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ABSTRACT 

The objective of this thesis was to explore the contribution of remote sensing towards sustainable 

management of cultivated sugar cane areas in Western Kenya. Although widespread, burnt 

harvest sugarcane practice bans the use of crop residues for soil cover at the local scale, it 

contributes to decrease in physicochemical properties of soils and increase erosion risks. With 

this in mind, we worked on three specific investigations conducted at different scales: (i) the 

relationship between remote sensing data and sugarcane yield (biomass) at regional scale, (ii) the 

role of remote sensing data in mapping cropping practices and (iii) the impact of such practices 

on soil erosion at local scale. These questions were answered through a landscape approach and 

so we made use of remote sensing techniques integrated with GIS and expert knowledge, to 

describe and analyze the link between environmental services and landscape as seen from space. 

At regional scale, we explored the suitability of Normalized Difference Vegetation Index 

(NDVI) from Moderate Resolution Imaging Spectrometer (MODIS) to forecast sugarcane yield 

on an annual base. We developed a statistical model between a new NDVI-based descriptor 

(wNDVI), that takes into account the growth period of the sugarcane crop, and historical yield 

data over 11 years and six growing zones. Correlation between yield and wNDVI is mainly 

drawn by the spatial dimension of the data set (R2 = 0.53, when all years are aggregated 

together), rather than by the temporal dimension of the data set (R2 = 0.1, when all zones are 

aggregated). A test on 2012 and 2013 showed that yield forecast with this model realized a 

RMSE less than 5 t ha−1 (4.2 t ha−1 and 1.6 t ha−1  respectively), leading to a mean RMSE of less 

than 5%. We showed that despite the use of broad resolution satellite images (250 m) in a 

smallholder agriculture conditions, it was possible to establish a yield forecast model at regional 

scale. 

At local scale, a time series of Landsat 8 images were obtained for Kibos sugar management 

zone over 20 dates (April 2013 to March 2014) to characterize cropping activities. Sugarcane 

fields were mapped with 83.8% accuracy, and the harvest mode - green or burnt – was mapped 

for each field with 90% accuracy. A t-test on three spectral indicators - SWIR (Short 

Wavelength InfraRed reflectance), NDVI and NDWI (Normalized Difference Water Index) - 

between each two dates for sampled fields showed that at harvest time the change in SWIR were 
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strong. Furthermore, NDWI differences (before and after harvest) were significantly different at 

P = 0.000 for green and burnt harvest modes, with a threshold value of 0.27 (> 0.27 for burnt 

harvest fields, and < 0.27 for green harvested fields), while NDVI differences were not 

significant. These results showed the role of the SWIR band in description of sugarcane harvest 

practice. On the same area, the impact of cropping activities on soil erosion risks was 

investigated using a fuzzy based soil erosion model FuDSEM. Maps produced exhibited a 

mosaic of low to high erosion risk depending on slope, crop type and practices. Seasonal 

variation in erosion risk was also demonstrated with the minimum risk in September (1.08) and 

the maximum risk in February (2.04). In conclusion, we showed that free satellite images could 

be used to characterize crop and quantify crop production and environmental services of 

agriculture – erosion control – in complex landscape such in the Kenyan sugarcane production 

area. However, future satellite missions like Sentinel-2 should permit monitoring sugarcane 

production at a finer resolution and so should improve the quantification of performances in 

agriculture.  

 

Keywords: remote sensing, sugarcane, yield, soil erosion, cropping practices, environmental 
services. 
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RESUME 

L'objectif de cette thèse est d'étudier la contribution de la télédétection à la gestion durable 

des zones de canne à sucre dans l'ouest du Kenya. Nous avons travaillé sur trois questions 

spécifiques menées à différentes échelles: (i) la relation entre les données de télédétection 

et le rendement de la canne à sucre (biomasse) à l'échelle régionale, et (ii) le rôle de la 

télédétection pour la cartographie des pratiques agricoles et (iii) l'impact de ces pratiques 

sur l'érosion des sols à l'échelle locale. Pour répondre à ces questions, nous avons adopté 

une approche paysagère et mis en œuvre des outils de télédétection, d’analyse spatiale et 

des connaissances expertes, pour décrire et analyser le lien entre les services de 

l'environnement et le paysage agricole vu de l'espace. A l'échelle régionale, nous avons 

exploré la pertinence de l’indice de végétation NDVI (Normalized Difference Vegetation 

Index) calculé à partir de données acquises avec le capteur MODIS (Moderate Resolution 

Imaging Spectrometer) pour prévoir le rendement de la canne à sucre sur une base 

annuelle. Nous avons développé un modèle statistique entre un descripteur original basé 

sur le NDVI (wNDVI), qui prend en compte la période de croissance de la canne, et des 

données historiques de rendement sur 11 ans et sur 6 régions de production. La corrélation 

entre le rendement et wNDVI est essentiellement d’ordre spatial (R² = 0.53, lorsque toutes 

les années sont agrégées ensemble), plus que temporel (R² = 0.1, lorsque toutes les régions 

sont agrégées). Un test sur 2012 et 2013 a montré que les prévisions de rendement ainsi 

modélisées avaient une erreur quadratique moyenne inférieure à 5 t ha-1 (4.2 t ha-1 et 1.6 t 

ha-1 respectivement), ce qui conduit à une erreur moyenne relative inférieure à 5%. Nous 

avons montré que malgré la faible résolution spatiale des images utilisées (250 m), il a été 

possible d'établir un modèle de prévision de rendement à l'échelle régionale pour une 

agriculture essentiellement familiale. A l'échelle locale, une série temporelle d’une 

vingtaine d’images Landsat 8 (avril 2013 à mars 2014) a été utilisée pour caractériser la 

zone agricole de Kibos. Les parcelles de canne ont été cartographiées avec 84% de 

précision, et le mode de récolte - en vert ou brûlé - a été cartographié avec 90% de 

précision. Un test statistique sur la différence entre deux dates de trois indicateurs 

spectraux - MIR (moyen infrarouge), NDVI et NDWI (Normalized Difference Water 

Index) - estimés sur des parcelles d’entrainement a montré un fort changement des valeurs 
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dans le MIR au moment de la récolte. En outre, les différences de NDWI avant et après 

récolte sont significativement différentes (p = 0.000) pour les deux modes de récolte 

étudiés (> 0.27 pour les champs de récolte brûlés, et < 0.27 pour les champs récoltés en 

vert), tandis que les différences de NDVI ne sont pas significatives. Ces résultats ont 

souligné le rôle de la bande MIR dans la caractérisation des pratiques de récolte de la 

canne à sucre. Sur la même zone, on a étudié l'impact des pratiques agricoles sur les 

risques d'érosion des sols à l'aide du modèle FuDSEM. Les cartes produites présentent une 

mosaïque de risques d’érosion faible à élevés en fonction de la pente, de la culture et des 

pratiques de récolte. Les variations saisonnières ont également été montrées avec un risque 

d'érosion minimum en Septembre (1.08) et un risque maximum en Février (2.04). En 

conclusion, nous avons montré que les images satellites pourraient être utilisées pour 

quantifier la production agricole cannière à l’échelle régionale et pour cartographier les 

services environnementaux de l'agriculture – le contrôle de l'érosion - dans les paysages 

agricoles complexes de l’Ouest kenyan. Dans un avenir proche, les missions satellitaires 

de type Sentinel-2 devraient permettre un suivi plus fin de la production cannière et ainsi 

améliorer la quantification des performances du secteur agricole. 

