código de Aguas en 2005, la cual incluyo un pago por la no utilización de los derechos de agua; sin embargo, el Código descartó incluir gravámenes a los derechos de agua y no impuso costos para la concesión de nuevos derechos, ni tarifas por su goce a través del tiempo.

En caso de no uso del agua, se debe efectuar un pago, a la Tesorería General de la República, de la patente anual por no utilización de aprovechamiento de agua por parte de los titulares de estos derechos que no han construido las obras señaladas o no los están explotando ni total ni parcialmente. También debe pagar patente el titular del derecho de aprovechamiento no consuntivo, siempre que no haya construido las obras necesarias para la restitución de las aguas. Lo mismo ocurre para quien ejerce este derecho de manera permanente y no ha construido las obras. En el caso de que el titular del derecho de aprovechamiento de ejercicio eventual no utilice total o parcialmente el agua en las épocas en que el caudal tenga un sobrante después de abastecidos los derechos de ejercicio permanente, debe pagar un tercio del valor de la patente. Están exentos del pago de patente aquellos derechos de aprovechamiento cuyos volúmenes medios por unidad de tiempo, expresados en el acto de constitución original, sean inferiores a 50 litros por segundo para usos consuntivos y menor a 500 litros para usos no consuntivos. La Dirección General de Aguas (DGA) del Ministerio de Obras Públicas es el organismo encargado de fijar los plazos legales y envía el listado para cobro a la Tesorería.

Finalmente, a modo de reflexión, el sistema de concesión de derechos ha permitido el acceso definitivo al agua a los grandes emprendimientos agrícolas, pero también favoreció a las grandes empresas hidroeléctricas, mineras y al sector exportador, en perjuicio de los derechos tradicionales de las comunidades campesinas sobretodo y de las poblaciones locales para acceder a un recurso fundamental para la vida. Lo cual es una consecuencia del acceso a la información que tuvieron algunos
grupos y el desconocimiento por parte de comunidades agrícolas y ganaderas más pequeñas quienes no inscribieron los derechos para hacer uso libre de ellos. Ello se ha traducido en una concentración progresiva de la propiedad de los recursos hídricos en pocas manos, problemas de acceso de la población, alzas en las tarifas para adquirir un derecho de agua consuntivo y agudización de los problemas de stress hídrico y degradación irreversible de cuencas en regiones donde el agua es escasa.

Alcance temporal de la problemática

Al hablar de disponibilidad de agua para el desarrollo local, y de acuerdo a lo expresado por grupos impulsores de ambas comunas y taller de reflexión realizado en octubre de 2012 en la comuna de Curacautín, se establece que: por un lado se advierte la presencia de factores climáticos que tendrían un impacto directo en la disminución de volumen de agua disponible y cuyas repercusiones se visualizarán en el futuro y, por otro, los aspectos legales que regulan el uso y acceso al agua.

Por ello, para los actores es trascendental que la definición de la problemática debe ser capaz de incorporar los problemas actuales y futuros cercanos, para no alejarse del escenario que genera la discusión. Es así, como se definen los plazos:

- **Corto plazo**: corresponde al plazo de un año y se centrará más en los aspectos cuantitativos de la problemática. Se busca identificar problemas actuales e información del territorio en relación a la disponibilidad y acceso al agua, en términos físicos y legales, a manera de definir una línea de base y dar soluciones a problemas focalizados.

- **Mediano plazo**: se definirá como el plazo superior a un año pero menor a cinco años, y que abarcará los aspectos cualitativos de la problemática. Tiene que ver con la elaboración de planes y estrategias que tengan incidencia a nivel legislativo, que busquen situar en la discusión política? el tema de la disponibilidad de agua, en términos biofísicos y legales, y que se produzcan transformaciones en el territorio.

Finalmente, con la revisión secundaria y el trabajo con el equipo técnico del Bosque Modelo, se define la problemática: **¿Cómo asegurar la disponibilidad de agua para el desarrollo local a corto y mediano plazo, en un contexto de mayor demanda por el recurso, disminución en las precipitaciones de agua y nieve, y una legislación restrictiva para el uso y acceso del agua?**

3.2 Actores y recursos

3.2.1. Actores

Lo que se busca en esta etapa es identificar los actores que contribuyen a la problemática, ya sea porque consumen agua o tienen influencia sobre la oferta. De esta forma se establecen tres grupos de actores:

- Actores directos que demandan agua para el desarrollo
- Actores directos que participan en la gestión del agua en el territorio
- Actores indirectos que apoyan el manejo y uso del agua
Actores directos que demandan agua para el desarrollo

Este grupo se relaciona a la problemática como usuarios del agua, es decir que demandan agua para fines extractivos o consuntivos y no extractivos o no consuntivos, para uso doméstico o para el desarrollo productivo.

Usuarios de Agua Urbanos

Corresponde a los habitantes que residen en sectores urbanos de las comunas de Curacautín y Lonquimay, que demandan el servicio de agua potable y alcantarillado. Son en total 15 965 personas (59,3% de la población total), de las cuales 12 635 personas se localizan en la comuna de Curacautín y 7108 en la comuna de Lonquimay, quienes se encuentran conectadas en un 100% al sistema de agua potable y en un 91,4% al sistema de alcantarillado, según lo indica la Tabla 2.

<p>| Tabla 2: Clientes Aguas Araucanía conectados a Red de Agua Potable y Alcantarillado |
|-----------------------------------|-------------------|-------------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Comuna</th>
<th>Total Viviendas</th>
<th>Cobertura Agua Potable (%)</th>
<th>Red de Alcantarillado y tratamiento de aguas servidas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curacautín</td>
<td>5057</td>
<td>100</td>
<td>90,7</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>1231</td>
<td>100</td>
<td>94,5</td>
</tr>
</tbody>
</table>

Fuente: Superintendencia de Servicios Sanitarios, 2010

El acceso al recurso está determinado por la relación comercial entre la empresa sanitaria y el titular que representa la vivienda (Cliente), donde la primera entrega el servicio de agua potable y alcantarillado y el segundo, cancela por estos. Cualquier irregularidad en el servicio, relacionada a aspectos de calidad, es supervisada por la Superintendencia de Servicios Sanitarios, cuyas oficinas se encuentran ubicadas en la ciudad de Temuco. De ser requerido por alguna vivienda o empresa, la solicitud de agua potable se realiza de forma particular, por el demandante, en la empresa sanitaria, la que recepciona la solicitud de empalme, aprueba y realiza las instalaciones.

En cuanto a la demanda, de acuerdo a información entregada por Aguas Araucanía S.A. (2011), y a partir de una estimación en base al consumo de agua potable regional y el número de clientes por comuna, el gasto promedio de agua potable diario por persona en la comuna de Curacautín asciende a 193,3 litros en Curacautín y 179,1 litros en Lonquimay.

Usuarios de Agua Rurales

En esta categoría de actores se incluyen habitantes rurales que consumen agua para fines domésticos, es decir, agua para consumo humano. En el territorio existen dos tipos de consumidores, los que se abastecen a agua a partir de una red de agua potable y que conforman una organización que es representada por una Comité de Agua Potable Rural (APR); y quienes extraen agua de alguna fuente hídrica (vertiente, pozo, río, estero, etc.) de manera particular. A continuación se describen las características de estos actores.
Comité de Agua Potable Rural

Organización comunitaria, representante de los usuarios de agua potable, que cuenta con personalidad jurídica propia, quien tiene a su cargo la operación y mantención del servicio, y cuyo objetivo es administrar y operar este sistema. Bajo esta organización se encuentran representados los usuarios rurales de un sector específico, por lo que se hablará del Comité más que individualizando a los usuarios que lo conforman. Esto porque la institucionalidad pública vinculada a la aprobación de recursos regionales, DOH, para la instalación de los sistemas de agua potable en las localidades rurales se entiende directamente con las directivas o Comités y no con los usuarios de forma particular. Las directivas (Comités) son elegidas por sus propios socios, lo que permite que cada socio (usuario del agua) tenga derecho a voto y a la toma de decisiones.

Actualmente, en el territorio existen 14 Comités de Agua Potable Rural, a partir de los cuales se abastecen unas 1207 viviendas, que son 4022 personas de las localidades, lo que equivale a un 36% de la población rural (DOH, 2013). Estas viviendas corresponden a población concentrada del territorio.

No existe información acerca del consumo de agua por habitante rural para las comunas de Curacautín y Lonquimay, algunos habitantes rurales del territorio en Lonquimay señalan un gasto promedio de 120 litros por habitante (Habitante rural, 2012). Al respecto, la Dirección de Obras Hidráulicas (2011) estima que, en la Región de La Araucanía, el gasto de agua promedio en sectores rurales para uso doméstico es 118,7 litros por persona. La dotación de agua se realiza según calidad, cantidad y continuidad conforme a la Norma Chilena NCh 409 Of. 84. A continuación se entrega detalle de las APRs de las comunas de Curacautín y Lonquimay.
Tabla 3: Sistemas de Agua Potable Instalados, comuna de Curacautín y Lonquimay

<table>
<thead>
<tr>
<th>Comuna Cura o Lonqui</th>
<th>Nombre APR</th>
<th>Origen de la fuente</th>
<th>Personas abastecidas</th>
<th>Arranques</th>
<th>Caudal (l/s)</th>
<th>Derechos (l/s)</th>
<th>Consumo máximo (Litros/persona) *</th>
<th>Personas por 1 l/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curacautín</td>
<td>Rari Ruca</td>
<td>Superficial</td>
<td>257</td>
<td>80</td>
<td>2</td>
<td>s/i</td>
<td>672,37</td>
<td>129</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Santa Ema</td>
<td>Subterránea</td>
<td>312</td>
<td>97</td>
<td>2,5</td>
<td>s/i</td>
<td>692,31</td>
<td>125</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Manzanar</td>
<td>Superficial</td>
<td>428</td>
<td>133</td>
<td>3,4</td>
<td>80</td>
<td>686,36</td>
<td>126</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Malalcahuello</td>
<td>Subterránea</td>
<td>800</td>
<td>242</td>
<td>6,1</td>
<td>s/i</td>
<td>658,80</td>
<td>131</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Corretue</td>
<td>Subterránea</td>
<td>113</td>
<td>35</td>
<td>0,9</td>
<td>3</td>
<td>688,14</td>
<td>126</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Santa Julia</td>
<td>Superficial</td>
<td>142</td>
<td>44</td>
<td>1,1</td>
<td>4</td>
<td>669,30</td>
<td>129</td>
</tr>
<tr>
<td>Curacautín</td>
<td>Vega Larga</td>
<td>Subterránea</td>
<td>139</td>
<td>43</td>
<td>1,1</td>
<td>0</td>
<td>683,74</td>
<td>126</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>El Naranjo</td>
<td>Superficial</td>
<td>410</td>
<td>118</td>
<td>3</td>
<td>s/i</td>
<td>632,20</td>
<td>137</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Icalma</td>
<td>Subterránea</td>
<td>257</td>
<td>74</td>
<td>1,9</td>
<td>5</td>
<td>639</td>
<td>135</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Liucura</td>
<td>Superficial</td>
<td>188</td>
<td>54</td>
<td>1,4</td>
<td>s/i</td>
<td>643</td>
<td>134</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Mallín del Treile</td>
<td>Superficial</td>
<td>223</td>
<td>64</td>
<td>1,6</td>
<td>20</td>
<td>620</td>
<td>139</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Pedregoso</td>
<td>Superficial</td>
<td>191</td>
<td>55</td>
<td>1,4</td>
<td>s/i</td>
<td>633</td>
<td>136</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Sierra Nevada</td>
<td>Subterránea</td>
<td>167</td>
<td>48</td>
<td>1,2</td>
<td>s/i</td>
<td>621</td>
<td>139</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>Troyo</td>
<td>Superficial</td>
<td>417</td>
<td>120</td>
<td>3</td>
<td>23</td>
<td>622</td>
<td>139</td>
</tr>
</tbody>
</table>

s/i: Sin Información * : Caudal continuo

Elaboración propia, en base a Sistemas APR Región de La Araucanía, Dirección de Obras Hidráulicas, 2013

Habitante rural

Este actor representa a las personas que residen en sectores rurales, que no forman parte de algún Comité de Agua Potable Rural, y cuyo acceso a agua para uso doméstico está determinado por las gestiones particulares que realiza, ya sea a través de la captación de pozos, vertientes o esteros y adquisición de infraestructura para este objetivo. En el territorio, se estima que unas 6959 personas se encuentran dentro de esta categoría, de las cuales 1704 residen en sectores rurales de la comuna de Curacautín y 5255 en la comuna de Lonquimay. De estos algunos cuentan con derechos de aprovechamiento, pero la información aportada por el Catastro de Agua no diferencia entre quienes forman parte del territorio y residen fuera de este, por lo que no es posible establecer con exactitud el número de litros en manos de habitantes rurales.

Productores Silvoagropecuarios

Corresponden a productores que desarrollan alguna actividad silvícola, agrícola y/o ganadera. Su relación con la problemática está determinada por la demanda sobre el recurso hídrico para fines productivos, por lo que para efectos del análisis es que se caracterizarán según el número de explotaciones y se aglutinarán en una categoría mayor, que en este caso corresponden a productores silvoagropecuarios. De acuerdo al censo agropecuario 2007, en el
territorio se registran 2.468 productores agropecuarios, de los cuales un 62% tiene menos de 50 hectáreas, según lo detalla el cuadro que se presenta a continuación:

Tabla 4: Número de propietarios por superficie agropecuaria

<table>
<thead>
<tr>
<th>Explotaciones Agropecuarias (ha)</th>
<th>Número de Propietarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Curacautín</td>
</tr>
<tr>
<td>Menores de 1</td>
<td>20</td>
</tr>
<tr>
<td>De 1 a menos de 5</td>
<td>166</td>
</tr>
<tr>
<td>De 5 a menos de 10</td>
<td>132</td>
</tr>
<tr>
<td>De 10 a menos de 20</td>
<td>146</td>
</tr>
<tr>
<td>De 20 a menos de 50</td>
<td>220</td>
</tr>
<tr>
<td>De 50 a menos de 100</td>
<td>134</td>
</tr>
<tr>
<td>De 100 a menos de 200</td>
<td>84</td>
</tr>
<tr>
<td>De 200 a menos de 500</td>
<td>46</td>
</tr>
<tr>
<td>De 500 a menos de 1000</td>
<td>27</td>
</tr>
<tr>
<td>De 1000 a menos de 2000</td>
<td>13</td>
</tr>
<tr>
<td>De 2000 y más</td>
<td>4</td>
</tr>
<tr>
<td>Total explotaciones agropecuarias con tierra 1/</td>
<td>992</td>
</tr>
</tbody>
</table>

Fuente: INE, Censo Agropecuario, 2007

Su relación con los recursos hídricos tiene que ver con la demanda de agua para el desarrollo productivo, que puede ser silvícola, agrícola y/o pecuario, por lo cual, su volumen de producción, la actividad productiva y el tamaño de la empresa, determinará la demanda de agua. Respecto de esto, para la producción agrícola, la Dirección General de Aguas estima que 1 ha requiere 2,5 litros/segundo.

Esto marca una diferencia entre pequeñas empresas y medianas, puesto que tratándose de uso de volúmenes significativos de litros de agua para el desarrollo productivo, será conveniente contar con derechos de aprovechamiento de agua para no afectar los derechos de terceros, conforme lo establece la ley.

