Exploiting textual source information for epidemiosurveillance

Arsevska Elena, Roche Mathieu, Lancelot Renaud, Hendrikx Pascal, Dufour Barbara. 2014. Exploiting textual source information for epidemiosurveillance. In : Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Closs Sissi (ed.), Studer Rudi (ed.), Garoufallou Emmanouel (ed.), Sicilia Miguel-Angel (ed.). Cham : Springer International Publishing, pp. 359-361. (Communications in Computer and Information Science, 478) ISBN 978-3-319-13673-8 International Conference on Metadata and Semantics Research Conference. 8, Karlsruhe, Allemagne, 27 November 2014/29 November 2014.

Paper with proceedings
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (130kB) | Preview

Abstract : In recent years as a complement to the traditional surveillance reporting systems there is a great interest in developing methodologies for early detection of potential health threats from unstructured text present on the Internet. In this context, we examined the relevance of the combination of expert knowledge and automatic term extraction in the creation of appropriate Internet search queries for the acquisition of disease outbreak news. We propose a measure that is the number of relevant disease outbreak news detected in function of the terms automatically extracted from a set of example Google and PubMED corpora. Due to the recent emergence we have used the African swine fever as a disease example. (Résumé d'auteur)

Classification Agris : C30 - Documentation and information
L70 - Veterinary science and hygiene
L73 - Animal diseases

Auteurs et affiliations

  • Arsevska Elena, CIRAD-BIOS-UMR CMAEE (FRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Lancelot Renaud, CIRAD-BIOS-UMR CMAEE (FRA)
  • Hendrikx Pascal, ANSES (FRA)
  • Dufour Barbara, ENVA (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-23 ]