 
 
Mot-clés: télédétection, canne à sucre, rendement, érosion des sols, pratiques culturales, services 
environnementaux. 
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QUOTE 

 
 
“We delight in the beauty of the butterfly, but rarely admit the changes it has gone through to 

achieve that beauty.”  
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1. INTRODUCTION    
 

 

Sugarcane is produced in 127 countries around the world, with an annual contribution of 175.9 

million tons of sugar (Andersson, 2010). In the year 2012, the world’s largest sugar producer 

was Brazil, followed by India, China, Thailand, Pakistan, Mexico, Columbia, Australia, USA 

and the Philippines. Of this production, Africa’s share was 5.8% with South Africa taking the 

lead, followed by Egypt, Sudan, and Swaziland (Andersson, 2010). Production of sugar in East 

Africa in 2012 was 1 million tons with Kenya contributing 50%. Sugarcane growing in Kenya 

started in the early 1900 around Lake Victoria, having been introduced by Indians who were 

engaged in the construction of the East African Railway. Sugarcane is now grown in Western 

and is currently being introduced in the coastal region. Compared to the low altitude coastal 

zone, the western Kenya landscape is unique with a hilly landscape and two agro-ecological 

zones (AEZ) comprising six sugar zones: (i) Chemelil, Kibos-Miwani and Muhoroni within a 

sub humid AEZ; and (ii) Mumias, Nzoia and Sony within a humid AEZ of Kenya. The western 

Kenya sugarcane landscape occupies a surface area of 202,304 ha with an annual average 

sugarcane yield of 68 t ha-1 (KSB 2013). This production is majorly rain fed in all the five sugar 

zones except in Kibos-Miwani zone where some irrigation is undertaken (KSB, 2012). 

Additionally, burnt harvest practice is widely conducted in Kibos with farmers giving reasons 

for this preference as reduced harvesting labour and minimized risks to attacks from snakes 

(Jamoza et al., 2013). Although burnt harvest sugarcane practice bans the use of crop residues 

for livestock and soil cover, at the local scale, it contributes to decrease in physicochemical 

properties of soils and increase erosion risks which impact sugarcane yield. Sugarcane yield is 
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affected by factors that include; climatic, edaphic, agronomic, and varietal (KESREF, 2012) and 

therefore variation in yield differs from one zone to the other. Based on such factors, the 

sugarcane industry in Kenya is in difficulty today because of decreasing sugarcane yield, and 

increasing soil erosion.  

 

A decreasing sugarcane production 

The Kenyan annual sugarcane average yield, 69 t ha-1 that is based on fresh millable stalk, has 

been decreasing from the potential 100 t ha-1 for rain fed sugarcane (Jamoza et al., 2013) over 

the years and is now far lower than most of the East African sugarcane growing countries such 

as Ethiopia with 120 t ha-1, Egypt 115 t ha-1, or Tanzania 100 t ha-1 (FAOstats, 2013). In the 

leading sugar factory of Kenya (Mumias), this yield decreased by 42% between 1997 (110 t ha-

1) and 2009 (64 t ha-1), while in Kibos-Miwani zone, it decreased by 17% between 2008 (73 t ha-

1) and 2012 (60 t ha-1). This worrying trend is reported similarly in the other individual factories 

(KESREF, 2012) reporting spatial variability in zonal  sugarcane yields and yet; the Kenyan 

sugar industry generates about Kshs 12 billion annually and supports directly and indirectly over 

7 millions of its population. In this population, 291,000 are farmers, 7,462 are permanent 

employees in the factories and plantations; while the rest are their direct and indirect 

dependants. Sugarcane is the third largest contributor to Agricultural Gross Domestic Product 

(GDP) after tea and horticulture. Kenya’s domestic demand for sugar is 780,000 metric tons 

against an average production of 500,000 metric tons which leaves a deficit of up to 280,000 

tons that is met by imports from regional sugar producers. This low yield influences high social 

and economic impacts to the farmer and sugar industry at large, and these calls for the urgent 
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need to investigate the drivers for the spatio-temporal variability of yield and how to 

improve sugarcane productivity in this region.  

 

Increasing soil erosion 

Mendoza et al. (2001) found that sugarcane cropping has an advantage of protecting soil quality 

due to its spatio-temporal characteristic that provides vegetation cover in the landscape through 

the year based on management practices adopted by the farmer. Further, they realized that green 

sugarcane harvesting provides sufficient trash that minimizes inter-row cultivation by 50%, 

increasing water retention of the soils and thus reducing soil erosion. Opposed to green 

sugarcane harvesting in the humid AEZ of western Kenya, majority of farmers in the sub-humid 

AEZ, harvest burnt sugarcane exposing bare soils to agents of soil erosion. Furthermore, this 

sugarcane landscape extents from the plains into the escarpment foot with Kibos-Miwani zone, 

where galleys expose a threat of soil erosion risk in the heterogeneous sugarcane farms. The 

impact of this heterogeneity on regulatory ecological processes such as soil transport from the 

sloppy terrain into valleys and carbon sequestration using water as a facet for matter cycling in 

sugarcane fields is necessary to determine their influence on crop production and ecosystem 

functioning, for improved crop management and regulation of environmental services in space 

and time.   

Whereas disadvantages of soil erosion have been documented, there is little etiquette in 

evaluating soil degradation characteristics in western Kenya. Knowledge on impact of sugarcane 

cultivation and harvest mode on soil degradation is critical in undertaking effective soil 

conservation for sustainable management of Western Kenya ecosystems (Gunnula et al., 2011; 

Oldeman et al., 2001). This is because this study assumes that harvest mode is a key determinant 
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of erosion. Therefore, there is an urgent need to investigate the spatial and temporal 

dynamics of soil erosion risk of sugarcane landscape to assess potential soil erosion based 

on environmental and human determinants. 

 

A complex land use system  

Western Kenya is characterized by a great variability of ecosystems in relation to altitude, 

ranging from 1000 to 2000m, topography and soil types on short distances. The region produces 

the bulk of sugarcane besides the subsistence food crops such as maize, legumes and sorghum, 

due to its ideal climatic conditions that favor diversification and intensification of cropping 

systems. Sugarcane growing in the western region is mainly under rain fed conditions. It is 

grown in large-scale commercial schemes and also in detached small schemes among different 

land uses, in different agro-ecological zones. It is usually planted between April and September 

during the rainfall peaks. Harvesting is conducted all through the year depending on variety 

maturation using either green or burnt harvesting methods. These variable agro-environmental 

conditions coupled with crop management practices influence different maturity periods even 

for sugarcane that is planted at the same date, introducing high spatial and-temporal variability 

in the sugarcane cropland. Monitoring sugarcane cultivation in this landscape is therefore 

important in studying interactions in such heterogeneous landscapes due to its ratoon ability that 

makes it a perennial crop compared to other crops. 