Además, para el caso de los pequeños agricultores que deseen postular a financiamiento para instalar sistemas de riego, deben contar con los derechos de aprovechamiento de agua consuntiva. La instalación de sistemas de riego puede realizarse de manera particular o a través de Comités de Riego. Estos últimos tienen personalidad jurídica y cuentan con una directiva, que es representativa de una agrupación de productores agropecuarios. Cuando se trata de comités, el uso de aprovechamiento de agua queda a nombre de esta organización. Actualmente, de acuerdo al Catastro de Aguas (DGA, 2013), se identifican 7 Comités de Riego, bajo la personería de Comunidad de Agua, tres en Curacautín y cuatro en Lonquimay, que cuentan con derechos de agua, como se detalla a continuación:
Tabla 5: Derechos de Agua Asignados para riego

<table>
<thead>
<tr>
<th>Nombre Aguas</th>
<th>Comunidad de</th>
<th>Fecha Tram.</th>
<th>Comuna</th>
<th>Td</th>
<th>Fuente</th>
<th>Caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radalco Este</td>
<td>Curacautín</td>
<td>23-04-1997</td>
<td>C/Pc</td>
<td>Sup</td>
<td>50,00</td>
<td></td>
</tr>
<tr>
<td>Del Sector Santa Julia</td>
<td>Curacautín</td>
<td>19-10-2001</td>
<td>C/Pc</td>
<td>Sup</td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>Santa Julia</td>
<td>Curacautín</td>
<td>10-09-2002</td>
<td>C/Pc</td>
<td>Sup</td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>Sector Lefuco</td>
<td>Curacautín</td>
<td>19-10-2001</td>
<td>C/Pc</td>
<td>Sup</td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>Rincon Icalma</td>
<td>Lonquimay</td>
<td>05-09-2004</td>
<td>C/Pc</td>
<td>Sup</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>Colhueco</td>
<td>Lonquimay</td>
<td>29-04-2005</td>
<td>C/Pc</td>
<td>Sup</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>Mallín Del Treile</td>
<td>Lonquimay</td>
<td>17-11-2005</td>
<td>C/Pc</td>
<td>Sup</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>Calfuqueo</td>
<td>Lonquimay</td>
<td>19/05/2004</td>
<td>C/Ed</td>
<td>Sup</td>
<td>25,00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Catastro de derechos de agua, DGA 2013

El número de explotaciones que usó riego en la comuna de Curacautín es muy bajo (Tabla 6). En la temporada agrícola 2006/2007 sólo llegó a 71 explotaciones (7%), aunque esta cifra implica un aumento de 82% con respecto a la década anterior. A pesar de ello, la superficie total regada descendió de 1.123 hectáreas a 936 hectáreas entre ambos censos (-17%).

Tabla 6: Número de explotación con riego en Curacautín

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº Explotaciones</td>
<td>Superficie (ha)</td>
</tr>
<tr>
<td>Riego Gravitacional</td>
<td>35</td>
<td>1.074</td>
</tr>
<tr>
<td>Riego Mecánico mayor</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Micro riego y/o localizado</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>1.123</td>
</tr>
</tbody>
</table>

Fuente: INE 2007

Los sistemas de riego corresponden principalmente a riego gravitacional, especialmente tendido, y mecánico mayor, que es principalmente riego por aspersión, y que es el que registra un mayor incremento, respecto de la década anterior, en instalación y superficie. En el caso de Lonquimay, la superficie regada, en la temporada agrícola 2006/2007, alcanzó las 3 359,45 hectáreas, en un total de 950 explotaciones, lo que equivale al 1,3% de la superficie destinada a explotaciones silvoagropecuarias. Los sistemas de riego corresponden principalmente a riego tendido, que abarca la mayor superficie. En el caso del riego mecánico, el principal sistema corresponde al riego por aspersión, para 733,4 has..
Tabla 7: Explotaciones con sistemas de riego y superficie, comuna de Lonquimay

<table>
<thead>
<tr>
<th>Sistema de Riego</th>
<th>Periodo 2006 / 2007</th>
<th>Nº Explotaciones</th>
<th>Superficie (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riego Gravitacional</td>
<td></td>
<td>503</td>
<td>2626,05</td>
</tr>
<tr>
<td>Riego Mecánico mayo</td>
<td></td>
<td>447</td>
<td>733,4</td>
</tr>
<tr>
<td>Micro riego y/o localizado</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>950</td>
<td>3359,45</td>
</tr>
</tbody>
</table>

Fuente: Censo Agropecuario 2007, INE 2007

Considerando las explotaciones incluidas en los Comités de Riego más los sistemas que han instalado los productores de manera individual, en el territorio existen 2020 explotaciones que cuentan con algún sistema de riego, que cubren unas 4294,95 hectáreas, ubicadas principalmente en la comuna de Lonquimay (46,9% de las explotaciones, 78,2% de la superficie territorial). Las captaciones de agua se indican en el siguiente mapa.

Ilustración 6: Mapa ubicando captaciones de agua para riego, Comuna de Curacautín

![Mapa ubicando captaciones de agua para riego, Comuna de Curacautín](image)

- Bocatomas
- Infraestructura riego financiada por la Ley de Fomento al Riego
- Otros pozos usados para riego

Fuente: Sistema de Información Integral de Riego, CNR 2013
Empresas Turísticas

Para efectos de la problemática, se considerarán como actores “empresas turísticas” a aquellas que se encuentran ubicadas en sectores rurales del territorio de Bosque Modelo, vinculadas a los rubros de alojamiento y alimentación. En el territorio existen 123 empresas vinculadas a los rubros de alojamiento y alimentación, las cuales se ubican principalmente en la comuna de Curacautín (73,9%) (Ver Tabla 8)
Empresas Hidroeléctricas

Se entenderán por empresas hidroeléctricas a aquellas ubicadas en las comunas de Curacautín y Lonquimay que requieren agua para el desarrollo de la actividad productiva, que en este caso es generación de energía. Actualmente no hay proyectos hidroeléctricos ejecutados en las comunas, pero los registros de inscripción y solicitud de derechos de aprovechamiento de aguas no consuntivos dan cuenta de la demanda de agua con características para el desarrollo de proyectos hidroeléctricos.

Según información aportada por el SEA (2013), actualmente en la comuna de Curacautín no se localizan bocatomas para este uso, pero de acuerdo a información entregada por organizaciones y autoridades comunales, a la fecha se encuentran entre 8 y 10 proyectos hidroeléctricos, dentro de los cuales 1 se encuentra aprobado y 1 en etapa de evaluación: La central hidroeléctrica Alto Cautín, aprobada por el SEA que se localizará a unos 7 km. al Sureste de la localidad de Curacautín, sobre el camino que une esta ciudad con el Parque Nacional Conguillío. La captación está diseñada para captar hasta 24 m³/s. Las aguas captadas serán conducidas por un canal que se desarrollará por la ribera derecha del río Cautín, alejándose gradualmente del cauce. Las obras de aducción ocupan una longitud total de 2,2 km.

El proyecto Hidroeléctrica Doña Alicia, se ubica en el km 22 Camino de Curacautín a Malalcahuello, en el sector denominado “Piedra Cortada”. Consiste en la construcción y operación de una central hidroeléctrica de pasada en el Río Cautín de 6,3 MW de potencia instalada, será entregada al Sistema Interconectado Central (SIC). La sociedad Hidroeléctrica Doña Alicia Ltda. posee una concesión autorizada por Dirección Regional de Aguas de la región IX para el aprovechamiento de uso no consuntivo de aguas superficiales del río Cautín. El punto de captación concedido se encuentra en las coordenadas Norte 5.739.150 m y Este 272.060 m y la restitución en la coordenada Norte 5.739.125 m y Este 269.500 m, ambas referidas a la cartografía IGM, escala 1:50.000, Datum Provisorio Sudamericano 1956, Huso 19, existiendo una distancia medida en línea recta entre ambos puntos de 2.560 m. A partir de los estudios topográficos de detalle realizados en la zona de proyecto se concluye la existencia de un desnivel entre el punto de captación y de restitución de 43 m.
En el caso de la Cuenca del Bio Bio, se ubican centrales hidroeléctricas que son hidráulicas de embalse, que utilizan las aguas del río Bio Bio mediante un embalse artificial, que se encuentran ubicadas en la región del Bio Bio. En total utilizan un caudal de 1568 m3/s y consideran una capacidad de embalsamiento de 1497 millones m3. Las centrales son tres:

- **La central hidroeléctrica Pangue**, ubicada 100 km al oriente de la ciudad de Los Ángeles, utiliza las aguas del río Bio Bio mediante un embalse artificial. La potencia de esta central es de 467 MW y posee un caudal de 500 m3/s. En el año 1996 fue puesta en servicio. El volumen total del embalse es de 175 millones m3.

- **Central Ralco** se ubica en el curso superior del río Bío Bío, a 16 km aguas arriba del muro de la presa de la Central Pangue. La central tiene un caudal de 368 (m3/s) y una potencia de 570 MW. El volumen total del embalse es de 1222 millones (m3) (ENDESA, 2000).

- **Central Angostura**, cuenta con un caudal de 700 m3/s. Consiste en la construcción de una central hidroeléctrica de 316 MW y considera la ejecución de una presa aguas abajo de la confluencia de los ríos Bío Bío y Huequecura, generando un embalse de 5 km de largo por el río Huequecura y 16 km aprox. de largo por el río Bio Bio, abarcando una superficie inundada de 641 hectáreas. El volumen del embalse será de 100 millones m3. (COLBUN, 2008). Esta central prevé una vida útil de 100 años, pudiendo extenderse indefinidamente realizando labores de mantenimiento de obras, piezas y recambio de equipos.

El hecho que existan estas centrales, aun cuando se ubican fuera del límite comuna, representa un punto importante para el análisis sobre disponibilidad de agua, puesto que según lo determina la norma que regula el uso, se puede utilizar el recurso hídrico, aguas arriba, siempre y cuando esto no afecte el caudal entregado a otro.

Empresas Pisciculturas

Estas empresas se encuentran ubicadas solo en la comuna de Curacautín. La demanda de agua para la operación de las pisciculturas corresponde a dos tipos: de consumo para el personal que trabaja en ella, que es consuntiva, y de proceso para el cultivo de peces, que es no consuntiva, y que, por tanto, debe ser restituida según lo indican las normas de emisión vigentes, es decir, en igual calidad y cantidad a la captada.

El uso del agua en cuanto a cantidad es regulado por el Código de Aguas, mientras que la calidad es regulada por el Decreto Supremo Nº 351, de 1992, sobre descarga de residuos. La instalación de pisciculturas se rige por la Ley 19300 del Ministerio del Medio Ambiente y por la Ley de Pesca y Acuicultura. Para que una piscicultura pueda funcionar debe contar con la autorización para desarrollar actividades de acuicultura en un terreno de propiedad privada con captación de aguas superficiales o en aquellos terrenos donde las aguas nacen, corren y mueren en una misma propiedad. De acuerdo a esto, deben estar inscritos en el Registro nacional de Acuicultura, para adecuarse a lo que establece la normativa vigente. Además de esto, se debe tener propiedad del terreno donde se va a instalar la piscicultura y del agua que se utilizará. Junto con ello, y de acuerdo a la normativa ambiental, se debe presentar una Declaración de Impacto Ambiental, donde se realiza una descripción de la actividad o
proyecto que se pretende realizar, o de las modificaciones que se le introducirán, otorgado bajo juramento por el respectivo titular, cuyo contenido permite al organismo competente evaluar si su impacto ambiental se ajusta a las normas ambientales vigente.

Las empresas presentes en Curacautín se presentan a continuación y se localizan en el mapa de la Ilustración 8.

- **Piscicultura El Negro**, filial de la Empresa Salmones Captrén S.A, que tiene domicilio en la ciudad de Puerto Montt: se ubica cerca de la confluencia del estero El Negro con el Río Captrén, en el Sector El Aromo, localizado a 15,7 Km. de la ciudad de Curacautín. Para su funcionamiento registra aguas no consuntivas, superficiales y corrientes del estero El Negro, que según el caudal y ejercicio, son en promedio, 1852 l/s permanente continuo y 685,3 l/s eventual y discontinuo. La fuente de abastecimiento de agua para los trabajadores corresponde a una vertiente que nace y muere en el predio, de caudal aproximado de 10 l/s, variando estacionalmente.

- **Piscicultura El Chilco**, filial de la Empresa Salmones Captrén S.A, que tiene domicilio en la ciudad de Puerto Montt: ubicada en Sector Río Captrén Lote 1-A y 2-A, cuya producción es de ovas, alevines, smolt, reproductores, gametos.

- **Piscicultura Belén del Sur**: ubicada en la IX Región de la Araucanía, comuna de Curacautín a 22 Km. Camino Conguillío, Sector La Playa. La ruta de acceso a la Piscicultura Belén del Sur es el camino 925 Sur. Cuenta con derechos de aprovechamiento de agua no consuntivo permanente continuo: de 138,3 l/s del Río Captrén y 400 l/s del Estero Puentes. Además, cuenta con sistema particular de agua potable. Actualmente no está funcionando, y se encuentra en proceso de venta.

- **Piscicultura Ecofish.** Km. 19 camino Lago Blanco, Sector Las Araucarias, Panquehue. Realiza el desove, incubación y alevinaje de especies salmonídeas. Esta cuenta con un Sistema de Tratamiento Primario para Aguas Residuales.

- **Piscicultura Las Araucarias**: se ubica en la comuna de Curacautín, Provincia de Malleco, Región de La Araucanía Km. 19 camino Laguna Blanca sector Las Araucarias, Panquehue. Su representante legal registra domicilio en la comuna de Curacautín. Cuenta con derechos de aprovechamiento no consuntivo de aguas superficiales y corrientes por un máximo de 450 l/s de ejercicio permanente y continuo; y posee derechos de agua consuntivos por 46 l/s.
Propietarios de derechos de aprovechamiento de agua

Son personas naturales o jurídicas que cuentan con derechos de aprovechamiento de agua, en el marco del Código de Agua, que pueden ser consuntivos o no consuntivos, permanentes o eventuales, continuo, discontinuo, alternado o provisionales. La adquisición o regulación de estos derechos se realizó mediante solicitud o regularización a la Dirección General de Agua y tiene por objetivo el uso para uso doméstico o para el desarrollo de actividades productivas.

Según la información entregada por la DGA (2013) a la fecha se han entregado unos 10.930 derechos, los cuales se encuentran distribuidos en derechos consuntivos y no consuntivos para cursos de agua superficial y consuntivos para agua subterránea (ver Tabla 9).

Tabla 9: Total de derechos de aprovechamiento otorgados en Curacautín y Lonquimay

<table>
<thead>
<tr>
<th>Comuna</th>
<th>Tramitados a marzo de 2013</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superficiales</td>
<td>Subterráneas</td>
</tr>
<tr>
<td></td>
<td>Consuntivos</td>
<td>No consuntivos</td>
</tr>
<tr>
<td>Nº</td>
<td>Q (l/s)</td>
<td>Nº</td>
</tr>
<tr>
<td>Curacautín</td>
<td>715</td>
<td>90.836</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>2.680</td>
<td>1.432.482</td>
</tr>
</tbody>
</table>

Estos derechos se encuentran distribuidos en un total de 448 personas, las que se distinguen según el tipo de uso, de acuerdo a la siguiente tabla.

Tabla 10: Total de derechos de aprovechamiento otorgados en Curacautín y Lonquimay

<table>
<thead>
<tr>
<th>Comuna</th>
<th>Tramitados a marzo de 2013</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Personas Naturales y Jurídicas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consuntivos</td>
<td>No consuntivos</td>
</tr>
<tr>
<td></td>
<td>Nº</td>
<td>Q (l/s)</td>
</tr>
<tr>
<td>Curacautín</td>
<td>130 90.836</td>
<td>77 7.862.637</td>
</tr>
<tr>
<td>Lonquimay</td>
<td>232 1.432.482</td>
<td>9 403.331</td>
</tr>
<tr>
<td>Total</td>
<td>362 1.523.318</td>
<td>86 8.265.968</td>
</tr>
</tbody>
</table>

Empresa de Áridos.

La extracción y procesamiento de áridos es una actividad de carácter industrial que posibilita el desarrollo de la actividad de la construcción, al constituirse en importante insumo para la fabricación de hormigón, bases estabilizadas, morteros, cementos asfálticos, etc., y como componente accesorio en una vasta serie de actividades sin cuya intervención los costos serían mayores y las faenas tendrían otro tipo de complejidades. La actividad ha tenido una evolución que ha estado marcada por la presión que el mercado ha puesto, con una demanda creciente del recurso desde el sector de la construcción y por la regulación que los organismos estatales aplican sobre ella.

Estas empresas operan en ambas cuencas y forman parte del sector construcción. El material es extraído desde los cauces naturales de los ríos Lonquimay, en Lonquimay, y Blanco Sur en Curacautín, y es distribuido a distintas obras de la región, dependiendo de la demanda por el material. Actualmente se localizan cinco empresas, dos en Curacautín y el tres en la comuna de Lonquimay. Para el chancado del material, utilizan agua, pero es captada y devuelta a los caudales, y no requiere importantes volúmenes de agua para dicha labor.

