Annual population dynamics of mango fruit flies (Diptera: Tephritidae) in West Africa: socio-economic aspects, host phenology and implications for management

Jean-François Vaysseïres1,*, Antonio Sinzogan2, Appolinaire Adandonon3, Jean-Yves Rev4, Elhadj Oumar Dieng5, Koumandian Camara6, Morodian Sangaré7, Sylvain Ouedraogo8, N’klo Hala9, Adama Sidibe10, Youssouf Keïta11, Guy Gogovor12, Sam Korie13, Ousmane Coulibaly14, Cinthia Kikissagbé14, Alliance Tossou14, Max Billah15, Koffi Biney16, Oswald Nobime16, Paterne Diatta17, Robert N’Dèpo16, Moussa N’oussourou16, Lanciné Tradré19, Symphorien Saizounou21, Manuele Tam24

1 CIRED Persyst, UPR HortSys, 34398 Montpellier, France; ITIA, Biol. Contr. Unit Afr., 08 BP 0932, Cotonou, Benin; j.vaysseieres@cgiar.org
2 FSA, Univ. Abomey Calavi, Cotonou, Rep. Benin
3 ENSTA - Kêtoù, Univ. Kêtoù, Kêtoù, Rep. Benin
4 CIRED-Persyst, UPR HortSys; ISRA, Dakar, Senegal
5 DPV, Thiareye, Dakar, Senegal
6 IRAG, Foulaya-Kindia, Guinea
7 IRAG, Kankan, Guinea
8 INERA, Bobo Dioulasso, Burkina Faso
9 CNRA La Mé, Abidjan, Côte d’Ivoire
10 PCDA, Bamako, Mali
11 FSTTB, Univ. Bamako, Bamako, Mali
12 DPV, Lomé, Togo
13 ITA, Ibadan, Nigeria
14 ITA, Cotonou, Benin
15 DAECs, Univ. Legon, Accra, Ghana
16 MOAP-POB, Accra, Ghana
17 ISRA-CDH, Univ. Cheikh Anta Diop, Dakar, Senegal
18 UFR Biosciences, Univ. Abidjan, Abidjan, Côte d’Ivoire
19 IER, Baguinéda, Bamako, Mali
20 SPVDS, Foulaya-Kindia, Guinea
21 SPVCP, Porto-Novo, Benin
* Correspondence and reprints

Received 21 August 2013
Accepted 12 November 2013

© 2014 Cirad/EDP Sciences
All rights reserved
DOI: 10.1051/fruits/2014011
www.fruits-journal.org

Resumen. Análisis del desarrollo poblacional de moscas de frutas del mango en África occidental: aspectos socioeconómicos, fenología y implicaciones para la gestión.

Resumen. Presentamos el análisis de las poblaciones de moscas de frutas del mango (Diptera: Tephritidae) en África occidental: aspectos socioeconómicos, fenología y implicaciones para la gestión.


Africain occidental / Mangifera indica / fruits / exportation / Bactrocera invadens / Ceratitis cosyra / zone agroclimatique / stade de développement végétal

Annual population dynamics of mango fruit flies (Diptera: Tephritidae) in West Africa: socio-economic aspects, host phenology and implications for management.

Abstract – Introduction. Losses in West African commercial mango orchards due to fruit fly infestations have exceeded 50% by the middle of the crop season since 2005, resulting in considerable income loss for the growers. Materials and methods. In 2009, weekly monitoring of adult fruit fly species of economic significance was carried out in eight West African countries at 12 sites across five agro-ecological zones: (i) Humid Forest, (ii) Guinean savanna, (iii) Southern Sudan, (iv) Northern Sudan, and (v) Sahelian. Trapping was performed using methyl eugenol and terpinyl acetate in 288 Tephritid traps, targeting Bactrocera invadens and Ceratitis cosyra. Results. The data showed that B. invadens was present throughout the year in the Forest zone, abundant for 7 months, with a peak in May at the end of the mango season. C. cosyra being totally absent in the Guinean savanna zone, B. invadens was abundant for 6-7 months, with a peak at the beginning of June coinciding with the season, with a few C. cosyra. In the Southern Sudan zone, B. invadens was abundant for 6 months, with a peak in mid-June during the season, C. cosyra peaking in April. In the Northern Sudan zone, B. invadens was abundant for 5 months, with a peak at the end of June at the end of the season. C. cosyra peaking in May. In the Sahelian zone, B. invadens was abundant for 4 months, peaking in August during the season, C. cosyra peaking just before. These preliminary results showed that the exotic species, B. invadens, was present at high levels (mean peak of 378 flies per trap per day (FTD)) in all agro-ecological zones, compared to the drier zones of West Africa, with lower population levels (mean peak of 77 FTD). Conclusion. Detection trapping of male flies with paraphoromones is a useful indicator of field population levels and could be used to deploy control measures (IPM package) in a timely manner when the Economic Injury Level is reached. Control strategies for these quarantine mango fruit fly species are discussed with respect to agro-ecological zones and the phenological stages of the mango tree.

West Africa / Mangifera indica / fruits / exports / Bactrocera invadens / Ceratitis cosyra / agroclimatic zones / plant developmental stages


1. Introduction

Sub-Saharan African exports of horticultural crops have a high potential for contribution to economic growth. In West Africa, horticultural value chains are handled mainly by smallholders who create significant added value and sustainable employment, enhance food and nutritional security, and may also reduce poverty.