Furthermore, the combination of commercial sugarcane farming, subsistence food cropping and 

natural vegetation within the same geographical space provides configurational heterogeneity 

with landscape properties such as fragmentation, diversification, intensification and 

connectivity. This heterogeneity stems from a combination of inherent environmental variables 
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that affect sugarcane cultivation such as topography, soil types, vegetation type, land use 

systems and crop management practices which are distributed as elements of the landscape. 

Spatial heterogeneity in agricultural landscapes has been attributed to adoption of ad hoc 

behavioral assumptions (KESREF, 2010). Different crop management practices such as tillage, 

fertilizer use, crop rotation and weeds and pests management contribute to different responses of 

the crop to climatic conditions. It is this human influence that affects landscape conservation, 

water quality, soil fertility and consequently, influence crop production.  

As a consequence, spatial patterns that are observed in such diverse landscapes result from 

complex interactions between biological, physical and social factors. Such complex spatial 

patterning may have an impact on agro-ecosystems functioning (Martinez and Molliconel., 

2012) and on provision of environmental services in the landscape.  

 

Remote sensing:  a tool to study landscape dynamics 

Remote sensing technology provides the tools and methods to study the spatial and temporal 

dynamics of the agro environmental conditions and cropping practices and their impact on 

variations in sugarcane yield through a landscape approach. Moreover, temporal remote sensing 

data has been commended for monitoring spatio-temporal variability in vegetation development 

in response to changes in the environment and human management practices to which sugarcane 

phenology and productivity is dependent (Zarco-Tejada et al., 2005; Bégué et al., 2010). This is 

because of the high spatio-temporal characteristics of the landscape and two growing seasons in 

western Kenya. 
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Working hypothesis 

The timelines of sugarcane cropping practices (planting and harvesting) in relation with the 

environmental variables (rainfall season, topography and soil characteristics) affect the rate of 

soil run off which further exacerbates spatio-temporal variability of this sugarcane production. It 

is important to ensure that planning for land preparation, planting and harvesting of crops in the 

hilly terrain is done in cognizance of climate and protection of soils from degradation for 

sustainable production by embracing mitigation and adoptive measures of soil conservation. 

Investigation of the link between crop production, climate and cropping practices and their 

impact on soil erosion is thus important because it is the demand for enhanced production that 

influences land degradation if mitigation and adoptive measures are not observed (Jolande and 

Paul, 2009; Oldeman et al., 2001).   

We assume that there is a significant link between the landscape and environmental services, 

and therefore hypothesize that the landscape can be described in its spatial and temporal 

dimensions using remote sensing images. Figure 1 illustrates this hypothesis.  



7 
 

 

Figure 1: The observed agro-ecosystem using remote sensing; links between the Landscape and 
Environmental services at different scales.  
 

Objectives  

Based on these hypotheses, and taking into account the Western Kenya context, the general 

objective of the study is to examine the relationship between environmental services and 

the sugarcane landscapes in Western Kenya, using remote sensing and a soil erosion 

model.  

Because of the scope of this question, we chose to work on two specific services that are very 

sensitive for the sugarcane industry in Kenya: i) sugarcane production and ii) soil protection. 

These two study cases address three specific objectives conducted at different scales: 
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− To investigate the relationship between remote sensing data and sugarcane yield at 

regional scale 

− To investigate the role of remote sensing data in mapping crop management practices 

at landscape (local) scale.  

− To investigate the impact of sugarcane cultivation on soil erosion at landscape (local) 

scale. 

 

Providing information on yield and cropping practices (e.g. harvest mode) may help growers to 

change their actual practices. We therefore chose to answer these objectives through a landscape 

approach, and so we made use of remote sensing techniques integrated with GIS and expert 

knowledge, to describe and analyze the link between environmental services and landscape as 

observed from space. This approach is described in this document, through the following: 

• Chapter 2: Background.  

It is a bibliographic review that provides the sugarcane context of western Kenya and the 

associated environmental services 

• Chapter 3: Materials and methods. 

Presentation of the study area, the agronomic and satellite data used, the image 

processing methods and the soil erosion model. 

• Chapter 4: Results 

− Part I: Regional scale: Forecasting regional sugarcane yield based on time integral 

and spatial aggregation of MODIS NDVI. This work was published in Remote 

Sensing journal (see Annex): Mulianga B., Bégué A., Simoes M., Todoroff P., 

2013. Remote Sensing, 5, 2184-2199; doi:10.3390/rs5052184. 
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− Part II: Landscape scale: Cropping practices mapping (crop type, harvest date and 

mode) using Landsat8 30 m time series. 

− Part III: Local scale: Analysis of the impact of the cropping practices and the 

environment on the soil erosion risk using a fuzzy based soil erosion model 

(FuDSEM). 

• Chapters 5 and 6: General discussion and conclusion.  

The results are discussed in light of the usefulness for the sugarcane industry (How can 

the results be used by sugarcane industry?) and in link with KESREF research (What are 

the remote sensing research perspectives for KESREF?) 

 

The results have been published (part I) and in preparation for publication (part II) in 

international journals. The in-form paper is given in the annex. 

 

This research should permit to address operational questions  

1. Which remote sensing indicator and environmental effects help in crop and landscape 

monitoring and provide information for sustainable management of sugarcane 

production in western Kenya?  

2. How can spatial and temporal information contained in the satellite images be interpreted 

in terms of indicators for crop and landscape management 

3. What is the impact of cropping practices and landscape organization on soil erosion risk 

of Kibos-Miwani landscape?  
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2. BACKGROUND  
 

2.1. Sugarcane production context in 
Western Kenya  

 

The sugarcane, a semi perennial crop  

Sugarcane, Saccharum officinarum is of the tribe of Andropogonae and Gamineae family, and is 

defined as a semi perennial grass which grows within the tropics. It is known as a renewable 

agricultural resource, providing sugar, besides fiber, fertilizer and biofuel under ecological 

sustainability and as a product, it is an indispensable raw material in manufacture of various 

food, soft drinks and pharmaceutical products. After planting this crop and its maturing, it is 

harvested at variable periods which may be long depending on its variety, soil, topography, 

climatic conditions and farmer’s management practices. The lengthy harvesting period 

influences varied regeneration of the crop (referred to as a ratooning), which introduces 

heterogeneity both in physiological development of sugarcane and crop yield (Bégué et al., 

2010) even within similar agro-climatic conditions.  

 

Agriculture in western Kenya 

Presently, sugarcane is grown in six sugar zones of western Kenya under mainly rain fed 

conditions. These six sugar zones lie within two distinct agro ecological zones (AEZ) (Figure 2): 

the humid and sub humid zones. Mumias, Nzoia and Sony zones lie within the humid AEZ 

receiving an annual rainfall of 1700 mm – 1900 mm, while Chemelil, Muhoroni and Kibos-
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Miwani zones lie within the sub humid AEZ with an average rainfall of 1400 mm – 1550 mm 

(Ribot et al., 2005). Sugarcane is grown mainly on the gentle slopes and plain areas within an 

altitude of 1000 m to 1600 m above mean sea level. It is planted between April and September, a 

season when there is sufficient soil water moisture from the bimodal rainfall (Shisanya et al., 

2011). The sugarcane maturation period in this area lengthens to between 16-24 months and 14-

18 months for plant and ratoon crop respectively (KESREF, 2010) depending on variety. 