Actores indirectos que apoyan el manejo y uso del agua

En esta categoría se agrupan todos aquellos actores que interviene en la gestión, uso, manejo del agua a través de un actor directo o requieren que suceda alguna situación en particular para poder actuar. Se identifican a aquellos que financian proyectos para mejorar la eficiencia de utilización del agua, aquellos que actúan como fiscalizadores del acceso al agua y del cumplimiento de la normativa que regula el uso y manejo del agua y aquellos que proveen servicios técnicos de apoyo al manejo del recurso.
- Financiamiento de proyectos para acceso y uso del agua

Gobierno Regional de La Araucanía (GORE)

El Gobierno Regional es un servicio autónomo encargado de la administración de la región y tiene como misión "Liderar el desarrollo de la Región de La Araucanía, implementando políticas públicas con pertinencia multicultural, equidad e identidad territorial, sustentabilidad e inclusión".

Está compuesto por el Intendente Regional en su calidad de Órgano Ejecutivo y por el Consejo Regional. Aporta financiamiento a través de fondos regional que son distribuidos a otros servicios públicos, como INDAP; CONAF, CONADI, DOH, y de manera directa, a través de fondos como el FNDR, que financia iniciativas de inversión (estudios, programas y proyectos), las cuales se han concentrado durante los últimos años en servicios públicos básicos (agua potable, alcantarillado, electricidad, vialidad, etc.), inversión social en infraestructura en los sectores de salud y educación y actividades de fomento productivo (tecnificación, industrialización de procesos productivos)

Subsecretaría de Desarrollo Regional (SUBDERE)

Institución pública que a través del programa de Infraestructura rural para el desarrollo territorial aporta fondos de financiamiento para instalación de sistemas de agua potable rural.

Instituto de Desarrollo Agropecuario (INDAP)

Organismo público, dependiente del Ministerio de Agricultura, realiza financiamiento de proyectos de riego o recuperación de suelos degradados, focalizado para pequeños agricultores agropecuarios, naturales o jurídicos, y a poseedores de derechos de aprovechamiento de aguas subterráneas, para el caso de construcción de pozos. La oficina regional se encuentra ubicada en la ciudad de Temuco, y los agricultores acceden a sus programas a través del Programa Prodesal.

Servicio Agrícola y Ganadero (SAG)

Organismo público, dependiente del Ministerio de Agricultura, tiene una línea de financiamiento de proyectos de riego o recuperación de suelos degradados, focalizado para pequeños y medianos agricultores agropecuarios, naturales o jurídicos. El acceso al financiamiento se realiza a partir de concurso público, por postulación. La oficina regional ubicada en Temuco.

Corporación Nacional de Desarrollo Indígena (CONADI)

Organismo público, dependiente del Ministerio de Desarrollo Social, cuenta con una línea de financiamiento de construcción de obras de riego y drenaje, dirigido a productores pertenecientes a personas naturales indígenas o comunidades indígenas, que posean derechos de aprovechamiento de aguas, para el caso de proyectos de riego.

Comisión Nacional de Riego (CNR)

Institución pública, dependiente del Ministerio de Agricultura, financia, a través de sus programas, la instalación de sistemas de riego para agricultores y organizaciones de regantes.
Municipalidad de Curacautín y Lonquimay
Las municipalidades de ambas comunas son las encargadas de ejercer la administración local de la Comuna, satisfacer las necesidades de la comunidad local y asegurar su participación en el progreso económico, social y cultural de la comuna. Siguiendo la visión que la comunidad local tiene de esta institución, actúa como un promotor del desarrollo y como ente vinculante entre habitantes de la comuna y servicios públicos de todos los ámbitos.

- Fiscalización del acceso al agua y del cumplimiento de la normativa que regula el uso

Superintendencia de Servicios Sanitarios
Institución pública encargada de fijar las tarifas por los servicios de agua potable y alcantarillado de aguas servidas que prestan las empresas sanitarias, otorgar concesiones de servicios sanitarios, fiscalizar las empresas sanitarias, particularmente respecto de la calidad del servicio prestado. Trabaja a nivel regional, encontrándose su oficina en la ciudad de Temuco.

Juzgado de Letras y Garantía
Institución pública, ubicado en la comuna de Curacautín, es el encargado de dictaminar, mediante sentencia judicial la pertinencia de la regularización del uso del agua. Trabaja en coordinación con la Dirección General de Aguas, quien entrega los antecedentes para llevar a cabo dicho dictamen. El plazo legal y real para este tipo de tramitación depende de los tiempos involucrados en la dictación de la resolución del Juez competente. Una vez regularizado un derecho de aprovechamiento vía sentencia judicial y dicha sentencia se encuentre ejecutoriada, la validez es inmediata para todos los efectos legales.

Servicio de Evaluación Ambiental (SEA)
Servicio público encargado de la evaluación ambiental de proyectos hidroeléctricos, pisciculturas, proyectos turísticos que cuyas construcciones tengan un impacto ambiental, explotaciones mineras, entre otras, ajustada a lo establecido en la norma vigente, y aprobar la ejecución de los proyectos. Está representado en Dirección regional, ubicados en la capital regional, Temuco.

- Asistencia Técnica a usuarios del agua

Empresa Aguas Araucanía
Empresa sanitaria privada que actúa, en el caso del sector rural de las comunas, como encargada de realizar Asistencia técnica y administrativa para la mantención de los sistemas de agua potable rural. Trabaja junto a un equipo técnico que debe velar por el funcionamiento de la instalación de agua potable, desde la captación, potabilización y distribución hacia las viviendas.

- Actores directos que participan en la gestión del agua en el territorio
Empresa Aguas Araucanía

Empresa encargada de la captación, distribución y saneamiento de agua en sectores urbanos. Aguas Araucanía es una empresa privada, filial del grupo Aguas Nuevas, controlada por Inversiones AyS Tres S.A. Presta servicios de producción y entrega de agua potable, alcantarillado y tratamiento de aguas servida en la Región de la Araucanía. Fue constituida en el año 1990, y opera las concesiones de producción y distribución de agua potable y de recolección y disposición de aguas servidas de 34 sistemas, correspondientes a igual número de localidades urbanas, ubicadas en la IX Región del país.

Con fecha 16 de agosto de 2004, AGUAS ARAUCANIA S.A. adquirió los derechos de explotación de las concesiones sanitarias que era titular la Empresa de Servicios Sanitarios de Araucanía (Aguas Araucanía S.A.) en los términos contemplados en los artículos 7º y 32º de la Ley General de Servicios Sanitarios, contenida en el DFL Nº 382 de 1988 del Ministerio de Obras Públicas (MOP) y en los artículos 57º y siguiente de su reglamento contenido en el Decreto Supremo Nº 121 de 1990 del mismo ministerio. En esa oportunidad la empresa Aguas Araucanía transfirió el derecho de explotación a la concesión por un valor de 2.347.678 UF ($40.183.584.428).

Dirección de Obras Hidráulicas
Institución pública, dependiente del Ministerio de Obras Públicas, cuya acción se centra en el abastecimiento de agua potable a sectores rurales de las comunas, a través del Programa de Agua Potable Rural. Tiene por misión abastecer de agua potable a localidades rurales, de acuerdo a la Norma Chilena NCh 409 Of. 84, que establece parámetros de calidad, cantidad y continuidad. Trabaja en conjunto con la comunidad organizada, para que se encargue de la administración del servicio una vez construido. Sus oficinas se encuentran ubicadas en la ciudad de Temuco, desde donde opera hacia las comunas.

Actúa indirectamente, en el caso de los proyectos de riego, donde su acción tiene que ver con la construcción de nuevos embalses y su supervisión; construcción de nuevos canales de regadío y entubamiento; mejoramiento de canales y obras de arte, y la construcción de pozos, realiza obras de drenaje y manejo de causas. Además, actúa como fiscalizador de obras que postularon a los concursos de la Ley de Fomento al Riego, y que comprometen subsidios a los agricultores.

Dirección General de Aguas
Institución pública, dependiente del Ministerio de Obras Públicas. Es la encargada de la gestión y administración del recurso hídrico en un marco de sustentabilidad, interés público y asignación eficiente (fiscalización y entrega de derechos de uso de aprovechamiento de aguas consuntiva y no consuntiva de acuerdo a lo establecido en el Código de Aguas, conservación y protección de recursos hídricos, fiscalización). Sus oficinas se encuentran ubicadas en la ciudad de Temuco, desde donde opera a nivel regional.

De acuerdo a los diferentes usos del agua identificados en el territorio, su intervención busca: En el caso de la instalación de sistemas de agua potable rural, se encarga de gestionar la regularización de
los derechos consuntivos, que son solicitados por los Comités de Agua Potable Rural. Esto permite que las localidades rurales organizadas que postulan a programas de agua potable puedan contar con los derechos de aprovechamiento sobre el recurso hídrico, y por tanto puedan utilizarlo. Lo mismo en el caso de la instalación de sistemas de riego, bajo el mismo procedimiento, se realiza la gestión para asignar derechos de agua para fines productivos.

Discusión sobre presentación de los actores

La identificación de actores tuvo como punto de partida el trabajo de mapeo de actores realizado algunos meses antes de este estudio, puesto que permitió identificar a todos los actores que se desempeñan en el territorio de Bosque Modelo, sin embargo, hay importante diferencias entre ambos, que tienen que ver, básicamente, con el enfoque que sustenta ambas definiciones.

En el caso del estudio de mapeo de actores, se busca entender la colaboración entre los diferentes actores del territorio, tanto a nivel local como regional y gubernamental, desde tres perspectivas: una productiva, que incluye productores agropecuarios y campesinos mapuche y colonos, instituciones públicas y sector privado; quienes en su conjunto aportan visiones acerca de las relaciones entre los actores, que conforman canales de colaboración y que permiten alcanzar un fin, y cuyas intensidades y nivel de protagonismo de cada actor varía según la visión de cada grupo. Los vínculos, por tanto, tienen que ver con la planificación y gestión del recurso hídrico, los flujos de intercambio de información científico-técnica entre actores, los flujos de información sobre planificación y manejo del agua, los flujos de apoyo y asesoría técnica y los flujos de financiamiento vinculado al uso o manejo del recurso hídrico.

Los actores se categorizan en tres grupos: actores centrales y articuladores en la rede y actores puente entre escalas y tipología de actor; cada uno de los cuales mantiene el enfoque de comprensión de las relaciones entre los actores públicos y privados y que se constituye en una especie de carta de navegación o conducto regular que siguen los habitantes locales frente a requerimientos de recursos hídricos, información, asistencia técnica o financiamiento.

De acuerdo a esto, se identifican actores centrales públicos, como los Municipios, INDAP; DGA, CONAF, Ministerio del Medio Ambiente; y privados, como agricultores. Los actores puentes corresponden a instituciones públicas, como la DGA que se relaciona a la planificación de los recursos hídricos y otorgamiento de derechos de agua, INDAP, asociado a la asistencia técnica y financiamiento para el desarrollo agropecuario, y Ministerio del Medio Ambiente, como ente fiscalizador.

Además, se identifican actores influyentes en la toma de decisiones con respecto al recurso hídrico. Estas se agrupan de acuerdo a su influencia, en alta, media y baja. En la primera categoría se ubican la Dirección General de Aguas, Empresas Hidroeléctricas, Poder legislativo e INDAP, y en la segunda categoría Municipios, Ministerio del Medio Ambiente, CONADI, CONAF.

Para efectos de este estudio, el enfoque que lo sustenta es diferente, puesto que la identificación de los actores se enmarca en la problemática, por tanto busca entender las relaciones
entre los actores del territorio y las interacciones entre estos y los recursos y cómo estas dinámicas influyen en la disponibilidad de agua en el territorio.

Al respecto, los actores identificados en este estudio se reorganizan en dos categorías de actores que son directos e indirectos, donde los primeros se asocian a la demanda y gestión de recursos hídricos y por tanto tienen un impacto directo sobre la disponibilidad, ya sea porque la demandan para desarrollar actividades productiva, domésticas o porque son los encargados de administrar el recurso del territorio en los distintos ámbitos. Los segundos actúan en el manejo del agua o financiamiento de infraestructura para dicho propósito, pero lo hacen a través de otros actores, y su influencia es dependiente de la demanda por parte de actores directos del territorio.

Desde esta perspectiva, se excluyeron del presente estudio las ONGs, DAS, CODEFF, y Universidades, ya que si bien actúan en el territorio, actúan como intermediarios entre productores, campesinos y habitantes del territorio en diversas temáticas y, por tanto, mantienen una relación estrecha con las habitantes del territorio, no tienen influencia ni directa ni indirecta sobre la disponibilidad de agua.

3.2.2 Recursos

La identificación de recursos (R), se construyó a partir de la revisión de información secundaria que luego fue socializada con cada grupo de actores locales, quienes trabajaron sobre una lista de recursos delimitando y clasificándolos en relación a la problemática sobre disponibilidad de agua en el territorio.

Los actores fueron clasificando estos recursos en cinco categorías mayores, las cuales se detallan a continuación.

a. Recursos hídricos: Son identificados como la materia prima que está disponible en diversos estados en las cuencas, que son transformados y utilizados por los actores del territorio. Los recursos hídricos incluyen aguas superficiales, aguas subterráneas, agua potable urbana, agua potable rural.

b. Recursos productivos: que son utilizados por los actores para el desarrollo productivo del territorio. Su relación con la disponibilidad del agua es el impacto que los actores productivos tienen sobre los recursos hídricos (consumo, contaminación): bosque nativo, suelo agrícola, suelo forestal (plantaciones forestales), ganado.

c. Recursos de infraestructura: corresponden a las construcciones destinadas al manejo de aguas residuales, que pueden impactar en la calidad de los recursos hídricos a nivel de cuenca. Por ejemplo, la red de alcantarillado y las fosas sépticas.

d. Recursos legales: tiene que ver con la clasificación de los recursos hídricos que viene a determinar el acceso y uso al agua, es decir los derechos consuntivos y derechos no consuntivos.
En el caso de la cuenca del Bio Bio, los recursos identificados coinciden en su mayoría con los mencionados en la cuenca del Imperial.

La vinculación de los recursos con los actores, para ambas cuencas, se realizan en el apartado anterior y se realizará en el capítulo siguiente, así como también se precisa la información acerca de sus características en el territorio.
3.3 Dinámicas e interacciones

La siguiente etapa consistió en identificar los procesos que afectan la disponibilidad de agua en el territorio y en describir las interacciones entre actores y recursos. El proceso se inició con la pregunta: ¿qué procesos relevantes han provocado cambio en el territorio en relación a la disponibilidad de agua? Las respuestas fueron entregadas por actores locales, quienes además agruparon los procesos en ecológicos, económicos y sociales. Esta agrupación o enfoque permitió sistematizar los procesos en dos modelos conceptuales para cada una de las cuencas, uno biofísico y uno legal.

3.3.1 Enfoque biofísico

El enfoque biofísico muestra las relaciones entre los actores del territorio y los recursos biofísicos y cómo estas interacciones influyen en la disponibilidad de agua para el desarrollo, en un contexto de un sostenido crecimiento económico y desarrollo social que en las últimas décadas ha experimentado el país y que han llevado a un aumento de las demandas de agua para diferentes usos, por diferentes tipos de usuarios.

Ilustración 11: Modelo Biofísico Cuenca del Imperial, Comuna de Curacautín
El modelo biofísico co-construido con actores del territorio se centra en la disponibilidad de los cauces de aguas superficiales y de aguas subterráneas, y en sus distintos estados, que constituyen la oferta de recursos hídricos de la cuenca para el desarrollo local, y desde la cual se satisface la demanda de agua para uso doméstico y para el desarrollo de las actividades productivas.

Las aguas superficiales están representadas por los caudales de ríos, esteros, vertientes, los cuales en su mayoría son afluentes del cauce principal que es el río Cautín. El régimen hidrológico de la cuenca es de tipo pluvial, con algunos aportes nivales, siendo su principal aporte proveniente de las precipitaciones de agua y nieve, presentando los cauces sus mayores caudales en el periodo Junio a Septiembre. Los glaciares constituyen la principal reserva de agua dulce, cuyos derretimientos realizan leves aportes entre los meses de diciembre y febrero.