Mango has the highest potential for providing food security and revenue incomes. The increase in the international demand for mango has led to higher production in West African countries which were not originally producing mango for export [1]. Mango production in West Africa is estimated at more than 1 Mt per year [2], higher than citrus production. The mango exports from West Africa were estimated at between 35 000 t and 40 000 t, equivalent to US$ 45 M [2]. In Senegal, for example, the production of fruits was estimated at 150 000 t per year, of which 60 000 t are mango alone [1,3], with 6 000 t exported to the European Union (EU). Africa has the potential to increase mango quality and the volume of exports, and competes against the main world mango exporters for the European market. However the economic benefits of the mango value chain are greatly hampered by fruit fly (Diptera: Tephritidae) attacks in West Africa [4].

Agricultural research has contributed for the past 40 years to the extension of the mango production season over a longer period, resulting in availability of fruit for consumption during the major part of the year. The mango season increased from 2 months in the 60s to almost 10 months in some countries in 2000, with a large portfolio of cultivars. Unfortunately, fruit flies in West Africa, and mango bacterial canker in some countries, are compromising 40 years of research with the following consequences: (i) an oversupply of fruit during a very short production cycle, (ii) cessation of exports after a brief mango season, (iii) a decrease in the length of temporary labor contracts (iv), problems of amortization of farm equipment, and (v) too short export period, reducing the competitiveness of West Africa mangoes on international markets. Losses due to mango bacterial canker recently detected in Ghana [5], Mali and Burkina Faso and due to fruit flies occur at the same period during the rainy season at the peak of the mango export season. Every year, fruit flies reduce the amount of pest-free produce and also shorten the period of availability because fruits are picked prematurely by farmers to avoid infestation.

In Sub-Saharan Africa, mango production has suffered from fruit fly infestation for decades, with native species of the genus Ceratitis, mainly Ceratitis cosyra (Walker) [6], representing the major native pest [7]. Since 2003, the introduction [8,9], establishment and spread of an exotic species, Bactrocera invadens Drew Tsuruta & White, has considerably increased the damage levels to mango fruits, reaching, for instance, infestation levels of over 50% after mid-crop in Benin [10]. This was corroborated by mango export data from West Africa to the EU (figure 1), where the arrival of B. invadens decreased mango exports from Côte d’Ivoire in 2005 and mainly after 2006-2007 in all major exporting countries. In East Africa, where B. invadens was detected earlier [8] than in West Africa, yield losses due to fruit flies, especially B. invadens, were also considerable [11,12]. It is noteworthy that the taxonomic status of B. invadens, closely related to Bactrocera dorsalis (Hendel), is presently under revision [13]. Such a major phytosanitary pest is posing huge difficulties in accessing national, regional and international markets, resulting in substantial losses of income for the West African growers and populations for whom the mango is a staple food crop [4].

The simultaneous regional monitoring of mango fruit flies is poorly documented, especially for Sub-Saharan Africa. In order to get an overview of the level of fruit fly populations throughout West Africa, a monitoring/trapping system was implemented to obtain comparative information through captured males of the two main fruit flies of economic significance, B. invadens and C. cosyra. This weekly fruit fly monitoring system was implemented in the framework of the West African Fruit Fly Initiative (WAFFI). In West Africa, WAFFI has several linked goals: (i) setting up a yearly fruit fly
monitoring trapping system, (ii) developing an IPM package adapted to different agro-ecological zones and presented to farmers, and (iii) organizing training sessions for trainers, farmers, exporters and students.

Through this regional monitoring system of adult fruit flies in different agro-ecological zones (AEZ), the overall goal was to provide basic regional information in order to initiate and promote an IPM program to reduce fly damage throughout West Africa. Specifically, we seek: (i) to understand the importance of *B. invadens* and *C. cosyra* populations in relation to mango seasons in different agro-ecological zones and to the different fruit stages, (ii) to monitor their population dynamics all year round in relation to the fruit season, and (iii) to assess the importance of *B. invadens* populations versus *C. cosyra* populations in relation to each agro-ecological zone.

2. Materials and methods

2.1. The study areas in West Africa

Data was collected in mango production areas in West Africa through multiple field visits during the past years. Previous field experiments in Côte d’Ivoire, Guinea, Mali and Senegal were instrumental in figuring out the evolution of the mango value chain. This provided information for the five main agro-ecological zones occurring in eight West African countries: Benin, Burkina Faso, Côte d’Ivoire, Ghana, Guinea, Mali, Senegal and Togo. Monitoring of economically important mango fruit flies was carried out in the eight West African countries at twelve sites distributed across five main agro-ecological zones: (i) Humid Forest, (ii) Guinean savanna, (iii) Southern Sudan, (iv) Northern Sudan, and (v) Sahelian (including Niayes under Atlantic influence). We synthesized three maps using the Length of Growing Periods reported by the FAO [14], an updated Koppen-Geiger’s climate classification [15], and a biodiversity study [16] to express prevailing vegetation types in West Africa, where the Sudan zone was divided into two (Southern & Northern).

2.2. Mango production and export from West Africa to the European Union

We used FAO data [2] to estimate the area of mango crops and mango production in

Figure 1. Evolution of the main mango exports from West Africa to the European Union with interceptions of mangoes infested by fruit flies, from 1999 to 2012.
Fruits, vol. 69 (3)

J.-F. Vayssières et al.

West Africa. We used Fruitrop data\(^1\) to estimate mango exports from the eight West African countries to the EU. Some data of West African mango interceptions (containers and air freight arriving in the EU) were also provided (figure 1).