Examples of diverse varieties planted in western Kenya is: C0421 which matures in 24 months 

for plant crop and 21 months for ratoon crop; while a neighbor may plant D8484 which matures 

in 16 months for plant crop and 14 months for ratoon crop (KESREF, 2010). In practice, the 

crop may not be harvested in time causing over maturation which may result in sugar loss (KSB, 

2013). The variation in variety, planting dates, availability of labor and factory preparedness 

(capacity transport and mill) introduces different harvesting dates which combined with varied 

land utilization, introduces spatial heterogeneity in the landscape.  

There are diverse farming scales at: i) industrial scale where the farmer grows sugarcane in pure 

stand, mainly under one variety for each field; while small scale farmers grow sugarcane besides 

subsistence crops  such as: maize, beans and groundnuts, aiming at crop diversification and 

intensification either through intercropping or besides sugarcane fields. The multiple planting 

and harvesting dates, together with these subsistence crops lead to a landscape with vegetation 

throughout the year which is assumed to reduce the rate of run off, consequently reducing soil 

erosion (Mendoza et al., 2001). As opposed to the coastal region of Kenya where sugarcane is 

being introduced  at low altitude (less than 100 m above mean sea level) fully under irrigation, 

In western Kenya, an altitude below 1800 m above mean sea level, an average of 1500 mm 

rainfall over the growing period and maximum daily temperature range, between  20°C– 30°C is 



13 
 

ideal for this agricultural system; while rainfall below 1500 mm attracts supplementary 

irrigation (KESREF, 2010). It is assumed that sugarcane yield and that of other crops  is affected 

by this variation in altitude, temperature and rainfall distribution and quantity (Amolo et al., 

2009) which is a threat to food productivity in cases of climate change and also a threat to local 

effects of deforestation on expansion of agricultural land. 

 

 

 

 

 

 

 

  

 

 

 
 
 
 
Figure 2: A map of Kenya showing Agroecological zones.  The western Kenya region lies within the 
humid  and sub humid  agrocecological zones. Source: Ribot et al., 1985. 
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The sugarcane yield and acreage 

Sugarcane yield in the humid AEZ is at 69 tons of cane per hectare (t ha-1 ), while that of sub 

humid AEZ is at 57.1 t ha-1  (KSB, 2012). This production trend contributes to about 70% of the 

domestic sugar requirement in Kenya, while 30% deficit is met through imports (Wawire, 2005). 

There is a rather stable sugarcane yield of about 71 t ha-1 between 2001 and 2008; while, during 

the 2009 and 2013 period, there is an average yield of 63 t ha-1 and this shows a decrease of 6% 

in yield. Similarly, the evolution of surface area under sugarcane in western Kenya region has 

significantly increased (35% between 2001 and 2008, and by 53% between 2009 and 2013), 

with inter-annual variations (Figure 3) such as the decrease in the sugarcane surface area by 7% 

between the year 2008 and 2009 (KSB 2013), consequently decreasing the mean calculated 

yield, by 8 t ha-1. This decline in production and yield (Figure 3) implies that various factors 

such as environmental (rainfall, temperature), land fragmentation, soil degradation, and socio-

economic factors; had an effect on this production. 

 

 

Figure 3: Evolution of the annual surface area under sugarcane (grey bars) and sugarcane yield 
(blue line) in Western Kenya (2001-2012). Source: Kenya Sugar Board, yearly book of statistics 
(2012). 
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Figure 4: The land use of the western Kenya region with sugarcane (orange polygons) confined to 
selected areas around Lake Victoria. Source: (FAO, 2012, Atlas 2003). 
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The western Kenyan environment and farmers’ adaptation  

Western Kenya is characterized by a great diversity of ecosystem due to its topography that 

presents of hills, valleys and gentle plains and complex crop mosaics in relation to soil, 

insolation and altitude. Moreover, deep fertile soils in the lowland that retain moisture for a long 

period to support agriculture as evidenced in the land use map (Figure 4) (Atlas 2003, FAO 

2012).  

Deep soils that are well drained with a pH of 5-7 and free from toxic metals are ideal for 

sugarcane cultivation in Kenya (KESREF, 2010). Soils of western Kenya are dominantly black 

cotton cambisols in the low lands and sandy loamy acrisols in the highlands (Jaetzold et al., 

1985). These soils have been subjected to pressure through intensification, to satisfy the ever 

increasing population  contributing to yield decline over the years (Jaetzold et al., 2005). In their 

research, Jaetzold et al. (2005) proposed the combination of artificial fertilizers with nutrient  

recycling  such as from farm manure, crop residues and animal excretions, for a sustainable 

increase in crop yields. In practice, farmers in Western and South Nyanza sugar belts prefer to 

harvest green sugarcane and trash line sugarcane residues between sugarcane rows. It is assumed 

that nutrient provision from decomposing litter minimizes use of artificial fertilizers to enhance 

sugarcane productivity (Mendoza et al., 2001). Furthermore, Mendoza et al. (2001) emphasize 

that sugarcane trash lining minimizes inter-row cultivation by 50% by suppressing development 

of weeds, increasing water retention of the soils and reducing soil erosion. 
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The sugarcane industry organization 

Until 2010, transportation of harvested sugarcane in western Kenya was charged on farmers 

depending on distance from the mill. Farmers were encouraged to supply their sugarcane to a 

mill within 40 km radius from their farms (KESREF 2010) to minimize on this cost by industry 

and ensure timely delivery of the harvested sugarcane to minimize sugar loss (KSB, 2010). This 

regulation has since been waived with introduction of privately owned mills and farmers are 

now charged a flat transportation rate (same transport cost per ton regardless of the distance). 

This flat transport cost is meant to address the farmers’ need for a free market and to encourage 

competition within the sugar Industry, aimed at increasing sugarcane production. Although not 

yet legalized, the introduction of the free market in the sugar industry has encouraged farmers to 

sell their sugarcane to the factory that pays the highest rate for higher financial flow. It is 

assumed that this competition for high financial flows motivated farmers to expand the surface 

area under cane by 51,000 ha between the year 2010 and 2012 up from the constant average of 

10,000 ha since the year 2001 (Figure 3).    

   

 

 

 

 

 



18 
 

2.2. Link between landscape and 
environmental services 

 

The landscape is a spatial human –ecological system that delivers a range of functions that are 

valued by mankind due to economic, cultural and ecological benefits. These benefits, also 

referred to as environmental services, include: food production, climate regulation, erosion 

control, carbon storage, clean air, clean water and biodiversity (Chan et al., 2006; Jolande and 

Paul, 2009). Consequently human activities such as depletion of natural resources, decreased 

production and soil erosion may reduce the provision of ecosystem services as feedback. 