En este sector de la cuenca, la permeabilidad es muy baja debido a la presencia de formaciones rocosas de origen volcánico. Las infiltraciones escurren al acuífero (agua subterránea) por el subsuelo hasta las depresiones de las cuales el cauce del río Cautín forma parte de una zona de material no consolidado o relleno bajo. Junto al río Cautín se encuentra asociado un acuífero que escurre hacia la depresión intermedia ampliándose al sur de la ciudad de Curacautín, a través de material no consolidado.
formado principalmente por depósitos aluviales. Destacan en este sector los bajos niveles freáticos, cercanos al límite con la comuna de Lautaro.

Sector Urbano: Agua para uso doméstico

El agua necesaria para abastecer de agua potable a la población de la cuenca es menor al agua destinada para otros usos. El banco Mundial (2011), estima que a nivel nacional el 6% del agua consuntiva se destina para este sector. Como ya se señalara en los capítulos anteriores (problemática y descripción de actores), en el sector urbano la producción y distribución de agua potable, así como la recolección de aguas residuales y tratamiento, es realizada por una empresa sanitaria, que en el caso de la novena región corresponde a Aguas Araucanía, cuyo ejercicio se rige por la Ley de Servicios Sanitarios y por el Reglamento de Concesiones Sanitarias, lo que es supervisado por la Superintendencia de Servicios Sanitarios (SISS).

En Curacautín, la fuente de abastecimiento consiste en una única captación superficial, en los faldeos del cerro Córdova a unos 4.100 metros al norte de la ciudad, que capta los recursos de la vertiente Los Laureles, a unos 60 metros aguas abajo de su nacimiento. La producción es limitada sólo por la capacidad de almacenamiento de los estanques impulsada hasta la planta de filtros y los estanques de regulación. El agua extraída desde la vertiente (Agua Cruda) es conducida hasta la Planta de Tratamiento de Agua Potable, que es compacta y permite combatir la turbiedad, donde el agua tratada es clorada y fluorada; y luego conducida hacia un estanque semienterrado, desde el cual se impulsa por una Planta Elevadora Agua Potable tipo A hacia el estanque elevado Curacautín. La actual fuente de abastecimiento de Curacautín puede ser clasificada como buena, referida a presencia de turbiedad y de coliformes totales y fecales de acuerdo a la Norma NCh 777 Of. 71 “Fuente de abastecimiento y obras de captación...”. En el caso de la calidad físico-química de las aguas de la captación, presenta parámetros con valores menores a los máximos aceptadas por la Norma NCh 409 Of. 84.

En Lonquimay, la fuente de abastecimiento actual consiste en una captación subterránea denominada Noria Nº 9061, la cual solo se somete a tratamientos de cloración y fluorización, y que es impulsada hacia un estanque semienterrado, que abastece el sector Bajo de la comuna, y a partir del cual se conduce agua hacia un estanque elevado, que abastece el sector Alto de la comuna. Para el tratamiento de las aguas residuales en Curacautín, la misma empresa sanitaria Aguas Araucanía se encarga de recogerlas y conducirlas a una planta de tratamiento ubicada en dentro de la comuna, a través de la red de alcantarillado, a la cual está conectada la mayoría de la población. La recolección se realiza desde cuatro puntos: Sector Central, Sector Padre Juan, Sector Centenario y Sector Gravitacional. Los sectores Centenario y San Juan elevan sus aguas servidas para llegar al sector de recolección Central. Desde esta red, la totalidad de las aguas son conducidas a la Planta Elevadora Aguas Servidas (PEAS) Manuel Montt mediante un colector. En la PEAS Manuel Montt, también confluyen las aguas servidas del sector Gravitacional. Desde este punto el caudal es impulsado para ser descargadas a la PEAS de cabecera de Planta de Tratamiento Aguas Servidas.

Según fue evidenciado en la visita a la planta de Tratamiento de Curacautín y señalado por el encargado de comunicaciones de la empresa sanitaria, se trata de un tratamiento primario con
desinfección, que contempla en el tratamiento la estabilización de lodos mediante cal, según lo establece la normativa vigente. Esto se realiza en el sector oeste de la misma, fuera del límite urbano y a aproximadamente a 0,5 km de los actuales puntos de descarga. El efluente tratado es vertido al Río Blanco. Un 9,7% de la población urbana no se encuentra conectada al sistema de alcantarillado. Esta parte de la población cuenta con infraestructura como canales, fosas sépticas y/o pozos negros para verter las aguas servidas no tratadas. Para P los actores del territorio esto representa un problema, ya que estas aguas residuales no tratadas contaminan las aguas superficiales, que son receptoras directas, y las aguas subterráneas, que son receptoras por infiltración desde la superficie.

En el caso de la comuna de Lonquimay, el tratamiento de aguas se inicia con la recolección de un único sistema denominado Lonquimay Gravitacional, a partir del cual las aguas servidas son descargadas a una Planta Elevadora de Aguas Servidas Abutardas, que las impulsa hacia la Planta de Tratamiento ubicada en la entrada a Lonquimay, a un costado del río del mismo nombre, en el terreno El Naranjo. Se estima que al año 2012, un 4,6% de la población urbana no se encontraba conectada la red de alcantarillado, y al igual que en Curacautín, derramaban aguas servidas sin tratamiento a fuentes superficiales o utilizaban infraestructura que puede impactar en la calidad de las aguas subterráneas.

Los principales componentes involucrados en el tratamiento preliminar del agua son componentes para remoción de sólidos gruesos, arenas y grasas. Luego se realiza un tratamiento biológico, que consiste en inducir el desarrollo de un cultivo bacteriano aerobio en un depósito aireado y agitado, donde la mezcla resultante es enviada a un sedimentador secundario que actúa como clarificador, en el cual se separa el agua depurada de los lodos. El agua es sometida a un proceso de cloración para cumplir con la calidad bacteriológica del efluente según lo establece la normativa.

Sector Rural: Agua para uso doméstico

En las localidades rurales de ambas cuencas la administración de la producción y distribución del agua están a cargo de los Comités Rurales de Agua Potable (APR), que cuentan con apoyo técnico y financiero de parte del Estado, a través de la Dirección de Obras Hidráulicas (DOH) y asesoría técnica y mantenimiento del equipo e implementos de captación y distribución por parte de una empresa sanitaria, que en este caso es Aguas Araucanía.

Las captaciones de agua en las comunidades rurales se realizan desde fuentes superficiales y subterráneas, según detalle presentado en los apartados anteriores (ver descripción de actores). Los Comités de APR se encuentran en sectores concentrados, que son aquellas localidades cuya densidad habitacional sobrepasa las 15 viviendas por kilómetro de red y con al menos 150 habitantes, lo que responde al enfoque de inversión adoptado por las instituciones vinculadas al financiamiento. A futuro se proyecta, por parte de la institucionalidad, ampliar el acceso a agua potable a viviendas semiconcentradas. Mientras tanto, estas viviendas y aquellas que se encuentran aisladas o dispersas unas de otras (habitantes rurales), extraen agua de fuentes subterráneas o superficiales, de manera particular y con financiamiento propio.
La población rural no cuenta con infraestructura para el tratamiento de aguas servidas, por lo que estas son derramadas directamente en fuentes de agua superficiales, o se utilizan fosas sépticas. Las incertidumbres se centran en la calidad de las aguas receptoras, ya que muchas de las construcciones que sirven de receptoras de efluentes se ubican cercanas a vertientes, que más tarde son utilizadas como fuentes de agua para consumo. Para los grupos impulsores de ambas cuencas, hay procesos que han venido sucediendo que tendrían un impacto positivo en la disponibilidad de agua para uso doméstico, estos son:

1. Mayor divulgación de información de temas ambientales, que han creado conciencia en la población respecto al uso del agua, y que permitirán hacer un uso más eficiente del agua. Estos se han trabajado además en establecimientos educacionales, que permitirán que a futuro las nuevas generaciones cuiden más el recurso.

2. Aumento del costo del agua potable y tratamiento de aguas servidas en sectores urbanos ha hecho que las personas cuiden más el recurso para disminuir los gastos asociados al pago por el servicio.

Así también, mencionan algunos procesos vinculados al aumento de la demanda de agua para uso doméstico, por:

1. Mayor inversión en subsidios habitacionales: han permitido que haya un aumento de casas, que se visualiza en el aumento de poblaciones, algunas de las cuales son destinadas para el desarrollo del turismo o son arrendadas a población flotante. Este aumento en el número de viviendas no se relaciona al número de habitantes, que en la última década ha disminuido, sino a que muchas parejas acceden a subsidios de forma individual, obteniendo dos casas por familia.

2. Cambio en las prácticas de consumo: las viviendas cuentan con instalaciones que facilitan el uso de agua, como cañerías, llaves en lavamanos y lavaplatos, instalaciones como calefón y artefactos, como lavadoras, todas las cuales se encuentran presentes en la mayoría de las viviendas de la comuna, y cuyo efecto es el aumento en el consumo del agua.

3. Fragmentación de la propiedad rural, producto de la llegada de comunidades mapuche a la comuna, que no solo tiene efectos sobre el suelo y el bosque, sino que aumenta la demanda de agua para consumo.

Sector Silvoagropecuario

A nivel productivo, el sector silvoagropecuario representa la mayor demanda de agua y donde los manejos de los recursos pueden tener impactos sobre la disponibilidad de agua. Los actores, representados por los productores silvoagropecuarios, que pueden ser pequeños o medianos, interactúan con los recursos productivos, como el suelo agrícola, suelo forestal, ganado y bosque nativo.

Para la cuenca del Imperial, la actividad silvoagropecuario representa la mayor superficie y la mayor demanda de agua. En los años 70, la zona de Curacautín basó su economía principalmente en la explotación maderera, en el cultivo de trigo y la crianza de animales, se distinguían grandes aserraderos, industria de la madera terciada, y parte del importante mercado“granero de Chile”.
En la actualidad las actividades productivas corresponden: a establecimiento de cultivos tradicionales como el trigo y la avena, tubérculos, como la papa e industriales, como el raps (canola), con un fuerte incremento respecto de la década anterior; y praderas permanentes y de rotación; a ganadería bovina y ovina; y a producción forestal, principalmente plantaciones de eucaliptus.

Los suelos de la cabecera de cuenca corresponden principalmente a suelos con trumaos, de las clases II a III y IV. De estos, en menor proporción se encuentran los suelos de riego de las clases IIa y III, y clase VIII que corresponden a suelos de secano que carecen de valor silvoagropecuario; y en mayor proporción, los terrenos de secano de la clases II a VII. Los suelos de secano son utilizados para el establecimiento de praderas y forestación, para la producción de cereales, leguminosas y cultivos industriales.

Desde el punto de vista del desarrollo agrícola, el clima del territorio limita la amplitud y productividad de los cultivos. Así por ejemplo, la zona presenta una gradiente que va en el sentido norte-sur, que hace que las restricciones por longitud del periodo de libre de heladas vayan acentuándose en esta dirección, permitiendo que en el sector norte las limitaciones para el establecimiento de cultivos, como la papa, sean moderadas, y vayan en aumento en dirección sur, registrando mayores limitaciones para el establecimiento de los cultivos. Lo que se ve acentuado por las características topográficas, que distinguen la zona norte de la sur, donde la primera está al nivel de los ríos, y la segunda, presenta mayor altura con respecto a los ríos.

En relación a los requerimientos de agua para el desarrollo agrícola, la necesidad de los productores por mejorar los rendimientos por hectárea para aumentar la rentabilidad de los negocios han provocado cambios en los manejos de los cultivos, que tienen que ver con:

- Incorporación riego y el uso de agroquímicos
- Uso de variedades precoces, que ha permitido acortar los periodos de siembra-cosecha, de 8 meses a 6 meses,
- Mayor una mayor demanda/uso de agua
- Incorporación de y cultivos de rotación, como la avena para pastoreo
- Utilización de praderas naturales degradadas, en las cuales se siembra la serie trigo-raps-avena, que después de la rotación, permite obtener una praderas de 2 a 3 años.
- Incorporación de cultivos agrícolas en hileras, que no son capaces de retener el agua en la superficie y aumentan la percolación a fuentes hídricas subterráneas. (Agentes de cambio, 2013)

El sector forestal es uno de los rubros que ha mostrado un mayor dinamismo en los últimos 15 años, no solo en el territorio, sino que a nivel regional; lo que responde a transformaciones en el contexto nacional político y económico, tales como una política económica que brinda un escenario de estabilidad y transparencia que atrae la atención de inversionistas al sector forestal. Esto se suma a la implementación de la Ley 701 de 1974, considerada una ley moderna en ese entonces y que fomentaba las plantaciones forestales a partir de la bonificación directa al productor forestal. Además, esta Ley estableció la absoluta inexpropiabilidad de los terrenos forestados, fijó una bonificación o subsidio directo, pagadero dentro de un año plazo en dinero y sin mayores trámites, del 75% de los costos de
plantaición y manejo por dos podas (administración anual y poda). La Ley introdujo también algunas franquicias tributarias, pero bastante más reducidas que las que fijaba la antigua ley de bosques.

En el contexto local, el desarrollo forestal se ve favorecido por las condiciones edafo-climáticas del territorio, y su auge en la última década responde, además de las transformaciones antes mencionadas, a la rentabilidad del rubro y a otros factores como la disminución de la rentabilidad del sector agropecuario, con el aumento de los costos de producción agrícola y ganadera, y disminución de la rentabilidad.

De manera transversal, se ubica el recurso bosque nativo, cuya función es retener el agua en los suelos, que proviene de las lluvias. Su relación con el productor silvoagropecuario está dada por el manejo que este hace del recurso para mantener esta capacidad de retención de agua, por las prácticas de tala, para reemplazo a suelo agrícola o forestal o para venta de leña o madera, y por uso del recurso para alimentación del ganado.

Entre los procesos que han contribuido a la disminución de superficie de bosque nativo se encuentra:

1. Incendios forestales que han consumido unas 700 hectáreas desde el año 1985
2. Reemplazo de terrenos cubiertos por bosque nativo a terrenos agrícolas o para plantaciones de eucaliptus o pino
3. Degradación, producto del manejo inadecuado o nulo del recurso. El manejo del bosque nativo, ausente en una superficie importante del territorio, constituye otro proceso que determinaría la disponibilidad de agua. Un actor local que es parte de la CONAF señala que “los bosques que no se manejan producen menos agua que cuando se manejan. Cuando están produciendo folio (hojas), es cuando producen agua”.
4. Uso para leña y madera para construcción

Además, transformaciones institucionales que han permitido la:

1. Protección del recurso, a partir de la implementación de la ley de bosque nativo, que regula la explotación del recurso y a partir de la cual la tala indiscriminada en “Curacautín empezó a frenarse cuando se instaló la Corporación Nacional Forestal” (Actor Local, 2013). Respecto de este dato, no se tiene información actualizada de los impactos que dicha implementación ha tenido, en términos de la superficie de bosque se ha mantenido o ha seguido disminuyendo, siendo los últimos datos registrados en el periodo 2006 – 2007.

Y, por último, transformaciones naturales:

2. Renovación de bosque nativo, se señala que “Malalcahuello, en la década del 90, cerca de las termas de Malalcahuello hacia el cruce era un peladero, no había nada, y desde el 97 se ha ido recuperando” (Actor Local, 2013), lo cual no se ve reflejado en los catastros o estudios realizados por CONAF, por lo que no es posible afirmarlo.
Finalmente, esta también la producción ganadera que se centra principalmente en la crianza de bovinos y ovinos. Los requerimientos de agua, además de los usos para el establecimiento de praderas para la alimentación que fue mencionada antes; tienen que ver con la necesidad de los productores de contar con agua para bebida para los animales. Es importante señalar que el agua para bebida se extrae de fuentes superficiales que se encuentran en los predios o fuera de ellos y es distribuida a los animales utilizando infraestructura, como bebederos o abrevaderos, o habilitando una rivera de río, canal o estero para que los animales beban directamente de la fuente.