### 2.3. Fruit fly monitoring in West Africa

We present results for the entire year of 2009 (from January to December), except for Ghana (February to September). Fruit fly trapping was conducted using Tephrit-traps (Sorygar SL, Spain), 2.2-dichlorovinyl dimethyl phosphate (DDVP) (IPS Ltd., England) insecticide cubes, and two highly attractive parapheromones, methyl eugenol and terpinyl acetate (IPS Ltd., England), targeting two key fruit fly pests, respectively: the exotic \(B. \text{ invadens}\) and a native species, \(C. \text{ cosyra}\). The traps were set up in mango orchards that were 100% mango trees without any insecticide treatment in or around them. Three mango pilot orchards (PO) were selected in each of the twelve sites. In each pilot orchard, there were eight Tephrit-traps, four with methyl eugenol and four with terpinyl acetate, for a total of 24 traps. Traps were suspended on mango branches in the lower third of the foliage. The central coil of wire holding the trap was coated with thick grease to prevent any predatory activity, particularly by weaver ants, \(Oeco-\text{phylla longinoda}\) (Latreille) (Hymenoptera: Formicidae), on dead flies in the traps. There were two traps per hectare irrespective of the attractant. In each orchard, the traps were checked and flies were collected and stored in alcohol (70\(^\circ\)) on a weekly basis. Parapheromone plugs and DDVP were replaced monthly. Daily averages per trap of fruit fly populations captured were calculated and recorded.

For each mango tree holding a trap in Benin, we recorded on a weekly basis the developmental stages of the tree based on five different reproductive and vegetative phenological stages: (i) flowering stage, (ii) fruit-growing stages (fruit set stage A and fruit set stage B), (iii) fruit pre-maturity, (iv) fruit maturity, and (v) vegetative stages using the Biologische Bundesantalt Bundessortenamt und Chemische Industrie (BBCH) method [17]. No differentiation between FSA and FSB was made. During a fruit maturity period of about 15 weeks, March to June in Benin, for instance, the first four weeks (mid-March to mid-April) concern ungrafted cultivars (polyembryonic mangoes also called “mangots”) and the later weeks (mid-April to the end of June) concern grafted cultivars (monoembryonic mangoes). The same trend is followed in the other countries.

### 2.4. Statistical analysis

All fly counts were log\(_{10}(x+1)\)-transformed to stabilize the variance and normalize the data. Analysis of variance was performed using the general linear model (GLM) procedure in SAS [18], and mean separations were performed using the SAS LSMEANS t-test (pair-wise comparisons at \(P = 0.05\)). Each site was analyzed separately to quantify significant differences among various fruit growth stages. Combined analysis of all sites was done to test for site effects.

### 3. Results

#### 3.1. Distribution of mango tree crops in West Africa

The main areas of mango production in West Africa emphasize the importance of mango crops in a “zone of excellence” situated in the Sudan area from Banjul to Abuja, \(i.e.,\) from 8\(^\circ\) N to 14\(^\circ\) N latitude (figure 2). This area covers Southern and Western Senegal, Gambia, Southern Mali, Eastern Guinea, Northern Côte d’Ivoire, Southern Burkina Faso, Northern-central Ghana, Northern-central Togo, Northern-central Benin and Northern-central Nigeria. Within these parameters, the ideal zone for mango [19] can be delimited by three cities: Bobo Dioulasso, Kankan and Korhogo (figure 2).

---

3.2. Mango production and export from West Africa to the European Union

For the eight West African countries studied, the estimated area of the mango production was 192,098 ha in 2011 (table I), showing an increase in mango production from 1999 (243,142 t) to 2011 (427,217 t) (table II). According to our different field visits in West Africa it can be stated that the production areas of mango provided by the FAO (table I) in Burkina (1,448 ha) and Mali (2,566 ha) in 2011 are underestimated.

Although West African mango production has slightly increased since 1999, this is not true for West African mango exports until the years 2011-2012. We can see a regular decreasing trend (figure 1) of mango exports from West African countries to the EU until 2011. We noted a clear recovery of mango exports during the year 2012. We also stress several interceptions of infested mangoes (figure 1) by the EU quarantine services from 2006 to 2012, with about 90 interceptions (= number of containers) in 2011 and 2012. Most of the intercepted flies were the Asian species, *B. invadens*.

3.3. Fruit fly monitoring in eight West African countries

The characteristics of the different monitoring sites (figure 3) and occurrence of the two main mango fruit fly species were studied in one site for Forest, and one for Sahelian zones, and data were pooled for the Guinean Savanna zone (Guinea Kindia, Ghana-Sunyani and Benin-Dassa), for the Southern Sudan zone (Guinea-Kankan, Côte d’Ivoire-Korhogo, Burkina-Bobo and Benin-Parakou), and for the Northern Sudan zone (Mali-Bamako, Senegal-Ziguinchor and Benin-Koparco) (table III). Beninese analyzed data were compared for *B. invadens* populations (table IV) and *C. cosyra* populations (table V), respectively, during reproductive and vegetative developmental stages of the mango tree.

Only one site in the Humid Forest zone (3 PO) was available. The mean data of 2009 show that in that zone, *Bactrocera invadens* was present throughout the year, with a peak in May [mean of (314 ± 34.91) flies per trap per day], e.g., in Togo-Kpalimé during the second half of the mango season (figure 4). No capture of *C. cosyra* was observed during 2009.

In the Guinean Savanna zone, *Bactrocera invadens* was abundant for six to seven months, with a peak at the beginning of June [mean of (413 ± 79.50) flies per trap per day] during the second half of the mango season (figure 5). A few adults of *C. cosyra* were trapped [mean of (30 ± 3.28) flies per trap per day] in this zone. The peaks represent the means of three sites (9 PO).

In the Southern Sudan zone, *Bactrocera invadens* was abundant for six months, with a peak in mid-June [mean of (353 ± 33.08) flies per trap per day] during the second half of the mango season (figure 6), and adults of *C. cosyra* were relatively abundant with a peak in April [mean of (102 ± 24.89) flies per trap per day]. Populations of *C. cosyra* were present during the dry season during flowering and fruit growing before those of *B. invadens*. The peaks represent the means of four sites (12 PO).

