Agritrop
Home

Canopy microclimate and gas-exchange in response to irrigation system in lowland rice in the Sahel

Stuerz Sabine, Sow Abdoulaye, Muller Bertrand, Manneh Baboucarr, Asch Folkard. 2014. Canopy microclimate and gas-exchange in response to irrigation system in lowland rice in the Sahel. Field Crops Research, 163 : pp. 64-73.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_573422.pdf

Télécharger (1MB)

Quartile : Q1, Sujet : AGRONOMY

Abstract : In lowland rice production, water-saving irrigation technologies have been developed, but it has rarely been considered that the absence of a ponded water layer could change the field's microclimate due to the different thermal characteristics of water compared to air. At a site in the Senegal River valley, canopy and soil temperature as well as temperature at meristem level and relative humidity inside the canopy were observed in the presence and absence of a ponded water layer in an irrigated rice field. Gas-exchange measurements were conducted at different development stages of three varieties (IR4630, IR64, and Sahel108) sown in bi-monthly intervals and the effects of climatic and microclimatic parameters on stomatal conductance, assimilation rate, and intrinsic water use efficiency were investigated. Minimum soil (Tsmin) and meristem temperature (TMmin) were usually lower in the absence of a ponded water layer. Stomatal conductance depended mainly on Tsmin, TMmin, and minimum relative humidity inside the canopy. Assimilation rate was positively correlated with solar radiation, Tsmin and TMmin, but depended mainly on stomatal conductance. Without standing water, stomatal conductance was significantly lower, but reductions could be explained with lower Tsmin and/or TMmin. Nevertheless, Tsmin and/or TMmin were the major determinants of stomatal conductance and assimilation rate, which suggests a pivotal role of root zone temperature on plant growth probably via water uptake and, thus, overall plant water status. Varietal differences were found, with assimilation rate in IR4630 and Sahel108 having been less affected by low temperature than in IR64. When water-saving irrigation measures are applied in irrigated rice, the negative effects of lower soil and meristem temperature in the absence of a ponded water layer in the field on the productivity of rice need to be considered. In regions where night temperatures below 20 °C occur, varieties should be used that are less temperature-responsive, if the effect of cool nights on meristem temperature cannot be mitigated by a ponded water layer. (Résumé d'auteur)

Mots-clés Agrovoc : Oryza sativa, Riz irrigué, Méthode d'irrigation, Stress dû au froid, Température, Transpiration, Stomate, Échange gazeux, Microclimat, Conservation de l'eau, Rendement des cultures

Mots-clés géographiques Agrovoc : Sahel, Sénégal

Classification Agris : F06 - Irrigation

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Stuerz Sabine, Universitaet Hohenheim (DEU)
  • Sow Abdoulaye, Centre du riz pour l'Afrique (SEN)
  • Muller Bertrand, CIRAD-BIOS-UMR AGAP (SEN)
  • Manneh Baboucarr, Centre du riz pour l'Afrique (SEN)
  • Asch Folkard, Universitaet Hohenheim (DEU)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/573422/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-11-03 ]