Ante el aumento de la masa ganadera, especialmente de ovinos en la zona de Curacautín, y un desarrollo de la ganadería, que tiene que ver con la incorporación de infraestructura (galpones, cercos, cobertizos) para mejorar las condiciones de la producción y disminuir la mortalidad por condiciones climáticas, sumado al afán productivo de mejorar la calidad del ganado con la incorporación de praderas de mejor producción por hectárea bajo sistema de rotación de cultivos, es que al contrario de lo que se esperaba, se aumentó el número de animales para una misma superficie. Estos procesos impactan en la disponibilidad de agua, porque al mejorar las condiciones de manejo e incorporar tecnologías al proceso productivo, aumenta la masa ganadera o bien, ocurre una rotación de animales más rápida, porque hoy día la engorda es más a corto plazo, y por tanto, la exportación de carne es bastante más, y con ello aumenta el requerimiento de litros para el consumo de los animales.

Por otro lado, se advierten algunos impactos que provienen del manejo inadecuado del ganado, relacionados a la falta de infraestructura para dar agua al ganado, que, si bien no existen cifras que indiquen el porcentaje de productores que las utilizan, muchos de estos habilitan riveras en cauces superficiales (aguada), lo que provocan deterioro del suelo por pisoteo, aumento de la escorrentía y contaminación del agua. (Productores Agropecuarios, 2013)

Sector Acuícola

Este sector se localiza solo en Curacautín y se caracteriza por la alta demanda de agua para su funcionamiento, y por los cuestionamientos que realizan los actores respecto de la calidad del agua restituida a las fuentes superficiales.

COMENTARIO GENERAL

En Curacautín, las pisciculturas comienzan a instalarse a partir del año 1997, siendo su principal actividad la crianza de alevines, lo cual se mantiene hasta la fecha, y cuyo producto es comercializado a empresas de engorda de peces, ubicadas en Puerto Montt principalmente.
La utilización del agua se inicia con la captación de agua desde los cauces, las utilizan y luego las restituyen. Todo este proceso está regulado por la normativa ambiental, respecto de residuos sólidos y líquidos, emisiones atmosféricas, sustancias peligrosas y las normas chilenas oficiales de Acuerdos de Producción Limpia.

Dado que estas empresas se dedican a la crianza de alevines, requieren de aguas puras, ricas en oxígeno, por lo que buscan ubicar sus instalaciones en lugares cercanos al nacimiento de los cauces. Esta característica ha hecho de Curacautín un lugar atractivo para la instalación de estas empresas, debido a la buena calidad de las aguas. La restitución de agua, se realiza en las condiciones que lo establece la ley.

La calidad del agua restituida se adecúa según lo establecen las normas del Servicio del Medio Ambiente y del Servicio de Salud, sin embargo para los actores locales, el agua devuelta está libre de lodos (residuos sólidos), pero no tiene un tratamiento de cloración previo a la restitución, por lo que no se asegura que las aguas restituidas puedan ser utilizadas para consumo humano.

Respecto de esto último, la encargada de la Piscicultura el Negro, señala que esta industria es una de las más fiscalizadas, donde la calidad del agua restituida es monitoreada cada quince días, lo que es parte de las políticas que tiene la Superintendencia del Medio Ambiente. Además, son fiscalizados por la DGA, la CONAF, la CONAMA y el servicio de salud, a partir de visitas a las plantas sin previo aviso.

De acuerdo a esto,

“El tratamiento del agua que se restituye es sólidos suspendidos, el resto, a nivel de contenidos no hay problemas, porque nosotros usamos cloruros (hacemos tratamientos de sal) una vez a la semana para la limpieza, y eso está normado en una escala. Normalmente estamos dentro de los rangos, igual que los sólidos suspendidos. Tenemos muestreos quincenales, y nosotros tenemos que hacer una declaración a la superintendencia en forma mensual.” (Marín, P., Piscicultura el Negro)

Los principales productos que pueden impactar sobre la calidad del agua, corresponden al alimento y uso de medicamentos para peces. Respecto de estos últimos, y en lo que se refiere al uso de antibióticos, la profesional señala que dado que pueden alterar la flora y la macro fauna aguas abajo, producto de la descarga, es que su aplicación está supeditada a exámenes de laboratorio que respalden el diagnóstico y avalen el tratamiento, por lo que han quedado en el pasado aquellas prácticas que permitían su aplicación ante cualquier enfermedad aparente.

“Cuando los usamos, tenemos que tener un examen de laboratorio que avale el tratamiento, si no tienes ese diagnóstico no puedes hacer el tratamiento, entonces de una u otra forma está normado. Nosotros como salmonicultores tenemos a Intesal y Salmón Chile, y nosotros reportamos nuestro tratamiento, como un Acuerdo de Producción Limpia a ambas entidades, entonces si yo no tengo diagnóstico no puedo hacer un tratamiento.” (Marín, P., Piscicultura el Negro)

Por otro lado, en lo que se refiere a la producción, es importante contextualizar que la industria salmonera en Chile inicia su desarrollo a fines de los setenta e inicios de los ochenta. En sus comienzos incorporaron pequeños emprendimientos, que se desarrollaban en pequeñas plantas de carácter artesanal y con una baja producción. Durante los años 80, la industria comienza a expandirse, se
introducen nuevas tecnologías y nuevas formas de producción que la convierten en uno de los rubros más importantes de exportación de la economía chilena, y que refuerzan la idea de convertir a Chile en una potencia alimentaria. Esta expansión viene acompañada de la incorporación de nuevos capitales nacionales y extranjeros. Además, se expande el mercado exportador y con ello, se desarrolla una cadena extensa de empresas de insumos y servicios para la salmonicultura muy especializado. Como resultado, entre los años 2004 y 2006, Chile se proyecta como el segundo productor y exportador mundial de salmónidos llegando casi a alcanzar a Noruega, que es el principal productor mundial.

Este escenario cambia radicalmente entre los años 2007 y 2010, cuando se introduce el virus Anemia Infecciosa del Salmón (ISA), que con su rápida expansión genera una verdadera catástrofe productiva en la industria, reduciendo su producción a la mitad.

En la actualidad, cuando la industria aun no se repone a esta crisis ambiental, sanitaria, productiva y social, se enfrenta a un nuevo evento debido a una creciente pérdida de competitividad internacional por el aumento de sus costos de producción casi en un 26% en promedio, situación atribuida a las nuevas regulaciones sanitarias implementadas por el Estado, que se suman a la entrada de unos 18 patógenos virales, bacteriales y parasitarios durante los últimos años.

Esto tiene repercusiones a nivel local que vienen a disminuir las presiones sobre el recurso hídrico, de hecho, la encargada de la piscicultura El Negro, señala que “Ahora en Chilco tienen muy poquita producción, nosotros igual vamos a estar un periodo con poca producción, y ya no está ni la Piscicultura Belén del Sur tirando agua, así que el agua debería estar súper limpia...la producción baja por un tema de mercado y de negocios. Lo que pasa es que la crisis del 2007 fue ISA en términos sanitarios, la crisis que empezó el año pasado, 2012, finales del 2011, fue monetaria. Lo que pasa es que los precios del mercado, en general, están bajos, entonces, producir mucho, baja más el precio...qué hicieron la mayoría de las empresas, mataron peces, bajaron sus niveles de producción. Hay que considerar que la producción en el mar (engorda) es muy costosa, alimentar una jaula en mar que no vas a cosechar, o la vas a cosechar marchita, no es lo mismo que alimentar un estanque acá y perder 500 kg v/s 10000 kg que puedes perder en una sola jaula en el mar...” (Marín, P., Piscicultura el Negro)

Respecto de este escenario, y haciendo la relación a la demanda de agua en el territorio, dos de los entrevistados (R. Cifuentes – Asesor Obras de ingeniería Hidroeléctrica y P. Fuentes, Director de la DGA), señalan que la industria en la región podría decaer en los próximos años, dando paso a nuevas inversiones vinculadas a la generación de hidroelectricidad, que requieren volúmenes mayores de agua.

“Si nosotros vemos a nivel regional, ha habido pick – concentración - de solicitudes. En algún momento fueron las pisciculturas, y todos querían hacer pisciculturas, y eran derechos a lo mejor más chiquititos. Ahora el boom son las hidroeléctricas, todos piden para hidroeléctricas, y lógicamente esos son caudales mayores, y hay muchos constituidos y muchos pendientes.”(Fuentes, E., DGA, 2013)

- Sector Turismo

El turismo se visualiza como un eje de desarrollo para el territorio en ambas comunas. Su relación con la demanda de recursos hídricos para efectos de este análisis, se centrará con los
requerimientos para el establecimiento de alimentación y alojamiento, que requieren agua para consumo doméstico.

De acuerdo a lo señalado por los actores del territorio, la implicancia de esta actividad como motor de desarrollo para la comuna ha significado, por un lado, el aumento de la llegada de turistas en el periodo estival, que en la Comuna de Curacautín pasó de 5.032 pernoctaciones en 2001 a 34.942 en 2009, lo que significa, por un lado, un incremento del 594% en casi una década y una mayor concentración de estos en época invernal, por el centro de esquí Corralco; y por otro, un aumento del establecimiento de infraestructura hotelera y de alimentación, que tienen impactos sobre la demanda de agua para el desarrollo versus la disponibilidad en las zonas de interés.

“La población flotante ha aumentado, porque mucha gente que viene e instala emprendimientos, eso hace que llegue mucho más gente, en periodo determinados, en el verano por ejemplo, turistas, periodo de vacaciones.” (Actor Grupo impulsor, 2013)

Las fuentes de abastecimiento de agua para estas actividades, al igual que en los casos anteriores, provienen de cauces superficiales y subterráneos. Para los actores locales, el desarrollo de turismo trae consigo necesariamente un aumento en la demanda de agua, lo que ya es advertido en sectores como Malalcahuello, donde se ha hecho un loteo de 100 parcelas de ¼ de hectárea que se están vendiendo, que cuentan con las potencialidades para el desarrollo de emprendimientos turísticos, y que poseen un único curso de agua que pasa por la zona donde se está urbanizando, incluido las que utiliza el Hotel Termas de Malalcahuello, que es el río Coloradito, que es afluente del río Cautín. Esta presión sobre el recurso se podría ver agravada por el tipo de suelo, que es arenoso, que hace que aumente la filtración hacia la napa freática que está a mucha profundidad.

En el caso de Lonquimay, aun no se visualizan impactos en el desarrollo de emprendimientos o empresas turísticas frente a la disponibilidad de agua.

- Sector de Áridos

Una de las actividades que se desarrollan en el territorio mencionado por los actores, y que desde su perspectiva, tiene impactos negativos en la disponibilidad de agua, tiene que ver con la extracción de áridos. Los áridos se definen como el material pétreo, inerte con relación al cemento y que se clasifican en arenas y gravas, las que se presentan en distintas dimensiones. En definitiva, lo que más se asemeja al concepto genérico de “áridos” son las arenas, rocas y demás materiales aplicables directamente a la construcción. Los riesgos que visualizan los actores de ambas cuencas tienen que ver con riesgos potenciales de contaminación de napas subterráneas, disminución de la disponibilidad de agua de vertientes y desviación de los cauces.

En el territorio, los áridos se distinguen por su buena calidad, debido a tienen muy baja cantidad de materia orgánica y en general, es limpio, lo que permite una mejor fijación con relación al cemento. Esta ventaja comparativa, hace que las empresas extraigan y distribuyan áridos a distintas obras de la región.
En el territorio, la extracción y procesamiento de áridos se realiza con el apoyo de maquinaria de alta producción en tiempo reducido, lo cual se ajusta a lo señalado en el artículo 3°, letra i), del Reglamento del Sistema de Evaluación de Impacto Ambiental (SEIA), que establece un criterio basado en metros cúbicos extraídos en periodos de tiempo, para determinar la naturaleza industrial de los proyectos de extracción de áridos. La extracción se realiza mediante la excavación de lechos fluviales, aprovechando el escurrimiento de material que realizan las aguas. En el caso de Curacautín y Lonquimay, los ríos en los cuales se realiza, son bienes nacionales de uso público, según lo establece el código civil y el código de aguas.

La extracción de áridos, al no tener un marco legal exclusivo, se regula por un régimen legal aplicable. Por lo tanto, el Código de Aguas en su artículo 30, señala que un río se compone de agua superficial y del cauce (suelo que el agua ocupa y desocupa alternativamente en sus creces y bajas periódicas), siendo este último el lugar desde donde se extraen los áridos. Al ser el cauce de un río un bien nacional de uso público, debe ser administrado por la Municipalidad respectiva (según la ley N° 18.695, Orgánica Constitucional de Municipalidades), a través de concesiones y entrega de permisos municipales que autorizan su extracción. Dependiendo la abundancia del material y de la extracción, requieren previamente la autorización de la Dirección de Obras Hidráulicas.

La ley 19300 sobre Bases Generales del Medio Ambiente, aborda los aspectos ambientales que pudieran verse afectados con el desarrollo de la actividad. Al relacionarlos con la disponibilidad de agua, los principales efectos en el ambiente tienen que ver con la alteración de los cauces. Por ello, es que debe someterse al sistema de evaluación de impacto ambiental. El criterio de presentar un EIA o una DIA está asociado con el tipo de impactos y su grado de significancia que va a generar el proyecto sobre los componentes del medio ambiente.

De acuerdo al Reglamento, se entiende que será extracción industrial cuando se extraiga una cantidad igual o superior a cien mil metros cúbicos (100.000 m³) tratándose de las regiones V a XII, durante la vida útil del proyecto o actividad., por lo que debe realizarse una Evaluación de Impacto Ambiental. La norma general será, que se inicie a través de una Declaración de Impacto Ambiental y un Estudio de Impacto Ambiental, cuando generen o presenten algún efecto, característica o circunstancia como efectos significativos sobre la calidad y cantidad de los recursos renovables, riesgos para la salud y otras alteraciones medioambientales.

A continuación se identifican los criterios regulatorios para la extracción de áridos en cauces (MOP, 2010) endientes a mantener el equilibrio entre el aporte de sedimentos y el material a explotar, de manera tal de evitar los efectos sobre el fondo del cauce y la consiguiente erosión de retroceso, daños a bienes públicos o de terceros y la desestabilización de bordes de riberas. Entre éstos se pueden mencionar:

1.- Los áridos provenientes de estas excavaciones sólo pueden ser excedentes de arrastre.

2.- Las excavaciones no pueden superar en profundidad las cotas normales del fondo y de pendiente del cauce, con el fin de evitar los procesos de erosión.
3.- La explotación en islas laterales (adyacentes a las riberas) se debe llevar a efecto en sus centros y en los bordes, próximos al eje del cauce. No se debe extraer material del borde ribereño, ya que esta acción conlleva a debilitar su compactación.

4.- Las excavaciones tienen que realizarse en franjas paralelas al eje del cauce, evitando el caso de ser orientadas en dirección transversal a éste.

5.- Todo el material pétreo no aprovechable para su uso o comercialización, de preferencia debe destinarse al reforzamiento de las riberas.

6.- No se permite la formación de embanques artificiales, tanto en el centro como en los bordes del lecho.

7.- En cauces principales, las excavaciones deben localizarse a distancias no inferiores a 300 m aguas arriba o aguas abajo de puentes carreteros importantes. En cauces menores, de reducido caudal y sección, pueden situarse a una distancia no inferior a 150 m.

Los impactos en la disponibilidad de aguas superficiales y subterráneas que señala la DOH, y que coinciden con la información entregada con los actores, corresponden a alteración de la calidad y cantidad del agua, riesgo de inundación, alteración o modificación del cauce, modificación de la tasa de recarga de acuíferos por efecto de aumentar la superficie de contacto. Actualmente la información es más teórica y se complementa con las percepciones de los actores de ambas cuencas, no registrándose datos que den cuenta de los impactos de la actividad en la disponibilidad de agua.