In the Northern Sudan zone, *Bactrocera invadens* was abundant for five months, peaking at the end of June [mean of (399 ± 46.27) flies per trap per day] at the end of the mango season (figure 7), and adults of *C. cosyra* peaking in May and the beginning of June [mean of (74 ± 7.78) flies per trap per day]. Populations of *C. cosyra*...
Table I.  
Estimations of surfaces of mango crops (in ha) for main West African countries [2].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>4 740</td>
<td>4 681</td>
<td>4 846</td>
<td>4 915</td>
<td>4 958</td>
<td>2 400</td>
<td>2 300</td>
<td>2 350</td>
<td>2 400</td>
<td>3 307</td>
<td>3 370</td>
<td>3 370</td>
<td>3 459</td>
</tr>
<tr>
<td>Burkina</td>
<td>2 060</td>
<td>2 034</td>
<td>2 106</td>
<td>1 300</td>
<td>1 500</td>
<td>1 848</td>
<td>1 550</td>
<td>1 500</td>
<td>1 600</td>
<td>1 590</td>
<td>1 385</td>
<td>1 411</td>
<td>1 448</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>48 219</td>
<td>50 331</td>
<td>58 317</td>
<td>54 643</td>
<td>53 149</td>
<td>65 477</td>
<td>64 550</td>
<td>75 000</td>
<td>79 000</td>
<td>80 000</td>
<td>82 183</td>
<td>84 000</td>
<td>86 210</td>
</tr>
<tr>
<td>Ghana</td>
<td>977</td>
<td>945</td>
<td>1 025</td>
<td>1 071</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>636</td>
<td>650</td>
<td>664</td>
<td>691</td>
<td>697</td>
<td>715</td>
</tr>
<tr>
<td>Guinea</td>
<td>50 423</td>
<td>52 936</td>
<td>60 000</td>
<td>78 000</td>
<td>80 000</td>
<td>82 000</td>
<td>80 000</td>
<td>82 000</td>
<td>61 855</td>
<td>82 500</td>
<td>86 232</td>
<td>76 900</td>
<td>80 000</td>
</tr>
<tr>
<td>Senegal</td>
<td>12 326</td>
<td>10 500</td>
<td>12 166</td>
<td>11 400</td>
<td>11 000</td>
<td>6 733</td>
<td>6 638</td>
<td>13 335</td>
<td>14 000</td>
<td>16 000</td>
<td>16 724</td>
<td>14 900</td>
<td>17 700</td>
</tr>
<tr>
<td>Mali</td>
<td>1 990</td>
<td>2 380</td>
<td>2 400</td>
<td>2 553</td>
<td>2 574</td>
<td>2 600</td>
<td>3 030</td>
<td>3 810</td>
<td>2 874</td>
<td>2 695</td>
<td>2 489</td>
<td>2 500</td>
<td>2 566</td>
</tr>
<tr>
<td>Total</td>
<td>120 735</td>
<td>123 807</td>
<td>140 860</td>
<td>153 882</td>
<td>153 725</td>
<td>164 216</td>
<td>158 818</td>
<td>178 581</td>
<td>162 329</td>
<td>185 849</td>
<td>193 011</td>
<td>183 778</td>
<td>192 098</td>
</tr>
</tbody>
</table>

Table II.  
Estimations of mango production (in tons) for main West African countries [2].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>16 166</td>
<td>15 398</td>
<td>18 130</td>
<td>16 764</td>
<td>21 466</td>
<td>12 200</td>
<td>12 500</td>
<td>12 000</td>
<td>12 500</td>
<td>13 000</td>
<td>14 412</td>
<td>13 700</td>
<td>13 900</td>
</tr>
<tr>
<td>Burkina</td>
<td>6 610</td>
<td>6 296</td>
<td>7 413</td>
<td>7 500</td>
<td>9 000</td>
<td>7 882</td>
<td>9 300</td>
<td>9 000</td>
<td>9 600</td>
<td>10 105</td>
<td>10 737</td>
<td>10 962</td>
<td>13 154</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>22 663</td>
<td>23 655</td>
<td>27 490</td>
<td>25 758</td>
<td>25 054</td>
<td>30 865</td>
<td>30 428</td>
<td>35 342</td>
<td>37 504</td>
<td>39 798</td>
<td>42 232</td>
<td>45 206</td>
<td>45 703</td>
</tr>
<tr>
<td>Ghana</td>
<td>8 690</td>
<td>4 000</td>
<td>5 000</td>
<td>5 494</td>
<td>5 500</td>
<td>6 000</td>
<td>6 600</td>
<td>6 996</td>
<td>6 800</td>
<td>7 019</td>
<td>7 000</td>
<td>7 000</td>
<td>7 100</td>
</tr>
<tr>
<td>Guinea</td>
<td>83 000</td>
<td>79 055</td>
<td>120 000</td>
<td>155 812</td>
<td>160 000</td>
<td>164 000</td>
<td>162 000</td>
<td>164 000</td>
<td>165 000</td>
<td>166 000</td>
<td>165 000</td>
<td>163 900</td>
<td>170 000</td>
</tr>
<tr>
<td>Senegal</td>
<td>75 236</td>
<td>73 000</td>
<td>83 715</td>
<td>78 523</td>
<td>85 365</td>
<td>65 840</td>
<td>61 646</td>
<td>82 194</td>
<td>95 000</td>
<td>100 000</td>
<td>100 000</td>
<td>100 000</td>
<td>120 000</td>
</tr>
<tr>
<td>Mali</td>
<td>30 777</td>
<td>25 905</td>
<td>33 097</td>
<td>29 145</td>
<td>60 434</td>
<td>55 000</td>
<td>61 424</td>
<td>65 386</td>
<td>69 277</td>
<td>48 943</td>
<td>47 392</td>
<td>47 800</td>
<td>57 360</td>
</tr>
<tr>
<td>Total</td>
<td>243 142</td>
<td>227 309</td>
<td>294 845</td>
<td>318 996</td>
<td>366 819</td>
<td>341 787</td>
<td>343 898</td>
<td>374 918</td>
<td>395 681</td>
<td>384 865</td>
<td>386 773</td>
<td>388 568</td>
<td>427 217</td>
</tr>
</tbody>
</table>
were present during the dry season during both flowering and fruit development before the population peaks of *B. invadens*. The peaks represent the means of three sites (9 PO).