Research has shown that human induced activities on soil in Africa (Bezuayehu and Sterk, 

2010) have subjected agro ecosystems to vulnerability of soil erosion. Tropical regions are most 

vulnerable due to rainy climate, fragile soils (Claessens et al., 2008) and improper land uses 

(Pimetel, 2006; Metternicht and Gonzalez, 2005). Balanced actions of managing natural 

resources are critical in achievement of enhanced productivity of the landscape (Andersson, 

2010). The actual functioning of the landscape therefore depends on the interaction between 

physical structures that influence natural processes and human activities. The challenge that 

faces populations is to maintain the provision of these environmental services under changing 

climatic conditions to support the functioning of natural ecosystems (Eswaran et al., 2001).   

Increase in populations initiate varied demands on the agricultural landscape for provision of 

environmental services to the society. These services are provided by the landscape if humans 

embrace an integrated management approach considering both mitigation and adaptation 

measures in their use of the landscape (Jolande and Paul, 2009). Further, Jolande and Paul 

(2009) state that if management practices of the landscape are changed, both mitigation and 
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adaptation measures will be included in the utilization of landscapes for resilience against 

climate change. Figure 5 shows a typical landscape of western Kenya providing environmental 

services such as: erosion control (hedges, terraces) and food production. 

 

 

 

 

 

 

 

 

 

 
Figure 5: A picture showing an interface between landscape elements in the escarpment and plain. 
The picture shows a spatially heterogeneous landscape with potential properties upward (trees, 
wood, hedges, crop mosaic) and open fields with a mosaic of sugarcane and food crops. (Taken by 
KESREF during a field survey in October 2013)  
 
 

Different crop management methods applied at given elevations will determine how much water 

is retained in the soils, soil organic matter content and status, and its impact on food production,  

plant biomass to diversify livelihoods, soil carbon storage, fodder for increased cattle rearing 

and  natural areas for conservation (Andersson, 2010).  
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2.2.1 Landscape and sugarcane production  

The western Kenya sugarcane landscape presents three contrasted farming systems namely: (i) 

Nucleus systems, (ii) large scale systems and (ii) small scale systems. Nucleus systems are those 

that are owned by the factories with each of the fields measuring over 10 hectares. Large scale 

systems are those that measure over 10 ha and are owned by large scale private farmers. Small 

scale systems are those that measure below 10 ha and comprise small scale private farmers. The 

Kenya sugar industry refers to private farmers as out growers with over 85% of the total 

sugarcane in Kenya being supplied by out growers, whilst the remaining 15% is supplied by 

nucleus estates (KSB, 2012). The three systems provide three sugarcane stakeholder models in 

the landscape as: (i) large scale models, (ii) small scale models and (iii) the miller as illustrated 

by Figure 6. The nucleus and large scale are both composed of pure sugarcane stand; while 

small scale models are composed of mixed cropping system, usually within diversity of land 

cover such as trees, hedges, wood. The three models are characterized with high level of 

intensification (crop types, exchange of services) and variability in yield within the same 

landscape.  

Both large scale and small scale models supply sugarcane to the miller for processing and 

receive finances paid by the miller. Small scale models offer labor to both the large scale holders 

and millers. The miller provides fertilizer, processing, financial services and advisory services 

(technology transfer) on crop management to the large scale and small scale models.  The miller 

further provides land preparation services for contracted small scale models, while those who 

are not contracted together with large scale holders prepare their own land. These variable land 

preparation methods include manual and mechanical techniques, which when influenced by 

rainfall and soil management practices, impact on sugarcane production. 
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The landscape among small scale models is heavily fragmented with both sugarcane and food 

crops in respective agronomic fields. A baseline survey by KESREF (2013) revealed that the 

minimum agronomic field size for a small scale holder was 0.2 ha with more than three food 

crops in the farm with high levels of crop rotation. These small fields face high costs of input at 

farm level because farm inputs are charged by the factory at one hectare unit including land 

preparation; and this becomes uneconomical for such farmers. These high input costs impact 

negatively on sugarcane yield when farmers lack essential inputs due to poor economic returns. 

From the baseline survey, about 30% of these farmers apply alternative recommendations such 

as manure instead of mineral fertilizers, while about 20% prefer intercropping with legumes to 

fertilizer use to minimize costs. Some factories have intensified services for small scale models 

by combining their fields into blocks for effective provision of land preparation, delivery of seed 

cane, educative services, harvesting and transportation at reduced costs. Land preparation for 

small scale farmers is equally affected with farmers resorting to manual labor who do not plough 

the necessary depth for root penetration and these impacts negatively on yield. Other land 

preparation methods such as no tillage and agro-ecology principles have not yet been rolled to 

the industry because it is still under experimentation by Kenya Sugar Research Foundation 

(KESREF). The blocking approach however does not reduce the cost of individual farm inputs 

on fertilizer and seed cane and this affects sugarcane production. Large scale holders on the 

contrary, enjoy minimum costs of input at farm level and are characterized with high profits for 

fields that receive all farm inputs. Although small holders provide labor to large scale farmers 

and the miller for income, they do not spend similar time for their own fields, and this influences 

spatial variability in yield between these three models in the given landscape. Although the large 

scale model benefits economies of scale, it is disadvantaged on the benefits that accrue from 
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crop rotation and therefore, their yield is equally affected due to lack of soil nutrients.  These 

conventional intensive practices increase risks of soil erosion and fertility depletion in the long 

run.  

These diversified crop management systems; farming systems, land preparation approaches, 

planting and fertilizer use introduce heterogeneity in space which this research aims to 

characterize using remote sensing.  

 

 

 

 

 

 

 

 

 

 

Figure 6: Stake holders in the Kenyan sugarcane agro-ecosystems and interactions among them as 
influenced by economic and environmental relationships (labor, technology transfer, fertilizer, 
harvesting, sugar processing, marketing and financial services) among others.  
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2.2.2 Landscape and soil erosion  

Soils fundamentally contribute to primary production, through the supply and recycling of 

nutrients and water to plants and microorganisms in natural ecosystems as well as in agricultural 

production ecosystems (Jaetzold et al., 2005). Pressure on these soils through agricultural 

activities introduce degradation at varied scales in time and space, depending on the topography, 

soil characteristics and crop management practices in the landscape. The loss of soils from the 

landscape was seen as a critical phenomenon to natural resources (Saavedra, 2005) in the 21st 

century (Reich et al., 2000). Soils are lost from areas designated as hot spots (Anejionu et al., 

2013) in the agricultural landscape where poor tillage methods and poor soil conservation 

measures (Valentin et al., 2005) are observed. Soil erosion leads to land degradation which 

affects crop production and environmental aesthetics.  Landscape degradation therefore remains 

important among global issues of the 21st century due to its negative effects on agricultural 

productivity (Eswaran et al., 2001). Continuous use of this landscape without observing 

mitigative and adoptive measures declines the quality of land, impacting heavily on agricultural 

productivity of both the degraded (eroded) areas and areas of sediment deposits (Eswaran et al., 

2001; Jaetzold et al., 2005). Research has shown that productivity of eroded landscapes has 

declined by 50% in the 21st century, contributing to a continental mean yield loss of 8.2% 

(Andersson, 2010), by 30 to 90% in West Africa (Mbagwu et al., 1984; Lal, 1998) and by 36% 

in Kenya (KESREF, 2012; Mutonyi and Muturi, 2013).  