3.3.2 Enfoque legal

El enfoque legal muestra las relaciones entre los actores del territorio y las aguas terrestres, (aguas superficiales y subterráneas), las cuales son definidas por el Código de Aguas en Chile.
Ilustración 13: Modelo Legal Cuenca del Imperial, Comuna de Curacautín

- **Propietarios**: derechos agua
- **Usuarios rurales**: (Comités, habitantes, empresas turísticas)
- **Agua Potable Urbana**: Distribución
- **Aumento demanda agua potable**: para el desarrollo social y productivo
- **Aumento demanda para instalación de agua potable en zonas de escasez de agua**
- **Aumento demanda de derechos de agua para el desarrollo social y productivo**
- **Suelo Agrícola y forestal**: no existe disponibilidad de agua superficial para entrega por solicitud
- **Especulación por derechos de agua**: concentración de derechos
- **Disponibilidad restringida agua superficial para entrega por solicitud**

Derechos Consuntivos (litros/segundo)

- **Aguas Araucanía**: Captación
- **Capacidad / Caudales Aguas Superficiales**: DGA, Juzgado de Letras Curacautín
- **Derechos No Consuntivos (litros/segundo)**

Derechos No Consuntivos:

- **Capacidad / Caudales Aguas Subterráneas**: Capacidad / Caudales

Desarrollo Energético

- **Empresa hidroeléctrica**: Agua Potable, Distribución
- **Empresa piscicultura**
- **DGA**
En el centro se ubican los recursos hídricos (superficiales y subterráneos) que interactúan entre sí, y que son considerados por la normativa vigente como bienes nacionales de uso público, a partir de los cuales es posible otorgar el derecho de aprovechamiento, en un volumen y en un tiempo determinado (litros/segundo o m3/segundo). Este derecho de aprovechamiento constituye un bien, por lo que puede ser vendido, arrendado, hipotecado y heredado.

Los derechos de aprovechamiento pueden ser consuntivos o no consuntivos, y son adquiridos por una persona natural o jurídica (dueños de derechos de aprovechamiento) a través de solicitud o regularización ante la Dirección General de Aguas (DGA) de manera gratuita. El procedimiento regular para adquirir derechos de aprovechamiento, es la solicitud ante la DGA, que para el caso de las cuencas en estudio (Comunas de Curacautín y Lonquimay) que se encuentran ubicadas en la provincia de Malleco, se ingresan a la Gobernación, para que realice una primera evaluación administrativa de los documentos ingresados, de manera que cumplan con todos los requisitos que establece la ley; y luego las deriva a la institución.

El proceso de solicitud se inicia con la presentación de un documento formal donde se exponen los antecedentes de las personas solicitantes, naturales o jurídicas, y las características del derecho demandado, que incluye el nombre del cauce, el tipo de derechos, punto de captación y restitución (este último, en el caso de los derechos de aprovechamiento no consuntivo), y justificación del uso, cuando los caudales solicitados sean mayores a 50 l/s consuntivos o 500 l/s no consuntivos.
Esta justificación incluye la presentación de una Memoria que detalla el uso para el cual es requerido el derecho, el caudal que se va a utilizar, la ubicación del predio o del lugar donde se instalarán las obras para el uso del derechos, e información adicional, según el tipo de uso: en el caso de agua potable, el número de habitantes y sector que se beneficiará; para instalación de riego, los antecedentes legales de predio y número de hectáreas que se pretenden regar; para generación eléctrica de paso, los m3/s y potencia instalada; para el sector acuícola el producto y la cantidad de producción que se pretende alcanzar, y para el caso del turismo, el sistema turístico que se busca implementar.

Además de estos antecedentes, los solicitantes deben adjuntar una publicación de un extracto que informe de esta solicitud, la cual debe ser realizada en un plazo de 30 días hábiles en tres periódicos distintos y a través de radiodifusión. Los periódicos son el Diario Oficial, los días 1º o 15 de cada mes, un diario de Santiago, de circulación nacional y un diario de la provincia. La radiodifusión, se hace a través de alguna radioemisora de la provincia, los 1º o 15 de cada mes, o el día siguiente, si fue inhábil, y entre las 8 y las 20:00 hrs., con una frecuencia de lectura del extracto de 3 veces.

Eso se ingresa a la gobernación, y el gobernador, desde la última fecha de publicación o radio difusión, espera 30 días hábiles por si hay alguna oposición con respecto a esa solicitud, si no hay ninguna oposición, se emite un certificado de no oposición, y se envían los antecedentes a la DGA. Por el contrario, si se presenta una oposición, el gobernador envía al peticionario copia de esta oposición, indicando el nombre de la persona que se opuso, y tiene un plazo de 20 días para responder.

Terminado este proceso, los antecedentes son enviados a la DGA. Esta información es importante para entender el procedimiento que está detrás del acceso al agua, puesto que las solicitudes no corresponden al interés del solicitante por adquirir litros sino que se ajustan a sus reales requerimientos. Parte de la evaluación preliminar que realiza la DGA, se hace a partir de tablas de equivalencia, que establecen los siguientes rangos.
Tabla 11: Equivalencias de requerimiento de agua por actividad

<table>
<thead>
<tr>
<th>REQUERIMIENTO DE AGUA PARA USO DE AGUA POTABLE</th>
<th>VALOR</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sectores residenciales con baja densidad habitacional (> a 1000 hab/ha)</td>
<td>50</td>
<td>l/s/1000 ha</td>
</tr>
<tr>
<td>Sistema de Agua Potable Rural</td>
<td>2,5</td>
<td>l/s/1000 ha</td>
</tr>
<tr>
<td>SUBTERRÁNEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sectores residenciales con baja densidad habitacional (> a 1000 hab/ha)</td>
<td>650</td>
<td>m3/año/hab</td>
</tr>
<tr>
<td>Sistema de Agua Potable Rural</td>
<td>79</td>
<td>m3/año/hab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUERIMIENTO DE AGUA PARA RIEGO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Riego</td>
<td>2,5</td>
<td>l/s/ha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUERIMIENTO DE AGUA PARA ACUICULTURA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción Salmonídea</td>
<td>500</td>
<td>m3/ton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUERIMIENTO DE AGUA PARA CENTRALES HIDROELÉCTRICAS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Central de pasada</td>
<td>Q≤P/10*H</td>
<td>m3/s</td>
</tr>
</tbody>
</table>

El caudal debe mantener la relación indicada entre Potencia (KW) y la altura de caída H(m).

Fuente: Tabla de equivalencia, DGA, 2013

Además, se evalúa la disponibilidad legal y biofísica en el punto de captación, a partir de información aportada por las estaciones ubicadas en el territorio y visitas a terreno:

Artículo 22.- La autoridad constituirá el derecho de aprovechamiento sobre aguas existentes en fuentes naturales y en obras estatales de desarrollo del recurso, no pudiendo perjudicar ni menoscabar derechos de terceros, y considerando la relación existente entre aguas superficiales y subterráneas (Código de Aguas, 2010).

Las regulaciones se realizan en el marco de un artículo del Código de Aguas que es transitorio. El procedimiento es el mismo que el de la solicitud y se diferencia en dos aspectos: primero, la DGA solo realiza labores administrativas y evaluaciones en terreno (verificación de uso, infraestructura relacionada, capacidad de uso de agua) y segundo, es el Juzgado de Garantía y Letras de Curacautín, quien, a partir de los antecedentes entregados por la DGA, más otros que pudiera requerir, dicta sentencia y otorga los derechos, que en este caso corresponden a consuntivos permanentes continuos.
Para optar a la regulación, se deben cumplir con algunos requisitos:

1. Antigüedad en el uso, demostrando uso desde antes de octubre del año 1976, ya sea por parte de la persona que está solicitando o por parte de sus antecesores legales que pueden o no ser familiares.
2. La utilización deberá hacerse sin clandestinidad o violencia, ni reconocimiento de dominio ajeno.
3. Uso ininterrumpido, donde el solicitante debe demostrar que siempre ha estado utilizando las aguas.

Los derechos entregados en el territorio son en su mayoría entregados por solicitud, y desde el año 2005, se incorpora la regularización al Código de Aguas, como artículo transitorio, debido a la disminución en la capacidad legal de las cuencas para otorgar derechos de aprovechamiento consuntivos de aguas superficiales.

En la actualidad, las cuencas del Imperial y del Bio Bio se enfrentan a una “escasez legal”, que tiene que ver con dos procesos. El primero es que “No existe disponibilidad de agua superficial para entrega por solicitud”. Esto se refiere al agotamiento de derechos de aprovechamiento consuntivo de fuentes superficiales del río Cautín y sus afluentes, y del río Bio Bio y sus afluentes. El segundo es la “Disponibilidad restringida de agua superficial para entrega por solicitud”, que se refiere a la disponibilidad de litros/segundo en los ríos Cautín y Bio Bio, y sus afluentes sujeta a evaluación, para entrega de derechos no consuntivos, en relación a que el ejercicio no afecte a otros derechos del mismo caudal.

De acuerdo a esto, el modelo bajo el enfoque legal para las cuencas en Curacautín y Lonquimay, muestra los distintos actores del territorio, distinguiéndose los usuarios de agua con fines extractivos y no extractivos, que poseen o requieren derechos de aprovechamiento de agua para el desarrollo local, y los dueños de derechos, que los pueden utilizar o comercializar; todo lo cual se detalla a continuación...

El consumo de agua potable en la zona urbana es el resultado de la interacción de Aguas Araucanía con la fuente de abastecimiento, que para Curacautín corresponde a una fuente superficial, y para Lonquimay, un acuífero; a partir de la cual extrae el agua cruda, y la somete a procesos de cloración y fluorización, resultado el Agua Potable. Esta es distribuida a los usuarios urbanos de acuerdo a lo señalado anteriormente en este documento (ver la descripción del enfoque biofísico). Para realizar este proceso, Aguas Araucanía hace uso de los derechos de aprovechamiento que fueron traspasados en comodato por ESSAR S.A en el año 2003.

Los derechos de agua constituidos alcanzan a un total de 80 l/s, valor menor a la capacidad máxima potencial de la vertiente, considerando una probabilidad de excedencia del 90%. Dichos derechos están inscritos en el Conservador de Bienes Raíces de Curacautín, a nombre de ESSAR (Empresa de Servicios Sanitarios de la Araucanía), según Fs.2 Nº2/1993 (derechos por 30 l/s), y Fs. 15 Vta. Nº 10/1994 (derechos por 50 l/s).

En Lonquimay los derechos de aprovechamiento se encuentran a nombre de Econsssa S.A (Empresa de Servicios Sanitarios de la Araucanía) y corresponden a dos fuentes subterráneas, de 10
litros/segundo y 15 litros/segundo, y una fuente superficial, denominada Vertiente (sin nombre), de 20 litros/segundo, todos los cuales corresponden a derechos de aprovechamiento consuntivos, permanentes y continuos.

Para los usuarios rurales, se presenta un escenario más complejo. Este grupo está conformado por Comités de Agua Potable Rural, habitantes rurales, empresas de turismo que se localizan en sectores rurales del territorio y productores silvoagropecuarios, todos los cuales se abastecen de agua desde fuentes superficiales y/o subterráneas, y demandan derechos de aprovechamiento consuntivo para consumo doméstico o para el desarrollo.

Esta demanda es una respuesta a los requerimientos de la institucionalidad pública para formalizar proyectos de inversión, ya sea para la instalación de APRs, para la postulación a financiamiento para instalar proyectos de riego, y para obtener resolución sanitaria en el caso de los emprendimientos turísticos.

En el territorio, se visualizan tres procesos en los cuales se ven afectados estos actores para satisfacer esta demanda: el primero, que tiene que ver con el agotamiento de derechos consuntivos por solicitud, caracterizado por la falta de disponibilidad de agua en los caudales. Un segundo proceso que tiene que ver con el aumento en la concentración de derechos de aprovechamiento, provocando acaparamiento y especulación por parte de actores del territorio y de fuera del mismo. Un tercer proceso, que se relaciona al temor de los actores locales, que buscan adquirir o regularizar derechos de aprovechamiento a través del artículo 2º Transitorio del Código de Aguas; de manera que este procedimiento les permita utilizar y reservar el agua ante la eventual demanda de otros actores, empresas o inversionistas que busquen adquirir derechos para fines productivos y que terminen por agotar las posibilidades de acceso de estos usuarios locales.

...conocimiento de la ley, la gente que vive en el territorio ya sabe del tema y ha tratado de regularizar su situación, a través de solicitud derechos nuevos, o derechos antiguos que tenían los papás pero nunca se preocuparon de actualizarlos o de regularizar a través del artículo 2º transitorio. Y esto se ha sucedido porque surgen problemas, porque alguien quiere construir una piscicultura, una hidroeléctrica, entonces ha surgido el cuestionamiento respecto del uso del agua aun cuando pase por los predios de las personas, y da lugar a que haya mayor conocimiento de la ley, que separó las cosas (tierra y agua) (DGA, 2013)

Por otro lado, se ubican aquellos actores que requieren de derechos de aprovechamiento no consuntivos para el desarrollo, y que corresponden a empresas hidroeléctricas y pisciculturas.

Para los actores locales, las tensiones en relación a la disponibilidad de agua para el desarrollo productivo (derechos no consuntivos) se centran en estas dos actividades, puesto que se enfrentan a los importantes volúmenes de agua que requieren para su desarrollo. De hecho, la mayor cantidad de derechos no consuntivos son solicitados para el desarrollo de estas actividades, principalmente para la generación de hidroelectricidad.
Los gráficos siguientes (Ilustración 15 e Ilustración 16) muestran los derechos no consuntivos asignados a diciembre de 2012, los cuales se encuentran distribuidos por actividad productiva. Destacan las solicitudes para pisciculturas, hidroeléctricas y otros usos que no son indicados en los catastros.

Ilustración 15: Uso de derechos de aprovechamiento, Cabecera Cuenca del Bio Bio

Ilustración 16: Uso de derechos de aprovechamiento, Cabecera Cuenca del Cautín

Elaborado en base a catastro de derechos de aprovechamiento DGA 2013

En efecto, dada la naturaleza de los derechos, el agua debe ser restituida, los impactos por la disminución en la disponibilidad de agua podrían afectar a quienes habitan o desarrollan alguna actividad productiva entre el punto de captación y restitución, que van a ver disminuida la disponibilidad...
de agua, o a quienes se localizan aguas arriba del punto de captación, quienes no podrán utilizar el agua para no afectar el caudal requerido por alguna de estas empresas, lo cual es referido en el Código de Aguas, que señala que se podrá hacer uso del agua siempre que no se afecten otros derechos.

En el caso de las Pisciculturas, en Curacautín, a pesar de que muchas de ellas han cesado o reducido la producción, son titulares de derechos de aprovechamiento consuntivos y no consuntivos, que tienen un volumen cuyo rango va desde 2 l/s a 12700 l/s, y que en conjunto no representa más del 0,3% del total de derechos asignados en el territorio.

Esto se acentúa, puesto que estas empresas se localizan en los nacimientos de esteros o ríos, donde el volumen de agua es bajo y la demanda por nuevos derechos se condiciona a la disponibilidad de la fuente.

En la actualidad, la demanda de derechos de aprovechamiento de agua para el desarrollo acuícola ha decrecido, por el contexto económico en el cual se encuentra inserta, con altos costos de producción, disminución de la demanda y como respuesta, una disminución de la oferta. Esto, según la información entregada por la DGA (2013), ha sido reemplazado por un aumento en la demanda de derechos de aprovechamiento para generación de electricidad a partir del establecimiento de centrales de pasada, que se ve favorecida por: las características hidrogeológicas del territorio con volúmenes interesantes de agua y pendientes para la generación eléctrica, por el desarrollo energético a nivel nacional que genera altas demandas de energía e importantes dividendos a empresas generadoras de energía eléctrica, y por las altas patentes que deben pagar quienes no usan el agua, lo que fomenta la comercialización de derechos de aprovechamiento a altos precios.

Esto se visualiza en las solicitudes de derechos de aprovechamiento no consuntivos para la generación de electricidad a partir del año 2007, en ambas comunas, donde de un total de 527 derechos de aprovechamiento no consuntivo, el 43,26% corresponde a solicitudes para energía hidroeléctrica, las cuales se distribuyen de manera homogénea en ambas cuencas (46,9% en Lonquimay y 53,07% en Curacautín).