In the Sahelian zone, *Bactrocera invadens* was abundant for four months, peaking in August [mean of \((429 \pm 63.70)\) flies per trap per day] just after the middle of the mango season (figure 8). Adults of *C. cosyra* were also present, peaking at the beginning of August [mean of \((37 \pm 7.29)\) flies per trap per day] but dominated by the populations of the Asian fly species. We only had one site (3 PO).

These preliminary results show that the exotic species *B. invadens* is present everywhere at high population levels in all agroecological zones of West Africa, while the native species, *Ceratitis cosyra*, is mainly present from Southern Sudan to Sahelian zones at much lower levels. The key point is the high abundance of *B. invadens* populations during three-quarters of the mango season in Sudan zones but during the entire mango season in both Forest Guinean and Sahelian zones.

There were significant differences (table IV) between fruit growth stages and *B. invadens* populations in all Beninese sites \((P = 0.887\) and \(P < 0.0001)\) in three sites (9 PO). The pattern of *B. invadens* population distribution is similar across growth stages in all sites, with insect counts highest during the maturity period (table IV). However, there were no significant differences among sites for counts of *B. invadens* species in Benin. *Bactrocera invadens* distribution with respect to abundance by site could be classified as follows: hot-spot sites for Kindia (Guinean Savanna), Ziguinchor (North Sudan), Kankan (South Sudan), Kpalime (Forest) and Bamako (North Sudan); moderate sites for Thiès (Sahelian), Bobo (South Sudan) and Koro (South Sudan); and relatively low-abundance sites for Dassa (Guinea Savanna), Korobourou (South Sudan) and Papatia (North Sudan).

There were significant differences (table V) between fruit growth stages and abundance of *C. cosyra* in all Beninese sites \((P = 0.047\) and \(P < 0.0001)\). The pattern of *C. cosyra* species population distribution is similar across growth stages in all sites, with insect counts highest during the maturity and pre-maturity periods, followed by the fruit growth period and then flowering and without-fruit periods. Also, there were significant differences among sites for counts of *C. cosyra* species \((P < 0.0001)\). *Ceratitis cosyra* distribution with respect to abundance by site is as follows: hot-spot sites for Bamako (North Sudan) and Kankan (South Sudan); moderate sites for Koro (South Sudan), Papatia (North Sudan), Thiès (Sahelian) and Zinguichor (North Sudan); and low-abundance sites for Kindia (Guinean Savanna), Bobo (South Sudan), Dassa (Guinea Savanna) and Korhogo (South Sudan). (table V).

### 4. Discussion

The large Sudan zone is the most important zone for mango production in West Africa; it can be divided into two parts (Southern and Northern), the most humid one being the Southern one. Although mango trees can also grow and produce fruits in northern areas (i.e., the Sahelian zone) and in southern ones (i.e., the Guinean and Forest

![Figure 3. West African map with 12 sites of the framework of the West African Fruit Fly Initiative (WAFFI) among five agroecological zones.](image)
Table III.
Fruit fly monitoring sites and occurrence of two main mango fruit flies, *Ceratitis cosyra* and *Bactrocera invadens*, in West Africa.