Land degradation has been reported to be common in Africa due to human induced activities on 

landscape (Bezuayehu and Sterk, 2010) in the tropical region that has a rainy climate, fragile 

soils (Claessens et al., 2008) coupled with improper land uses (Pimetel, 2006; Metternicht and 

Gonzalez, 2005). Soils washed away from such landscapes carry along nutrients and are 
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deposited in water ways. This erosion is influenced by exogenetic processes such as wind or 

water flow, exacerbated by human activities. Indicators of soil erosion in agricultural landscapes 

include rills, gullies, granites and siltation (Okoba and Sterk, 2006), which influence crop 

production and soil fertility. 

It is therefore important to investigate the susceptibility of the landscape to erosion to prevent 

soil and nutrient loss (Cohen et al., 2008) for a sustainable productivity of any ecosystem.  As 

suggested by Sara et al. (2012), it is important for farmers in the uplands to embrace erosion 

control measures such as use of terraces and enhanced natural vegetation for continuous soil 

cover to minimize downstream flooding (Andersson, 2010). Such a conservation measure will 

minimize erosion and enhance crop productivity in the uplands. In the low lands, siltation of 

water streams will be reduced and thus clean water service provided for the ecosystem. In the 

hilly landscape of western Kenya, the multiple cropping system, planting and harvesting dates  

introduce spatial heterogeneity in the landscape which contribute at different scales to soil 

erosion risk. As argued by Jolande and Paul (2009), variable land preparation practices may 

introduce different levels of soil degradation in the landscape unless conservation measures are 

observed. Although effort has been made on soil conservation, the sensitivity of the landscape to 

erosion risk has not been documented in western Kenya. This documentation should include 

potential soil erosion risk for a sustainable land management system at landscape level. 
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2.2.3 Role of sugarcane in the western Kenya landscape 

Sugarcane farming in the western Kenya landscape (Figure 2) provides trash that is useful for 

improving levels of soil organic matter and in conservation of soil moisture (Eldridge, 2004).   

Improvement of soil organic matter improves soil fertility and yet enhances sugarcane yield. The 

more dry mass produced the more organic matter available to the soil. This is influenced by 

conservation practices such as: no tillage, cover crops and crop residue preservation on fields. 

Yield in clay soil within the valleys and plains is improved through raking of burnt cane trash 

from rows (Eldridge, 2004). This partly explains why farmers in the clay rich soils of Kibos-

Miwani sugar zone burn their cane before harvesting, while those found within  sandy loam, 

well drained soils in western and south Nyanza sugar belt prefer green cane harvesting. It is 

assumed that sandy soils are more sensitive and reactive to soil organic matter decrease.  

Recent studies have found that burnt cane harvesting reduces yields by 20% while 8% sucrose 

content is increased in the 3rd ratoon for green harvesting (Wiedenfeld, 2009). In the south 

Nyanza and western sugarcane belts of Kenya, over 90 % of farmers harvest green sugarcane 

while 85 % of those in Kibos-Miwani sugar zone burn their cane before harvesting. These two 

harvesting methods impact the environmental services provided by sugarcane farming such as 

production, clean air and soil protection. These harvesting modes influence risks of erosion first 

mechanically with residues or no residues on soil, and secondly, by improving the soil structure.  

An exploration on the average yield over 10 years in zones that harvest green cane  and burnt 

cane harvesting in Kenya realized an average yield of between 65 t ha-1 and 57 t ha-1 

respectively, statistically computed at regional scale (KESREF, 2013). The reason for this 

variability in yield in the different agro ecological zones is therefore attributed to soil 

degradation, and the different cropping practices (planting date, harvesting mode) coupled with 
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variable rainfall (over 1500 mm in humid agro-ecological zones and below 1500 mm in sub 

humid agro-ecological zones) (Amolo et al., 2009).  Soil carbon emission has also been found to 

increase in burnt fields impacting on soil moisture and temperature and therefore sugarcane 

yield variability (Panosso et al., 2009). 

.  

 

2.3.  Remote sensing  

2.3.1 Earth observing systems and their derived metrics 

Current Earth observing systems have optical sensors ranging from submetric spatial resolution 

for local studies to hectometric resolution for regional studies (Table 1). These systems provide 

descriptors of the land cover based on pattern, colour, texture and dynamics of the image 

radiometry (Table 2). This study will utilize low and high resolution (250 m to 30 m) optical 

images from MODIS and Landsat respectively, to characterize the landscape of Western Kenya.  

 

Table 1: Examples of optical Earth observing systems. 

Satellite/sensor Description Resolution 

Quick Bird  
Pléiades 

Very high spatial resolution images Metric and sub-metric resolution 

SPOT  
Landsat 

High spatial resolution images Decametric resolution 

MODIS 
VEGETATION 

Low spatial resolution Hectometric / Kilometric resolution 
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Table 2: Contribution of satellite image data properties in the description of the landscape 
elements. 
 

 
 

2.3.2 Remote Sensing and sugarcane yield evaluation 

The advantage of remote sensing over ground systems, such as that used by the millers, is that 

they cover wide areas explicitly, providing timely spatial and temporal data. Such temporal data 

has been commended for monitoring vegetation development in response to changes in the 

environment and in response to human management practices (Pettorelli et al., 2005; Zarco-

Tejada et al., 2005; El Hajj et al., 2009; Bégué et al., 2010). These conditions vary over large 

areas due to diverse topography, soil type, rainfall distribution and management practices, to 

which sugarcane phenology and productivity is dependent (Gunnula et al., 2011). Most 

vegetation indices have proven successful in estimating biomass and crop yield (Lofton et al., 

2012). The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974), from remote 

sensing imagery for example, has been expansively used to determine crop phenology, biomass 

and productivity. Methods developed depend on the scale of study and on the crop management 

practices, which influence the temporal and spatial resolutions of the relevant data. The cost of 

satellite imagery, however, is high when fine resolution is required. Crop monitoring studies 

have therefore resolved this impasse by successfully using free low resolution images from the 

Satellite image Landscape elements  

Spatial resolution  Pattern, networks, texture / structure of the landscape 

Spectral bands Land cover and land use types abundance and dispersion. 

Repetitivity Annual and seasonal variations  

Altitude Topography / 3D landscape 
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Moderate Resolution Imaging Spectroradiometer (MODIS), SPOT-VEGETATION, or NOAA-

AVHRR sensor data for crop studies (Atzberger, 2013). 

Recent studies have used low resolution imagery to estimate sugarcane yield production in 

different countries. In Brazil for example (Fernandes et al., 2011), 1 km SPOT-VEGETATION 

data was used, taking advantage of its daily temporal resolution and coupling it with 

meteorological data to monitor sugarcane development. Cropping seasons were identified by the 

study using the NDVI data and further classification of the yield data was performed in three 

classes for analysis. In the three yield classes assessed (24-73 t ha−1; 42-110 t ha−1, and 74-

85 t ha−1), the yield predicted was consistent with the historical yield with accuracies of 8.3%, 

66.7% and 86.5%, respectively. The low accuracy of the first class would be attributed to 

coarseness of the 1 km image that limits discrimination of individual phenology for plots that 

are smaller than the pixel size, a case similar to the small scale sugarcane farming community of 

Kenya. Accuracies for the second and third class were in the municipality areas, characterized 

with large farms such as the nucleus fields of Kenyan sugar mills that are under pure sugarcane 

stand.  