Actualmente, los actores locales no visualizan cambios sustanciales en la disponibilidad de agua, por lo que el ejercicio de los derechos que realizan estas empresas constituyen amenazas futuras, ante la llegada de nuevos actores, como comunidades indígenas provenientes de otras localidades de la región, que requerirán agua para uso doméstico, o de empresas turísticas que necesitarán derechos consuntivos, y que se verán enfrentados a la disponibilidad legal de derechos de aprovechamiento.
Los caudales otorgados se encuentran entre los 0,2 litros/segundo a los 60 541,57 litros por segundo, y varían dependiendo del tipo de derecho, permanente o eventuales y continuo o discontinuo. De acuerdo a esto, los derechos de aprovechamiento no consuntivo otorgados para generación de energía hidroeléctrica, en Curacautín corresponden a caudales entre los 10001 y 20000 litros/segundo, y en Lonquimay, a caudales entre 40 000 y 61000 litros/segundo. Estos se concentran en 26 titulares en ambas cuencas, constituidos principalmente por empresas hidroeléctricas.

Tabla 12: Empresas Hidroeléctricas con aguas inscritas, comunas de Curacautín y Lonquimay

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>Total Titulares</th>
<th>Total Empresas</th>
<th>Total Personas Naturales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Bio</td>
<td>21</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Imperial</td>
<td>21</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

En el catastro de derechos de aprovechamiento (2013), un 19,87% de los derechos de aprovechamiento no consuntivo no indica el uso para el cual fue solicitado, por lo que podrían constituir potenciales caudales para la generación de energías hidroeléctricas.

Ante este escenario aparece un quinto actor, que se ha denominado como “Propietario de Derechos de Agua”, y se refiere a personas naturales o jurídicas que poseen derechos de aprovechamiento de agua consuntivo y no consuntivo, que hacen uso o no de estos derechos, y que, representa a titulares que poseen un bien demandado por habitantes del territorio o inversionistas con proyectos hidroeléctricos, acuícolas u otros, de alto valor, susceptible de ser comercializado, y que a partir del cual, puede especular con este bien, para obtener mejores precios.

Para reducir el acaparamiento y la especulación, a partir del año 2005, la ley exige el pago de patentes por no uso del agua, que es aplicable a quienes poseen derechos de aprovechamiento, cuyos caudales superan los 50 litros por segundo, en el caso de los consuntivos, y por sobre 500 litros por segundo para los no consuntivos. Respecto de los valores de las patentes, el Código de Aguas señala que:
- Los derechos no consuntivos de ejercicio permanente donde el titular no haya construido obras estarán afectos al pago de una patente anual, en la proporción no utilizada de sus respectivos caudales, la cual se determinará de la siguiente manera:
 a. En los primeros cinco años, la patente ser calcula en base a la siguiente operación, cuyo resultado se expresa en unidades tributarias mensuales: UTM=0,33 x Q x H, donde Q es el caudal medio no utilizado expresado en m³/s y H, es el desnivel entre los puntos de captación y de restitución, expresado en metros.
 b. Entre los años sexto y décimo, la patente se calcula en base a la misma fórmula anterior, pero se multiplica por 2.
 c. Sobre los 10 años, se mantiene la misma operación, pero se multiplica por 4

En el caso de los derechos consuntivos, al igual que en el anterior, se aplica a la proporción del caudal que no está siendo utilizado, y se rige por las siguientes normas:
 a. En los primeros cinco años, en los derechos de ejercicio permanente, la patente será equivalente a 0,2 unidades tributarias mensuales, por cada litro por segundo.
 b. Entre los años sexto y décimo inclusive, la patente se calcula a partir de lo señalado en el párrafo anterior, pero multiplicando por 2.
 c. Desde el año undécimo en adelante, se multiplicará por el factor 4.

La contabilización de los plazos de no utilización comienza a contar desde el 1 de enero del año siguiente a la fecha de constitución o otorgamiento. En el caso de los derechos de ejercicio eventual, no utilizados parcial o totalmente, la patente se constituirá como un tercio del valor de la patente asignada a los derechos de ejercicio permanente.

Con la información contenida en los catastros, no es posible establecer el caudal que está siendo utilizado y que se encuentra bajo los rangos que establece el pago de patentes, pero es posible conocer esta información para los que se ubican por sobre estos valores. La DGA informa que en el año 2012 se cancelaron unas 57 patentes por no uso, que equivalen a un 23,55% del total de derechos otorgados, lo cual es detallado en el cuadro que se presenta a continuación:

Tabla 13: Total derechos otorgados y pago de patentes, comunas de Curacautín y Lonquimay

<table>
<thead>
<tr>
<th>Tipo de Derecho</th>
<th>Total Otorgados</th>
<th>Total Pago Patentes</th>
<th>Caudal afecto a patente (litros/seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consuntivo</td>
<td>52</td>
<td>7</td>
<td>1.553</td>
</tr>
<tr>
<td>No Consuntivo</td>
<td>190</td>
<td>50</td>
<td>303.174,9</td>
</tr>
<tr>
<td>Total</td>
<td>252</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

Elaborado en base a catastro de derechos de aprovechamiento DGA 2013
Ante este escenario, quienes poseen derechos de aprovechamiento se enfrentan a la pérdida del bien o a la venta del mismo, siendo esto último una alternativa interesante, debido a los altos precios que inversionistas están dispuestos a pagar por ellos.

El creciente interés por generar energía eléctrica tiene que ver con dos procesos: Primero, la demanda de energía eléctrica a nivel nacional y la segunda, que tiene que ver con la oportunidad de negocio que esto significa para empresas vinculadas a la generación de electricidad.

3.3.3. Integrando ambos enfoques: los principales problemas abordados en la modelación PARDI

Ambos enfoques han permitido visualizar por separado las demandas y tensiones con respecto a agua para el desarrollo local frente a la disponibilidad biofísica y legal. Para analizar cómo se retroalimentan y complementan estos dos enfoques se crea un tercer modelo incorporando los requerimientos de agua para el desarrollo local, separados en usos consuntivos y no consuntivos, frente a un contexto de disminución de la disponibilidad biofísica de agua, y ejercicio y asignación de derechos de aprovechamiento.

En términos biofísicos, la disponibilidad de aguas superficiales se ha visto afectada por los cambios en el clima, donde se ha visualizado una disminución y concentración de las precipitaciones de agua y nieve, que constituyen los principales alimentadores de las fuentes superficiales de ambas cuencas. Producto de esto, se han registrado una disminución de los caudales a partir del año 1991.

Por su parte, la disminución de nieve caída, de lo cual no existen datos objetivos que den cuenta de este fenómeno, pero que es advertido por los habitantes del territorio, impacta directamente en la disponibilidad de agua para el periodo estival, puesto que esta constituye la reserva de agua que alimenta las fuentes superficiales en primavera y verano, y mantiene los caudales durante esta época.

Así también, las estaciones registran un aumento de temperaturas, y esto, para los actores locales, constituye un riesgo a futuro que amenaza las reservas de agua dulce del territorio, por el impacto que esto podría tener en el derretimiento de glaciares.

Por otro lado, en términos legales, tanto la cuenca del Imperial como la cuenca del Bio Bio, no poseen disponibilidad para solicitar derechos de aprovechamiento consuntivo y la capacidad para entrega de derechos no consuntivos es restringida.

En este sentido, ambos enfoques se entrecruzan. Los derechos de aprovechamiento tienen registros de asignación desde el año 1942, no descartándose que en el conservador de Bienes Raíces se encuentren inscritos otros con fecha anterior, debido a que en Chile, con la promulgación del Código Civil en 1855, se establece una primera diferenciación entre aguas públicas y privadas, y que conformaron el primer sistema de registro de derechos de aprovechamiento de aguas, para aquellos cursos que se encontraban completamente contenidos dentro de una propiedad de tierra, así como las
aguas canalizadas, lo cual se mantuvo y aumentó con la promulgación del primer Código de Aguas en 1951.

De acuerdo a los registros de derechos de agua, estos no superan los 1.676 litros/segundo consuntivo, sin embargo, antes de 1981 estos fueron inscritos en el Conservador de Bienes Raíces de Curacautín, y en la actualidad no se tienen antecedentes de todos los derechos otorgados. En aquel entonces, no se realizaban estudios para medir la disponibilidad ni las variaciones en los distintos meses del año, sino que se asignaban de acuerdo a la solicitud de cada persona, y muchas veces podrían haber superado la capacidad de los cauces. Muchas veces, los titulares fallecían y no informaban a sus herederos de estos bienes, quienes luego de décadas se han encargado de regularizarlos.

Dado que la DGA no cuenta con todos los antecedentes que permitan conocer con exactitud el total de derechos de aprovechamiento entregados, para otorgar nuevos derechos se calcula la disponibilidad a partir de análisis hidrológicos y de los derechos asignados desde 1981, y se incluyen aquellos otorgados antes de esta fecha que han sido informados a esta institución. Frente al eventual ejercicio de derechos sumado a la disminución de los caudales, se genera el primer problema en relación a la disponibilidad de agua.

“En el mismo río Cautín, antigüamente se entregaron quizás más derechos que la capacidad del cauce, y si a eso sumamos una disminución del caudal, es un problema, porque la gente puede seguir sacando lo que tiene en derechos, y afectar a otros, pero nadie lo controla.” (DGA, 2013)

A esto se suma que ante la demanda de agua por parte de las distintas actividades económicas. A la fecha se han constituido unos 7.798 litros por segundo (consuntivo), de los cuales el 78% fueron adquiridos en Lonquimay, y se prevé que aumente en los próximos años. La normativa legal no privilegia usos domésticos por sobre otros usos, lo cual es corroborado por la Institucionalidad:

“Es importante señalar que nosotros no podríamos ver que porque es una APR en particular pasar por alto otros derechos para favorecerla, no podemos. Para nosotros son dos derechos de aprovechamiento de igual forma, que para la gente podría entender que una APR es más importante, nosotros tenemos que respetar el orden de llegada, con algunas excepciones, porque por ejemplo, la ley dice que si una solicitud se presenta y en un periodo de 6 meses se presenta otra solicitud sobre la misma agua y no alcanza el agua para las dos, se debe resolver con un remate”(DGA, 2013)

En las cuencas donde se ubican las comunas de Curacautín y Lonquimay, como se mencionara en los capítulos anteriores, los mayores requerimientos de agua son para la generación de electricidad a partir de centrales de pasada en Curacautín, y asegurar la disponibilidad del Bio Bio para los embalses ubicados en la región del mismo nombre, cuyos titulares se ajustan a lo que establece la ley, y por tanto, demandan el caudal que les fuera otorgado, lo cual se puede repetir en el caso de las empresas acuícolas u otras actividades que puedan utilizar sus derechos, y que podría afectar la extracción de agua para fines domésticos o agrícolas.

Para la DGA, ante esta escasez legal, y ante la eventualidad de que no se puedan regularizar derechos de aprovechamiento, la alternativa para acceder a derechos consuntivos es la captación de
agua desde fuentes subterráneas. Sin embargo, en el territorio, y en la región, no existe información que dé cuenta del estado de los acuíferos, en términos de volúmenes y recargas, por lo que ante una alta demanda de aguas subterráneas constituiría un nuevo riesgo para la disponibilidad.

3.4 Análisis complementarios

3.4.3 Elementos para la valoración económica

- Costo del acceso al agua

A continuación se detallan los costos asociados al acceso al agua para cada usuario. Cabe señalar que estos son costos aproximados.

El costo de inscripción de agua es el mismo para todos los actores, no distingue usos, caudales o tipo de solicitante (usuario). Se excluye de la tabla que se presenta a continuación (Ilustración 18) a usuarios urbanos, ya que el acceso al agua es posible a través de la red de distribución de Aguas Araucanía y por tanto, los costos asociados al uso de agua están determinados por la tarifa vigente, que se muestra a continuación:
Es importante señalar que el cuadro que se presenta a continuación corresponde al detalle de costos operacionales para solicitar o regular e inscribir un derecho de aprovechamiento, y que son cancelados a periódicos, radiodifusoras, honorarios, Bienes Raíces. El derecho en sí mismo no tiene costo, y la DGA solo solicita recursos para realizar las visitas a terreno.
Tabla 14: Costos asociados a la inscripción de agua

<table>
<thead>
<tr>
<th>Costos de Inscripción de Agua</th>
<th>Inscripción en Bienes Raíces***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publicación y radiodifusión*</td>
<td>$200.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monto a cancelar ($)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50.000</td>
<td>Ida y regreso sin pernoctar</td>
</tr>
<tr>
<td>$65.000</td>
<td>Ida y regreso sin pernoctar</td>
</tr>
<tr>
<td>$80.000</td>
<td>Ida y regreso sin pernoctar</td>
</tr>
<tr>
<td>$130.000</td>
<td>Ida y regreso pernoctando</td>
</tr>
<tr>
<td>$95.000</td>
<td>Ida y regreso sin pernoctar</td>
</tr>
<tr>
<td>$145.000</td>
<td>Ida y regreso pernoctando</td>
</tr>
<tr>
<td>$160.000</td>
<td>Incluye viáticos pernoctando (1,4 días chofer y técnico)</td>
</tr>
</tbody>
</table>

* Incluye publicación en diarios nacionales y provinciales.
** Se calcula por km recorridos desde Temuco.
*** Incluye gastos de escritura, honorarios abogado e inscripción en Conservador de Bienes Raíces.

En el caso de la población beneficiaria de los Programas de Agua Potable Rural, este se desarrolla a través de tres componentes:

1. Instalación de infraestructura de agua potable.
2. Ampliación y/o mejoramiento de infraestructura de agua potable
3. Supervisión y asesoría a las organizaciones que administran la infraestructura de agua potable

Los estudios, diseños de ingeniería y las obras se realizan con la participación de la Unidad Técnica de la empresa sanitaria del área, efectuando las licitaciones de los estudios y obras necesarias. Los estudios y obras son financiados íntegramente con aporte fiscal y los organismos representantes de la comunidad (Comités de Agua Potable Rural) son los encargados de la operación, administración y mantenimiento de los servicios de agua potable rural, que se financian a través del cobro de una tarifa a los beneficiarios del servicio de agua potable.

La producción de los componentes 1 y 2 es similar, iniciándose con la etapa de preinversión que dura aproximadamente dos años y que comprende un estudio hidrogeológico, construcción de fuentes de agua y diseño de ingeniería, para luego pasar a la etapa de inversión.

En el caso del Componente 3, las unidades técnicas apoyan la conformación del Comité de APR y la selección de sus dirigentes, además, realizan actividades de asesoría y supervisión en aspectos técnicos, administrativos, financieros y comunitarios que buscan la sostenibilidad de los Comités y la sustentabilidad de los beneficios del programa. Esta actividad se financia con recursos públicos.

Actividades productivas (consumidoras de agua)

El desarrollo de las actividades productivas del territorio depende de una serie de factores que determinan su rentabilidad.
Piscicultura

Las empresas piscícolas presentes en el territorio se dedican principalmente a la producción de alevines y smolt de salmón Atlántico y trucha arcoíris, que son comercializados a empresas dedicadas a la engorda en mar, ubicadas en la Región de Los Lagos, a unos 600 km. al sur de Temuco.

De acuerdo a lo informado por la Piscicultura El Negro, existen una serie de factores internos y externos que permiten determinar la rentabilidad de la actividad en el territorio. Los factores internos se relacionan con los aspectos biológicos y técnicos, y por tanto tienen que ver con la oferta, mientras que los externos tienen que ver con las condiciones ambientales y de mercado, que tiene que ver con la demanda. En relación a los primeros, existen limitantes biológicos de producción en los distintos tipos de sistemas de cultivos, referidas a la calidad del agua, donde la disponibilidad de oxígeno disuelto es el principal factor que determina la capacidad del carga del cultivo, que además, depende de la temperatura, conductividad y presión atmosférica. En otras palabras, a mayor densidad de cultivo mayor demanda de oxígeno por parte de los peces.

Es por esto que la mantención de la calidad del agua en donde se desarrolla constituye un elemento fundamental para obtener los resultados productivos requeridos y asegurar el bienestar de los animales. Las condiciones adecuadas de los parámetros físicos, químicos y biológicos del agua, así como la estabilidad de dichos parámetros repercutirán positivamente sobre las tasas de crecimiento y un bajo nivel de estrés de los organismos, resultando en menores riesgos de brotes de enfermedades.