<table>
<thead>
<tr>
<th>Country</th>
<th>Nearby city</th>
<th>Locality</th>
<th>Geographical coordinates</th>
<th>Agro-ecological zone</th>
<th>Mean rain (mm)</th>
<th>C. cosyra peak (FTD)</th>
<th>Period of C. cosyra peak</th>
<th>B. invadens peak (FTD)</th>
<th>Period of B. invadens peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>Kopargo</td>
<td>Papatia</td>
<td>10°04'52&quot; N 01°48'40&quot; E</td>
<td>Northern Sudan</td>
<td>~ 1000</td>
<td>62</td>
<td>Beginning of June</td>
<td>201</td>
<td>End of June</td>
</tr>
<tr>
<td></td>
<td>Parakou</td>
<td>Koro</td>
<td>09°37'01&quot; N 02°58'08&quot; E</td>
<td>Southern Sudan</td>
<td>~ 1200</td>
<td>86</td>
<td>Mid-April</td>
<td>321</td>
<td>Mid-June</td>
</tr>
<tr>
<td></td>
<td>Dassa</td>
<td>Akofodioulé</td>
<td>07°54'59&quot; N 02°37'44&quot; E</td>
<td>Guinean</td>
<td>~ 1400</td>
<td>26</td>
<td>Mid-May</td>
<td>346</td>
<td>Beginning of June</td>
</tr>
<tr>
<td>Burkina</td>
<td>Bobo</td>
<td>Toussiana</td>
<td>12°09'50&quot; N 03°00'53&quot; E</td>
<td>Southern Sudan</td>
<td>~ 1200</td>
<td>100</td>
<td>End of April</td>
<td>500</td>
<td>Mid-June</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Korhogo</td>
<td>Lataha</td>
<td>09°34'31&quot; N 05°37'29&quot; E</td>
<td>Southern Sudan</td>
<td>~ 1200</td>
<td>50</td>
<td>End of April</td>
<td>257</td>
<td>Mid-June</td>
</tr>
<tr>
<td>Ghana</td>
<td>Sunyani</td>
<td>Botim Farms</td>
<td>05°56'43&quot; N 00°01'37&quot; E</td>
<td>Guinean</td>
<td>~ 1300</td>
<td>20</td>
<td>Mid-April</td>
<td>322</td>
<td>Beginning of June</td>
</tr>
<tr>
<td>Guinea</td>
<td>Kankan</td>
<td>Karifamoria</td>
<td>10°44'07&quot; N 09°28'12&quot; E</td>
<td>Southern Sudan</td>
<td>~ 1200</td>
<td>171</td>
<td>Beginning of May</td>
<td>343</td>
<td>Mid-June</td>
</tr>
<tr>
<td></td>
<td>Kindia</td>
<td>Séguéya</td>
<td>10°00'31&quot; N 12°58'19&quot; E</td>
<td>Guinean</td>
<td>~ 1800</td>
<td>43</td>
<td>Mid-May</td>
<td>571</td>
<td>Beginning of June</td>
</tr>
<tr>
<td>Mali</td>
<td>Bamako</td>
<td>Kognini</td>
<td>12°64'16&quot; N 07°59'10&quot; E</td>
<td>Northern Sudan</td>
<td>~ 900</td>
<td>70</td>
<td>End of May</td>
<td>221</td>
<td>End of June</td>
</tr>
<tr>
<td>Senegal</td>
<td>Thies</td>
<td>Noto</td>
<td>14°59'13&quot; N 17°00'11&quot; E</td>
<td>Sahelian</td>
<td>~ 400</td>
<td>37</td>
<td>Beginning of August</td>
<td>429</td>
<td>Mid-August</td>
</tr>
<tr>
<td></td>
<td>Ziguinchor</td>
<td>Dar Salam</td>
<td>12°29'48&quot; N 16°20'20&quot; E</td>
<td>Northern Soudan</td>
<td>~ 1000</td>
<td>90</td>
<td>Beginning of June</td>
<td>775</td>
<td>End of June</td>
</tr>
<tr>
<td>Togo</td>
<td>Kpalimé</td>
<td>Kpalimé</td>
<td>06°54'15&quot; N 00°45'59&quot; E</td>
<td>Forest</td>
<td>~ 2500</td>
<td>0</td>
<td>None</td>
<td>314</td>
<td>End of May</td>
</tr>
</tbody>
</table>

FTD: number of flies per trap and day.
Table IV.  
Comparison of *Bactrocera invadens* populations during reproductive and vegetative development of the mango tree in Benin.

<table>
<thead>
<tr>
<th>Growth stage of the mango tree</th>
<th>Papatia-Northern Sudan</th>
<th>Koro-Southern Sudan</th>
<th>Dassa-Guinean Savanna</th>
<th>All sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean ± standard error</td>
</tr>
<tr>
<td>Flowering</td>
<td>8 0.6 ± 0.1 c</td>
<td>7 1.0 ± 0.2 c</td>
<td>6 0.6 ± 0.3 c</td>
<td>21 0.77 ± 0.11 c</td>
</tr>
<tr>
<td>Fruit growing</td>
<td>9 0.5 ± 0.2 c</td>
<td>9 1.4 ± 0.6 c</td>
<td>9 0.6 ± 0.2 c</td>
<td>27 0.83 ± 0.22 c</td>
</tr>
<tr>
<td>Pre-maturity</td>
<td>3 3.0 ± 1.0 bc</td>
<td>3 4.2 ± 0.7 bc</td>
<td>3 4.1 ± 1.9 bc</td>
<td>9 3.76 ± 0.68 b</td>
</tr>
<tr>
<td>Maturity</td>
<td>11 100.6 ± 17.4 a</td>
<td>11 46.9 ± 11.3 a</td>
<td>9 111.6 ± 22.3 a</td>
<td>31 84.76 ± 10.79 a</td>
</tr>
<tr>
<td>Without fruit</td>
<td>21 10.8 ± 4.0 b</td>
<td>22 11.8 ± 3.3 b</td>
<td>25 14.1 ± 3.4 b</td>
<td>68 12.31 ± 2.04 b</td>
</tr>
<tr>
<td><em>F</em>-value (df)*</td>
<td>(4.47) 39.9</td>
<td>(4.47) 18.5</td>
<td>(4.47) 28.1</td>
<td>(4.8) 66.3</td>
</tr>
<tr>
<td><em>P</em>-value*</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Site mean</td>
<td>52 26 ± 6.7</td>
<td>52 15.5 ± 3.6</td>
<td>52 26.5 ± 6.8</td>
<td>F(2, 8) = 0.12 ns</td>
</tr>
</tbody>
</table>

Means with the same letter(s) in a column are not significantly different at the 0.05 level of significance.

Table V.  
Comparison of *Ceratitis cosyra* populations during reproductive and vegetative development of the mango tree in Benin.