A similar study, Gunnula et al. (2011) noted that neither average rainfall nor MODIS NDVI 

integrated over the entire cropping season was related to the average sugarcane yield of the 

farmers’ fields situated within the 5 km radius of the nine weather stations in Brazil. On a larger 

scale, MODIS NDVI had a positive correlation (R = 0.57) with yield when averaged across all 

nine management zones with data collected during the long season planting for planted cane. In 

a different study (Bastiaanssen and Ali, 2003), NOAA-AVHRR 1 km data was utilized to 

develop and validate a model for forecasting crop yield in Pakistan. District data was then used 

to validate the model, resulting in a root mean square error of 13.5 t·ha−1 for sugarcane yield. In 
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their recommendations, actual daily sunshine hours, air temperature, and a crop map were 

argued to be indispensable for refinement of the model. 

A recent study on forecasting sugarcane crop season in Brazil using simple correlations between 

time series NDVI from AVHRR and an agro-climatic index on sugarcane yield, realized 

significant correlations (R = 0.69 to 0.79) after applying a cross correlation method on the 

datasets used (Gonçalves  et al., 2012). In a different study on maize (Funk and Budde, 2009), 

MODIS NDVI was used in Zimbabwe to realize strong relationships with the national maize 

production estimates after the data was adjusted to match onset of the rainy season. The strength 

of correlations in these two studies is attributed to normalization of the time lag in the climate 

and NDVI data through the methods used. It is inferred that normalization of satellite data 

through an appropriate method improves the strength of correlations and is appropriate in future 

studies. It is also important to note that a combination of satellite and climatic datasets such as 

those used in these studies utilizes newer methods in forecasting sugarcane 

productivity (Gonçalves et al., 2012) as opposed to traditional NDVI measurements. A similar 

study in Louisiana used thermal variables (Growing Degree Days accumulated from planting to 

sensing) to adjust in-field NDVI measurements, and to develop a sugarcane yield forecasting 

method (Lofton et al., 2012). They obtained a positive exponential correlation, with R2 

improving from 0.20, when using unadjusted NDVI, to R2 = 0.46, when using adjusted NDVI. 

These authors argued that a weak correlation from application of the model was attributed to the 

spatial variability of sugarcane fields due to different crop ages and diverse environmental 

conditions in different locations.  

In the agricultural landscape of Kenya, sugarcane crop exhibits extreme age differences 

alongside diversified subsistence cropping in different environmental conditions and is thus 
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highly heterogeneous (Mulianga et al., 2012). MODIS 250 m data has been used successfully to 

determine temporal dynamics of crops at local scales due to its good geometric and radiometric 

properties that make the data interoperable with other GIS datasets (Nguyen, 2005). However, at 

MODIS 250 m resolution and in a small agriculture region such as in Kenya, the measured 

radiation is a mixture of different crops and natural vegetation. It is therefore important to apply 

a method that will decrease the effect of mixed crop and natural vegetation pixels in the satellite 

data on aggregated NDVI data used for yield forecasting. The effect of mixed pixels while 

developing a maize yield model using the land cover weighted NDVI rather than the traditional 

NDVI reduced the unknown variance by 26% in the study of Rojas (2007). It was argued that 

yield estimation using NDVI may vary during respective months of the crop growth because 

NDVI is reduced at the end of the rainy season, emphasizing the need for careful consideration 

on time integration (Bégué et al., 2010). 

 

Therefore, this study will test a new method of yield estimation using time 

integration that takes into account the age of the crop in the contribution of the 

different sugarcane fields to the final annual harvest tonnage. This time 

integration was considered in order to minimize errors that accrue from 

variations in environmental variables during the growth period of sugarcane 

crop. 
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2.3.3 Remote sensing and sugarcane cropping practices  

Remote sensing approaches play a crucial role in studying cropping practices of a given area. 

This is due to their capacity in capturing real time information at any scales of study to enable 

scientists to develop useful decision support tools for agricultural sector. This is because 

vegetation changes are a sensitive indicator for environmental changes (Van Wijgaarden, 1991). 

Remote sensing provides useful information concerning changes in environments and this 

facilitates management of available natural resources. Temporal samples of remote sensing data 

play an important role in monitoring trends in cropping practices of a given area. This is because 

dynamics in vegetation growth cannot be deduced from one date imagery. Lei and Bian (2010) 

noted that interpretation of temporal variations in such vegetation growth provides valuable 

information on its spatial dynamics, and estimates of phenological indicators which help to 

describe cropping practices in the landscape. Time series vegetation indices derived from 

satellite images is useful for analyzing the spatial patterns in vegetation and in assessment of 

such vegetation dynamics. Through time series analysis of these indices, the observation of 

seasonal and annual trends in vegetation cover provides useful conclusions in cropping practices 

in the given landscape (Wardlow and Egbert, 2008).  

In the recent past, the normalized difference vegetation index (NDVI) derived from MODIS 

250m time series has helped in understanding the temporal dynamics of vegetation in the 

landscape by exposing vegetative seasons in the study area, while Landsat 30m NDVI has 

facilitated exploration of the spatial variability of such landscape due to its finer resolution 

(Mulianga et al., 2012). A different remote sensing index, the normalized difference water index 

(NDWI) has been used to monitor moisture conditions of vegetation over large areas (Gu et al., 

2008). High NDVI values reflect the vigor and photosynthetic activity of the vegetation, while 
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NDWI which is derived from the near infrared (NIR) and shortwave infrared (SWIR) channels, 

illustrate the changes in water content in the mesophyll of vegetation. Through time series on 

variations in vegetation moisture and vegetation availability conditions, a combination of these 

two indices facilitates detection of harvested fields and their mode of harvest (Gu et al., 2008). 

Thenkabail and Wu (2012) emphasized the need for land use maps to address food security. This 

is because updated information on land use enables the authorities to find solutions for increased 

efficiency on food production (Adami et al., 2012). They further suggested the need for 

automated methods to map land uses for precise yield forecasts. In the Kenyan scenario where 

85% of sugarcane is grown among other land uses, mapping of cropping practices is important 

in ensuring proper planning and management of the natural resources. Until the 1990’s, land use 

mapping was dominated with pixel based classification methods (Blaschke, 2010) that 

facilitated identification of the land use, eventually providing land use maps. The pixel scale 

however may sometimes not match the spatial extend of the land cover, sometimes being 

smaller or larger than the actual object (Fisher and Pathirana, 1994). In either case, remote 

sensing imagery will provide a guide to identification of the land use through image 

classification. Sugarcane farming in Kenya is not homogeneous due to multiple planting and 

harvesting calendar. The mapping situation is exacerbated with small scale fields usually smaller 

than the Landsat pixel size.  