A nivel de mercado, el año 2012 se registró una fuerte disminución de los precios internacionales, donde el salmón Atlántico pasó de US$ 7,5 por kilo en 2011 a US$ 4,5 por kilo un año después, por efecto de la vuelta al mercado de las empresas chilenas, las que recuperaron sus volúmenes productivos una vez superada la crisis del virus Isa. Este escenario se vislumbra para el año 2013, que se caracteriza por la entrada en vigencia de nuevas regulaciones que se prevé aumentarán los costos de los productos. A nivel local, las empresas disminuirán las ofertas locales, de manera de recuperar los niveles de precios.

Turismo

Tomando la Estrategia Nacional del Turismo, la rentabilidad del turismo estaría dada por:

1. El posicionamiento del territorio como destino turístico para aumentar la llegada de turistas, prolongar la estadía y gasto promedio diario.

2. El mejoramiento de la calidad de la oferta turística, a partir de la inversión en infraestructura y fortalecimiento del capital humano, que permita crear territorios especializados y considerar al turismo como un eje de desarrollo. La rentabilidad estaría asociada a indicadores sociales como mejoramiento de competencias técnicas, y otros económicos, como índices de empleo, inversiones en el territorio.
Hidroelectricidad, condiciones de los cauces, volúmenes, pendiente.

La rentabilidad de esta actividad propicia su desarrollo, está dada por la venta de energía a buenos precios, en momentos de mayor demanda, reduciendo los costos de instalación y de generación de electricidad.

Los costos de inversión estimados para la etapa de instalación, se calculan en US$ 2,5 millones por mega watt. Para los inversionistas, la construcción de una central de pasada no debería superar este valor, para que sea más rentable. Los costos varían dependiendo de las condiciones de los caudales, los volúmenes, la pendiente. El valor de venta de cada mega watt se calcula en US$ 116 Mega/hora.

4. **Los impactos del cambio climático**

4.1 **Las amenazas del Cambio Climático**

4.1.1 **Por los cambios en las precipitaciones y las temperaturas**

La información relacionada a las precipitaciones para ambas cuencas da cuenta de una tendencia a la disminución para la comuna de Curacautín, medido según los datos aportados por las estaciones Rari Ruca, Malalcahuello y Curacautín, y una tendencia similar en la comuna de Lonquimay, según las estaciones de Liucura y Lonquimay.

De acuerdo a Arévalo (2013), la precipitación media anual de la cuenca es de, aproximadamente, 1.638 mm, de los cuales el 81 % precipita en los meses de abril a octubre.

En la comuna de Curacautín, los registros datan del año 1971, lo que permite comparar el comportamiento de las precipitaciones en cuatro períodos de 10 años cada uno:
Ilustración 19: Tendencia de las precipitaciones comuna de Curacautín

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Curacautín</td>
<td></td>
<td>1951,32</td>
<td>1687,5</td>
<td>1635,11</td>
<td>1370,65</td>
</tr>
<tr>
<td>Malalcahuello</td>
<td>s/i</td>
<td>2136,25</td>
<td>2299,05</td>
<td>1916,33</td>
<td></td>
</tr>
<tr>
<td>Rari Ruca</td>
<td>s/i</td>
<td>s/i</td>
<td>1681,24</td>
<td>1285,4</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Registro precipitaciones por estación, DGA 2013

En tanto, en la comuna de Lonquimay, la información sobre las precipitaciones corresponde a registros de entre 1987 y 2012. Los datos son distribuidos en tres periodos de promedio 10 años cada uno:
De acuerdo a los datos aportados para ambas cuencas, si se realiza un balance solo de las precipitaciones, es posible advertir que estas, en los últimos 10 años, han disminuido en un 14,15%, es decir, si en la década de 1992–2002 precipitó 7983,64 mm en promedio en ambas cuencas, en el periodo 2003 – 2012 estas disminuyeron a 6854,29 mm.

En el territorio, no existen datos que den cuenta de las precipitaciones de nieve. A nivel de percepción, los actores locales dan cuenta de una disminución en la caída de nieve, lo cual repercute directamente en los caudales superficiales, que se alimentan de estas reservas de agua durante los meses de septiembre a marzo.

“... este año no ha nevado nada, en comparación al año pasado o antepasado, ha sido súper malo en términos de nieve. A nosotros nos puede afectar en términos del agua que ingresa, pero si lo asocias al resto de las comunidades que necesitan el agua del deshielo en primavera y verano, el tema va a ser crítico. Porque esta zona, donde estamos, en condiciones normales llegamos a 35 – 40 grados en verano, se nota la bajada del río…”(Piscicultura El Negro, 2013)

La disminución de las precipitaciones de agua y nieve en invierno, significan una disminución en los caudales de los ríos, ya que ya comienza a evidenciarse.
4.2 Incertidumbres principales

Actualmente las cuencas en estudio se ven enfrentadas a una serie de fenómenos, procesos y situaciones que se prevé puedan tener impactos positivos y/o negativos en la disponibilidad de agua para el desarrollo local, pero de los cuales no se tiene mayor información. Algunos de ellos ya fueron mencionados en los capítulos anteriores, puesto que se vinculan a muchos de los actores del territorio, y pueden ser determinantes en la disponibilidad de agua. Estas incertidumbres se enmarcan en procesos legales y en procesos biofísicos, y se detallan a continuación.

Código Minero

El Código Minero en Chile comienza a regir desde el año 1983, y su última modificación la registra el año 2001. Tiene por objetivo regular la búsqueda de sustancias minerales, por lo que permite concesionar derechos mineros de exploración y/o de explotación, que son distintos e independientes del dominio de un predio superficial, aun cuando pueden tener un mismo dueño, y que son transferibles, transmisibles, susceptibles de hipoteca y otros derechos.

Para el código son concesibles, las sustancias minerales metálicas y no metálicas y, en general, toda sustancia fósil, en cualquier forma en que naturalmente se presente, incluyéndose las existentes en el subsuelo de las aguas marítimas sometidas a la jurisdicción nacional a las que se tenga acceso por
túneles desde tierra. Las personas o empresas que adquieren derechos de exploración o explotación de sustancias minerales, pueden catar y cavar en tierras de cualquier dominio, lo que le da la facultad de no solo examinar y abrir la tierra para investigar, sino que imponer transitoriamente sobre los predios superficiales las servidumbres que sean necesarias para la búsqueda de sustancias minerales. Lo mismo en el caso que la labor se realice bajo aguas regidas bajo el código de agua.

El registro de concesiones mineras es manejado por el Servicio Nacional de Minería (SERNAGEOMIN). A continuación se muestra el mapa donde se identifican las concesiones de exploración y explotación minera en ambas cuencas. De acuerdo a esta información, esto aun no se ha masificado, como en el caso de los derechos de agua, pero constituye una amenaza para ambas cuencas, puesto que dado el alcance que esta normativa tiene en relación al suelo y al agua, debido a:

1. Muchas de las inversiones de hidroeléctricas, vienen acompañadas por los derechos mineros, lo que permite resguardar las instalaciones.
2. Tanto el dominio del suelo superficial como del agua quedan sometidos a esta normativa, lo que agudiza el problema de disponibilidad de agua para actores locales, quienes podrían verse amenazados por inversionistas privados que cuenten con las concesiones mineras.

Ilustración 23: Ubicación de las concesiones mineras otorgadas al 2013

Fuente: Sistema de Información, SERNAGEOMIN, 2013

Derechos de Agua, anteriores al Código de Agua

Como se señala anteriormente, la primera distinción suelo-agua se realizó con la promulgación del Código Civil en 1855, y fue ratificado posteriormente en el primer Código de Aguas en 1951. Esto permitió la creación del primer listado de derechos de aprovechamiento, los cuales eran inscritos en los municipios de cada comuna, de acuerdo a la demanda de cada habitante, sin realizar estudios de disponibilidad, ni comportamiento de los caudales en los distintos meses del año.
Respecto de esto, la DGA informa que muchos de estos derechos fueron posteriormente regularizados ante la institución con la promulgación del Código de Aguas en 1981, lo que permitió contar con esta información e incorporarla en los Catastros. Sin embargo, también señala que se presume que existen derechos otorgados que no han sido informados por sus titulares o por los municipios, por diversas razones, lo cual representa una incertidumbre para el ejercicio de estos derechos, tomando en cuenta que los derechos de aprovechamiento consuntivo fueron otorgados a partir de la disponibilidad legal y biofísica posterior al año 1981, incluyéndose en algunos casos los derechos anteriores a esta fecha que había sido informados; y sumado a que la disponibilidad de fuentes superficiales ha disminuido y se espera que esto se acentúe en el futuro.

Situación del agua subterránea

Ante el agotamiento de derechos de aprovechamiento consuntivo, se prevé que aumentarán las demandas por derechos de acuíferos. Actualmente la DGA, quien es la institución encargada de la administración de recursos hídricos superficiales y subterráneos, manifiesta que existe un desconocimiento de la situación de las aguas subterráneas, en cuanto a los caudales, recargas, y de la interrelación con fuentes superficiales. La importancia de generar esta información radica en que ante el aumento de la demanda, la institucionalidad debe manejar el comportamiento de los acuíferos, de manera de administrar los recursos hídricos del territorio.

Centrales de pasada

Las centrales de pasada para ambas cuencas, especialmente para la comuna de Curacautín, constituyen inversiones que llaman la atención de los distintos actores y habitantes locales. Actualmente se estiman que al menos 11 empresas se encuentran realizando estudios para la instalación de centrales, pero solo 1 de ella se encuentra aprobada. La información que cuenta la población tiene relación con los requerimientos de agua para su funcionamiento y la localización, sin embargo, existe un desconocimiento de los impactos ambientales que podría provocar la instalación, las características de las instalaciones, la interacción con otros actores locales e inclusive, con otras empresas hidroeléctricas.

Al respecto, es importante señalar que al menos 6 titulares cuentan con derechos de aprovechamiento no consuntivo en el río Cautín, cuyos caudales abarcan el 25% del total de litros por segundo otorgados, y cuyas solicitudes señalan que el agua se utilizará en la generación de energía. Esta situación conlleva a la incertidumbre acerca de la legislación, la cual no regula la instalación de centrales de pasada en cuanto a la distancia que debería haber entre una y otra, para evitar ejercer presión sobre los cursos de agua y tener impactos negativos sobre la disponibilidad de agua en el territorio y el desarrollo de otras actividades, como el turismo.

Calidad de Agua

Informes de la Dirección General de Aguas señalan que el agua de ambas cuenca es de buena calidad, ajustándose a las Normas Chilenas Oficiales, en cuanto a características fisicoquímicas y microbiológicas.

Sin embargo, para los actores locales, la principal incertidumbre tiene que ver con los impactos del uso de agroquímicos en época de siembra y su relación con la calidad del agua.
Al respecto, no se han realizado estudios o toma de muestras que permitan analizar parámetros de calidad en los periodos de mayor uso de fertilizantes y plaguicidas.

5. Conclusión

El análisis de las dinámicas socio-ecológicas en el territorio del Bosque Modelo Araucarias Alto Malleco, entregó diversos insumos que contribuirán a la construcción de escenarios (WP3), puesto que:

Se identificaron y diferenciaron los actores que tienen incidencia directa en la disponibilidad de agua, lo que constituye un insumo de gran importancia para desarrollar intervenciones futuras en el territorio. Específicamente se describió la labor de las instituciones públicas y el rol de los usuarios del agua en relación a la demanda y control sobre los recursos en ambas cuencas.

Se construyeron modelos donde se visualizaron las interacciones entre los actores y recursos en relación a la disponibilidad de agua desde un enfoque biofísico y legal, lo que permitió identificar los sectores productivos que demandan agua para el desarrollo, y las dinámicas sobre las cuales se centra la tensión sobre la oferta de recursos hídricos. Además, la información aportada por este análisis permite contrastar los modelos biofísicos y legales.

A pesar de que el trabajo se centró en el análisis de las dinámicas socio-ecológicas en cada una de las cuencas siguiendo una misma problemática, la construcción de los modelos biofísicos y legales permitió visualizar las similitudes que existen entre ambas cuencas en torno a las demandas de agua, y visualizar aquellas actividades donde se centran las tensiones y competencias por el recurso hídrico.

Se precisó información relacionada a aspectos legales que permitirá situar los escenarios futuros en el marco normativo que regula la disponibilidad y uso del agua en el territorio.
Referencias bibliográficas

Banco Mundial, 2005. Diagnóstico de la gestión de los recursos hídricos.

CNR, 2011. Mejoramiento del riego en la cuenca del Cautín, Estudio de Perfil.

CNR 2013. Sistema de Información Integral de Riego. www.cnr.cl
Chile Sustentable, 2013. Desarrollo Energía en Chile

DGA, 2013. Catastro de derechos de aprovechamiento de agua en las comunas de Curacautín y Lonquimay a marzo de 2013. www.dga.cl

DGA, 2013. Catastro de mediciones pluviométricas y fluviométricas por estación.

DGA, 2013. Tabla de equivalencia. www.dga.cl

Programa Chile Sustentable, 2005. EL agua en Chile: entre las reglas del mercado y los derechos humanos.

SERNAGEOMIN, 2013. Catastro prospecciones mineras.

SERNATUR, 2013. Estadísticas de establecimientos de alojamiento turístico por comuna. www.sernatur.cl

SUBDERE, 2007. Estudio de soluciones de saneamiento rural.

Anexo: Lista de acrónimos

<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>Agua Potable Rural</td>
</tr>
<tr>
<td>BMAAM</td>
<td>Bosque Modelo Araucarias Alto Malleco</td>
</tr>
<tr>
<td>C/Pc</td>
<td>Consuntivo Permanente continuo</td>
</tr>
<tr>
<td>CNR</td>
<td>Comisión Nacional de Riego</td>
</tr>
<tr>
<td>CONADI</td>
<td>Corporación Nacional de Desarrollo Indígena</td>
</tr>
<tr>
<td>CONAF</td>
<td>Corporación Nacional Forestal</td>
</tr>
<tr>
<td>CONAMA</td>
<td>Comisión Nacional del Medio Ambiente</td>
</tr>
<tr>
<td>DGA</td>
<td>Dirección General de Aguas</td>
</tr>
<tr>
<td>DIA</td>
<td>Declaración de Impacto Ambiental</td>
</tr>
<tr>
<td>DOH</td>
<td>Dirección de Obras Hidráulicas</td>
</tr>
<tr>
<td>EIA</td>
<td>Estudio de Impacto Ambiental</td>
</tr>
<tr>
<td>ESSAR</td>
<td>Empresa de Servicios Sanitarios de la Araucanía</td>
</tr>
<tr>
<td>FNDR</td>
<td>Fondo Nacional de Desarrollo Regional</td>
</tr>
<tr>
<td>GORE</td>
<td>Gobierno Regional</td>
</tr>
<tr>
<td>HAB.</td>
<td>Habitante</td>
</tr>
<tr>
<td>INDAP</td>
<td>Instituto de Desarrollo Agropecuario</td>
</tr>
<tr>
<td>INE</td>
<td>Instituto Nacional de Estadísticas</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>NCh</td>
<td>Norma Chilena</td>
</tr>
<tr>
<td>PLADECO</td>
<td>Plan de Desarrollo Comunal</td>
</tr>
<tr>
<td>PEAS</td>
<td>Planta Elevadora de Aguas Servidas</td>
</tr>
<tr>
<td>SEA</td>
<td>Servicio de Evaluación Ambiental</td>
</tr>
<tr>
<td>SERNATUR</td>
<td>Servicio Nacional de Turismo</td>
</tr>
<tr>
<td>SERNAGEOMIN</td>
<td>Servicio Nacional de Geología y Minería</td>
</tr>
<tr>
<td>SIC</td>
<td>Sistema Interconectado Central</td>
</tr>
<tr>
<td>SING</td>
<td>Sistema Interconectado del Norte Grande</td>
</tr>
<tr>
<td>S AyM</td>
<td>Sistema Eléctrico de Aysén y Magallanes</td>
</tr>
<tr>
<td>SISS</td>
<td>Superintendencia de Servicios Sanitarios</td>
</tr>
<tr>
<td>UCH</td>
<td>Universidad de Chile</td>
</tr>
</tbody>
</table>