<table>
<thead>
<tr>
<th>Growth stage of the mango tree</th>
<th>Papatia-Northern Sudan</th>
<th>Koro-Southern Sudan</th>
<th>Dassa-Guinean Savanna</th>
<th>All sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean ± standard error</td>
</tr>
<tr>
<td>Flowering</td>
<td>8 4.3 ± 0.9 c</td>
<td>7 11.2 ± 4.1 b</td>
<td>6 1.1 ± 0.6 c</td>
<td>21 5.67 ± 1.64 bc</td>
</tr>
<tr>
<td>Fruit growing</td>
<td>9 21.7 ± 3.2 b</td>
<td>9 42.1 ± 4.2 a</td>
<td>9 0.1 ± 0.0 c</td>
<td>27 21.33 ± 3.77 ab</td>
</tr>
<tr>
<td>Pre-maturity</td>
<td>3 42.2 ± 7.0 a</td>
<td>3 57.7 ± 4.4 a</td>
<td>3 3.6 ± 2.1 b</td>
<td>9 34049 ± 8041 ab</td>
</tr>
<tr>
<td>Maturity</td>
<td>11 48.5 ± 8.2 a</td>
<td>11 48.6 ± 10.6 a</td>
<td>9 9.7 ± 1.8 a</td>
<td>31 37.25 ± 5.64 a</td>
</tr>
<tr>
<td>Without fruit</td>
<td>21 1.0 ± 004 d</td>
<td>22 0.3 ± 0.1 c</td>
<td>25 0.6 ± 0.2 c</td>
<td>68 0.65 ±0.16 c</td>
</tr>
<tr>
<td><em>F</em>-value (df)*</td>
<td>(4.47) 91.7</td>
<td>(4.47) 72.1</td>
<td>(4.47) 36.0</td>
<td>(4.8) 7.27</td>
</tr>
<tr>
<td><em>P</em>-value*</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Site mean</td>
<td>52 17.5 ± 3.3</td>
<td>52 22.6 ± 3.9</td>
<td>52 2.3 ± 0.6</td>
<td>F(2, 8) = 4.57 **</td>
</tr>
</tbody>
</table>

Means with the same letter(s) in a column are not significantly different at the 0.05 level of significance.

* Significance test across growth stages.
** Significance test across sites.
J.-F. Vayssières et al.

zones), the mango quality is lower than in Sudan zones [19] where the agro-climate symbiosis gives higher nutrients for the fruit and lower prevalence of pathogens on both trees and fruits.

In this close relationship between mango tree and fruit flies, the importance of the phenological coincidence between high abundance of fly pests and fruit maturity is crucial for the mango fruiting season and thus for growers. It is not surprising to obtain the highest $B. \text{invadens}$ counts during the maturity period (for season and late mango cultivars), the highest counts of which are also correlated with daily rainfall [10]. Following the same general trend, Ceratitis $cosyra$ counts are highest during the maturity and pre-maturity periods (for early mango cultivars only), followed by the fruit growth period and then flowering periods. In the Southern Sudan zone, Ceratitis $cosyra$ populations are present during all reproductive developments of the mango tree. It is noteworthy that mango flowers can be attractive for Ceratitis adults, as already recorded for other fly species [20]. As we
have a large panel of mango cultivars present in Benin [4] through a mango season of three consecutive months (mid-March to mid-June) as in Guinea, Mali and Senegal [21] with a later mango season, the fruit availability is quite abundant during the outbreaks of different fly species.

Previous studies indicated that *C. cosyra* caused damage in the Southern Sudan zone (Guinea-Kankan [22], Korhogo-Côte d’Ivoire [23], Burkina-Bobo [24] and Parakou-Benin [25]) on early mango cultivars. The same trend was observed in the Northern Sudan zone (Mali-Bamako [26] and Benin-Natitingou). For mid- and late mango cultivars, *Bactrocera invadens* caused more than 90% of the damage in both Southern Sudan and Northern Sudan zones [4, 27]. In the Sahelian zone (in Senegal-Niajes), *Bactrocera invadens* was considered to be the principal pest for mangoes during the rainy season [3, 10, 28]. Previous studies
indicated that, in the Forest zone [29, 30] and in the Guinean Savanna zone (Guinea-Kindia [31]), the impact of *B. invadens* was high during the whole mango season. *Bactrocera invadens* remains the major pest species throughout West Africa. Most growers try to avoid fruit fly infestations by picking mangoes before they mature, reducing fruit quality.

Several actions are suggested to mitigate this problem. Integrated Pest management (IPM) measures should be initiated three months prior to maturity of the earlier mango cultivars to prevent high infestation of fruit fly populations. To implement timely and effective control measures, we need to establish early fly trapping, if possible four months before the maturity of the earlier mango cultivars (Amélée, Julie). We have several kinds of fly trapping such as (i) “detection trapping” to determine preliminary activity of flies in various regions [11, 32], and (ii) “mass-trapping” as an important component of a pest management program [33]. Only detection trapping can also provide some accurate data on population dynamics in relation to fruit stages, especially fruit growing, pre-maturity and maturity [34]. This type of trapping is a key element for pest control as it provides essential data on the fruit fly population fluctuations in relation to the time of occurrence. Data gathered during this process is important, as it is often the first step for the launch and timely implementation of control measures (IPM) in accordance with the Economic Injury Level (EIL) [35]. The Economic Injury Level is the population density at which the cost of controlling the pest equals the amount of damage it inflicts. This EIL calculation does not differentiate between the different species of fruit flies. Thus, all fruit fly species that have an economic impact on mango production are included. The EIL calculation is therefore an indicator for initiating pest control [using spinosad (GF-120), for instance] at the right time and for neutralizing any large increase in the fly populations [36]. According to our previous activities in the larger mango production basin of central Benin, treatments with GF-120 should be launched at least five weeks [37] before the pre-maturity stage of earlier mango cultivars. It is of paramount importance because, if fruit fly populations reach high levels, none of the control methods would be effective. Thus, this method is based on the introduction of detection traps in the mango orchards from the mango flowering period onward. Weekly monitoring of trapped adults is used to compute the EIL and make a decision about launching pest control measures.

