Genetic Stability in Micropropagation

From mitigation strategies to epigenomics research?

Alain RIVAL
CIRAD Montpellier, France

Jenny Aitken
The Tree Lab, Rotorua, New Zealand
In vitro culture is known to destabilize the genetic program of isolated plant tissue.

Somaclonal variation is:
Phenotypic variation among regenerated plants.
The G X E dilemma

TRUE TO TYPE PHENOTYPE
Genotype X Environment

Mother plant ID
• Pedigree
• Species
• Ecotype

Explant status
Explant identity
Biophysical parameters
• Medium
• Light
• Gases
• Temperature

Genetics X Epigenetics?
Tackling the issue together

In the Production Unit
- Cost assessment: Go/NoGo
- Mitigation strategy
- Quality control
- Field control
- Customer acceptance
- Feedback

In the Research Lab
- Ploidy study
- DNA markers
- Genomics
- Transcriptomics
- Epigenetics
- Proteomics

Certified Micropropagation Process

Simple Cheap Reliable Early Markers
Mitigation strategies

No/reduced PGRs
- Growth rates
- Multiplication rates
- Rooting
- Metabolites profile

Autotrophic/Mixotrophic
- Lower contamination
- Faster acclimatization
- Metabolite profile
- Automation/Bioreactors

Short cultivation time
- Delays in flowering
- Delays in harvesting
- Maturation status
- Rejuvenation
- Availability of explants
The *mantled* somaclonal variation in oil palm
MOLECULAR DETERMINISM OF SOMACLONAL VARIATION

GENOME STRUCTURE
- GENOMICS
 - FLOW CYTOMETRY
 - RAPD
 - RFLP
 - AFLP

GENOME EXPRESSION
- TRANSCRIPTOMICS
 - DNA Methylation
 - Expression of MADS Box genes (flower structure)
 - RNA SEQUENCING
Epigenetic regulation of flower development

Polycomb-group genes

Floral MADS-box genes

- Different epigenetic marks in *mantled* flowers?
 - DNA Methylation
 - Chromatin remodelling

Transposable Elements

- Different mRNA/sRNA levels in *mantled* flowers?
 - Transcriptome sequencing
 - Gene discovery

Transcription factors

Chanderbali et al., 2010