Antibiotics: A global challenge for food safety

SARTER S. and To Kim Anh
CIRAD France- HUST Vietnam
Antibiotics

- Antibiotics are the most therapeutic agents used in animal food producing

- Bacterial resistance: Spread among the food chain and the environment

- Pathogens (*Salmonella, Campylobacter, E.coli, Staphylococcus aureus*)

- Commensal bacteria (reservoir)
Antibiotic resistance

- Isolate that has a resistance mechanism rendering it less susceptible than other members of the same species lacking any resistance mechanism.
 - Different levels of resistance: low or high level of resistance

- Clinical resistance (pharmacokinetic/pharmacodynamic parameters; criteria of cure)
Antibiotics resistance

- Microbiological resistance
- Epidemiological Cut-off (ECOFF) value
- MIC separating the wild-type population/resistant isolates (mutations, HGT)

![Graph showing Microorganisms vs MIC (mg/ml) with ECOFF indicating the cut-off value.](image-url)
Routes of transmission of genes conferring antibiotic resistance.

Witte, IJAA 2000
Antibiotic resistance

- Health risks for food producing systems
 - Zoonoses diseases

- Spread of resistance genes to other pathogens of diverse origins (mobile elements...)

Implications on animal and human health; and on the microbial ecology of the environment.
Andersson and Hugues, FEMS 2011.
Antibiotics

- Mutants of *E. coli* and *Salmonella enterica* with resistance to AB (TET, FQ, AG)
 - Selection of R bacteria can occur at AB concentrations up to several hundred-fold below the MIC of the S strains

- Ultralow antibiotic concentrations found in many natural environments are sufficiently high to confer the selection and persistence of antibiotic resistance.
Food production systems

- Impact beyond the farm
- Persistence of AB in environment
- Once acquired, resistant genes are transferred among bacteria of different ecological niches (even if no use AB)
Antibiotic resistance

Salmonella spp.
- Resistance in meat: Porc 50-73% ; Chicken 45%
- Tetracycline, sulphonamide, streptomycin, ampicillin, chloramphenicol, trimethoprim, nalidic acid
- Multiresistance : 21-56% of isolates
- 7-9 antibiotics: 15% / 10-13 antibiotics: 8%

Campylobacter spp.
- Chicken: 95% resistance to fluoroquinolones (critical AB)

Escherichia coli : a reservoir
- Resistance: 84% of isolates of beef, poultry, porc
- Multiresistance: Chicken 89%; Porc 75%
- Resistance to fluoroquinolones: 16-21% of isolates, mainly in chicken samples (52-63%)

Garin et al. IJFM 2012; Thi Thu Hao Van et al. IJFM 2012; Truong Ha Thai et al. IJFM 2012; Thi Thu Hao Van et al. AEM 2007; Thi Thu Hao Van et al. IJFM 2008.
Antibiotic resistance

• Multiresistant *Salmonella* from food or food-producing animals are common in different countries:
 - Malaysia 49-75% (n=88)
 - Thailand 44-66% (n=342)
 - Vietnam 21-56% (n=180)

• Multiresistant *E. coli* (n=99) in raw meat (chicken, pork, beef), shellfish and chicken faeces:
 - 89.5% in chicken meat
 - 95% in chicken faeces
 - 75% in pork meat isolates

Van et al. IJFM 2012; Van et al. AEM 2007; Vo et al. 2010
Large conjugative plasmids and integrons containing many antibiotic determinants have been found in:

- *Salmonella* (35% and 13% respectively)
- *E. coli* (76% and 57% respectively)

in raw chicken and pork meats from the market place in Vietnam.

Van et al. 2008; Van et al. 2007
Antibiotic resistance

• China: Plasmid-mediated quinolone resistance in *E. coli* isolates from animals, farmworkers, and the farm environment in pig and chicken farms

• Transferable plasmid-mediated multidrug efflux pump gene *oqxAB* which was widespread in animal farms, was also detected in 30% of human commensal *E. coli* isolates from farmworkers without any previous antimicrobial treatment or hospital admission

Zhao, AAC 2010
Management system

Contamination Control
Hygiene practices
Microbial control

Proper use of AB
Diagnostic
Dose/length
Molecules

Decrease AB use
Health management
Reduce disease

Surveillance
AB use
Resistance

Monitoring/Compliance
Knowledge/Research
Int. Collaborations
Conclusion

- Best Management/Hygiene Practices
- Reduce Antibiotics in animal production
- Develop alternatives to AB (new modes of action; probiotics; vaccins...)
- Rapid methods for detection

Need for global approaches and strategies because AMR is a global problem