From 2007 to 2012, the WAFFI project (IITA-CIRAD project) developed a comprehensive fruit fly IPM package including sanitation activities with bait sprays containing GF-120 [38], and important biological con-
control options with weaver ants [39, 40] and parasitoids [41, 42]. All these control measures are compatible with each other. At the beginning of this project, some diagnostic studies were implemented under a participatory approach and by using local knowledge [43] in the mango production basin. It was necessary to adapt the “IPM package” for the different agro-ecological zones (AEZ), as the different pest management components may not be equally effective for each one. For instance, biocontrol using weaver ants, Oecophylla longinoda, seems to be most appropriate in woody areas of the Forest, the Guinean Savanna and both Sudan zones [39]. This is similar to O. smaragdina (Fabricius) in forests of northern Australia [44]. In the same way, the use of parasitoids may be more suitable in humid areas of the Forest, the Guinean and Sudan zones, as was previously observed for Fopius and Psyttalia spp. in many other tropical zones [45]. Bait sprays with GF-120 are expected to be effective in the Guinean Savanna, and mainly in both Sudan-Saharan zones. Lastly, sanitation activities can be applied to all agro-ecological zones (AEZ) since FSA. A model-based characterization of biotic and abiotic drivers of B. invadens population dynamics could help the development of much-needed prediction and forecasting tools for this key pest in the West African region.

In the Southern-Northern Sudan zones, which are the most productive areas for mango both in terms of quality and quantity, it is noteworthy that the prevalence of B. invadens is very significant when compared with other agro-ecological zones of West Africa. Since 2003, this exotic fly species has quickly become a major pest of high economic significance by its infestation of many cultivated and wild fruits throughout the whole of West Africa. With more than 40 fruit species infested in Benin by B. invadens [46], the management of this exotic species still remains an important constraint for mango production. Apart from a very large host range for B. invadens compared with that of C. cosyra (a dozen hosts in Benin), the Asian fly species also has other important comparative advantages vs. the native species. Biological advantages are the shorter length of immature stages and also longer life span fecundity for B. invadens vs. C. cosyra [47]. Other advantages include behavioral traits, including its dispersal, since the exotic species is a strong flyer able to move about 10 km per week, contrary to the native fly (Vayssière et al., pers. commun.). All of these advantages have led to a general displacement of C. cosyra by B. invadens in mango orchards throughout West Africa, just as we have observed the displacement of C. capitata (Wiedemann) by the Asian fly species in citrus orchards of the Southern zones of Ghana-Togo-Benin. These advantages may lead to other countries being invaded by this invasive fly [48].

5. Conclusion

Our results regarding the annual population dynamics of mango fruit flies in West Africa show that the exotic species B. invadens is present everywhere with high populations in all agro-ecological zones, while the native species C. cosyra is mainly present from Southern Sudan to Sahelian zones at lower populations. Bactrocera invadens populations are high during three-quarters of the mango season in Sudan zones but throughout the entire mango season in the Humid Forest, Guinean Savanna and Sahelian zones. Through the five agro-ecological zones of West Africa, the management of B. invadens - C. cosyra populations should be implemented by disseminating an adapted IPM package to provide environmentally friendly, efficient technologies and appropriate skills for fly management.

Acknowledgments

We would like to thank all the West African growers for their encouragement and their availability during the study carried out in their orchards. Thanks are also due to Eric Imbert and Denis Loeillet (Fruitrop) for providing mango data. This study was funded by the World Bank, the European Union,
IITA and CIRAD. Many thanks also to several reviewers of this article.

References


Yearly population dynamics of mango tephritids in West Africa


Dinámica anual de las poblaciones de moscas de las frutas del mango en África Occidental: aspectos socioeconómicos, fenología del huésped e implicaciones para su gestión.

Resumen – Introducción. En África Occidental, las pérdidas debidas a las moscas de las frutas superan el 50 % en los cultivares de interés comercial, a partir de la mitad de la campaña mango, desde 2005, lo que implica considerables pérdidas de ingresos para los agricultores. Material y métodos. En 2009, se realizó el seguimiento semanal de los adultos de moscas de las frutas, simultáneamente en ocho países del África Occidental, a nivel de 12 sitios diferentes, en cinco zonas agroecológicas: (i) bosque húmedo, (ii) sabana guineana, (iii) sudanesa meridional, (iv) sudanesa septentrional, (v) saheliana. El trampeo de los adultos se efectuó mediante el uso de metileugenol y de terpinil acetato en 288 Tephritraps enfocando a Bactrocera invadens y a Ceratitis cosyra. Resultados. Los datos de 2009 mostraron que, en bosque, B. invadens estaba presente todo el año, abundante durante 7 meses, con un pico a finales de la campaña mango (mayo), pero que C. cosyra estaba ausente. En la sabana guineana, B. invadens abundaba mucho durante 6-7 meses, con un pico a principios de junio durante la campaña, y C. cosyra escaseaba. En la zona sudanesa meridional, B. invadens era abundante durante 6 meses, con un pico a mediados de junio durante la campaña, y C. cosyra con un pico a principios de abril. En la zona sudanesa septentrional, B. invadens abundaba durante 5 meses, presentando un pico a finales de junio, a finales de la campaña, y C. cosyra con un pico en mayo. En la zona saheliana, B. invadens abundaba durante 4 meses, presentando un pico en agosto durante la campaña, y C. cosyra con un pico justo antes. Estos resultados preliminares mostraron que B. invadens abundaba [media de los picos: 378 moscas por trampa por día (MTD)] en todas las zonas, mientras que C. cosyra prefería las zonas secas (media de los picos: 77 MTD). Conclusión. El trampeo de detección de los machos con paraferomonas es un indicador del nivel de las poblaciones de Tephritidae que puede emplearse para impulsar las actividades de lucha (IPM-package) una vez alcanzado el Umbral Económico de Nocividad. Se debaten las estrategias de lucha contra estos insectos de cuarentena en función de la zona agroecológica y de las fases fenológicas del mango.