Advanced remote sensing tools offer a solution for monitoring development stages of a crop 

(Zarco-Tejada et al., 2005) and delineating homogeneous pixels from the neighborhood to form 

homogeneous development units (HDU) that facilitate classification of sugarcane fields of 

similar age as an agronomic field or object (Vieira et al., 2012). Recent studies have used remote 

sensing images to map sugarcane fields through visual interpretation of multi temporal Landsat 
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data (Rudorff et al., 2010) that categorizes sugarcane fields into similar age units. This approach 

diminishes inaccuracies in mapping disparate fields from a single image that would classify 

harvested fields as bare land, thus capturing sugarcane fields of different ages from temporal 

series. In Brazil and other countries, where sugarcane is distributed over large areas such as in 

Kenya, advanced remote sensing tools based on MODIS (250 m) data were preferred to provide 

timely information on location of sugarcane fields and their respective area (Vieira et al., 2012) 

through an object based image analysis (OBIA) approach.  

In Kenya where sugarcane fields are small, a finer resolution such as 30m Landsat image that 

can aid in locating sugarcane fields of similar age is necessary. Similarly, information on 

sugarcane area and harvesting method in western Kenya landscape is vital in computation of 

sugarcane yield and advice to the farmers on soil conservation measures. Additionally, in Brazil, 

remote sensing images have been used to facilitate detection of sugarcane harvest and harvest 

mode (Aguiar et al., 2011). Either burnt or green harvest methods were detected from time series 

Landsat TM images through a change detection process on overlaid images.  

 

Therefore, this study will use Landsat 8, 30 m NDVI to study the spatial and 

temporal variability in cropping practices focusing on crop type and harvest 

mode in Kibos-Miwani landscape, using the temporal dynamics in MODIS NDVI 

and Landsat NDVI and NDWI series.  
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2.3.4 Remote sensing and soil erosion 

Remote sensing data, integrated with the digital elevation model and soil datasets have been 

used in the recent past to account for vegetation properties, (Cohen et al., 2008; De Jong et al., 

1999). Among other studies, De Jong et al. (1999) used Landsat TM data to represent vegetation 

conditions and developed soil erosion model for Mediterranean regions (SEMMED)    model, 

which is applicable at regional scale. Cohen et al. (2008) used temporal series of Landsat TM 

normalized difference vegetation index (NDVI) to represent the annual variations in vegetation 

growth and integrated it with spatial data sets from the heterogeneous landscape to develop a 

fuzzy based dynamic soil erosion model (FuDSEM) at local scale. Remote sensing techniques 

have therefore proved successful in characterization of heterogeneous landscapes when 

integrated with spatial dynamic models and expert knowledge to investigate the extent of soil 

losses in agricultural landscapes (Cohen et al., 2008). This is because remote sensing is able to 

detect both spatial and temporal characteristics of heterogeneous landscape patterns and 

processes and identify areas vulnerable to soil erosion (Anejionu et al., 2013). Soil management 

influences changes in physical, biological and chemical properties of soils in landscapes that 

produce sugarcane (Panosso et al., 2009).  A study on the spatial and temporal variability of 

these landscapes  is therefore crucial in estimation of potential soil erosion from which 

environmental services that are provided by main land uses to the ecosystem are ascertained 

(Saavedra, 2005).  Remote sensing is therefore a technology that facilitates the exploration of 

spatial and temporal variability in landscapes. (Pettorelli et al., 2005; Zarco-Tejada et al., 2005; 

El Hajj et al., 2009; Bégué et al., 2010).  Remote sensing provides temporal series datasets that 

are used in studying the evolution of such landscapes by depicting spatial and temporal changes 

over the desired study period (Zarco-Tejada et al., 2005). 
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In the recent past, information from remote sensing imagery was integrated with spatial data to 

increase accuracy in monitoring changes in land use (Adami, 2012) to provide information on 

the impact of soil quality on this land use. Additionally, satellite images provide temporal 

information on changes in environmental variables in space and time, and permit to study the 

impact of vegetation cover type on soil protection for a sustainable ecosystem. In the Kenyan 

context where 85% of sugarcane is grown among other land uses with multiple planting and 

harvesting crop dates, time series normalized difference vegetation index (NDVI) from satellite 

imagery of such landscape facilitated understanding of the seasonal variations in vegetation and 

the impact of management practices that determine variations in spatial productivity and 

susceptibility of such landscape to soil degradation. 

Recent studies have used NDVI to identify changes in vegetation cover that are presumed to 

have resulted from crop management practices. The image acquired on a specific date was 

presumed to reflect results of crop management practices as impacted by environmental 

variables such as soil characteristics for that particular space in time (Cohen et al., 2008; 

Blaschke, 2010; Rudorff et al., 2010). On the other hand, temporal NDVI captures the different 

stages of land cover from temporal series when integrated with ground data and expert 

knowledge. This integration provides spatial and temporal information that is critical in 

fuzzification of the landscape elements used in modelling the vulnerability of an area to different 

degrees of erosion in order to quantify potential soil erosion over a heterogeneous landscape 

(Cohen et al., 2008), and investigate their impact on soil erosion control in space and time.  

In western Kenya, Kibos-Miwani sugar zone contributes one third of Kenya’s sugar demand, 

while Mumias contributes the highest percentage. In this area, a mosaic of subsistence, 

sugarcane farming and natural vegetation is found in the escarpment foot. Unlike Mumias which 
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mainly uses green method of harvesting amidst multiple planting and harvesting dates, Kibos-

Miwani zone is characterized with multiple planting and harvesting dates for sugarcane crop and 

mainly burnt harvesting method. Data on land use shows close to 80% of the landscape under 

sugarcane and this draws our interest in investigating the sensitivity of Kibos-Miwani sugarcane 

landscape to soil erosion. Sugarcane management systems (planting, harvesting) affect soil 

conditions which have a direct impact on soil erosion. Further, Panosso et al. (2009) add that 

sugarcane crop and its residues reduce the rate of soil erosion. Whereas disadvantages of soil 

erosion have been documented, there is little etiquette in evaluating impacts of cropping 

practices on soil degradation. Knowledge on impact of sugarcane cultivation on soil degradation 

is critical in undertaking effective soil conservation for sustainable management of Kibos-

Miwani ecosystem (Omuto, 2008).  

 

In this objective, this study will investigate the risk of soil erosion in Kibos-Miwani 

sugar zone using remote sensing data and an erosion model. The study will focus 

on sensitivity of erosion risk in relation to slope and vegetation conditions.  
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2.4.  Soil erosion models 

Cohen et al. (2008) described soil erosion models as important tools for planning and 

management of built up, natural and agricultural landscapes. There is need therefore, for spatial 

modelling and prediction techniques to identify erosion risk areas so that appropriate 

conservation measures can be put in place. A review on erosion models (Jetten et al., 2003) 

presents the difficulties related to calibration and validation of spatially distributed soil erosion 

models. It is explained that soil erosion modelling is associated with the variability in spatial and 

temporal distribution of soil characteristics and erosion occurrences and the uncertainty 

associated with input parameter values in prediction of these values. Jetten et al. (2003) 

conclude that the use of spatial information of various nature types would resolve this paradox. 

Likewise, Cohen et al. (2008) stated that the use of models was cumbersome for finer scales at 

catchment or landscape scales due to the tedious demand for labour and detailed data input. 

They also concluded that inclusion of temporal information was critical in modelling soil 

erosion through time for a given landscape.  Such fine scales are important since they provide 

information for implementation of efficient soil conservation planning (Dejong et al., 1999; 

Jetten et al., 2003).  

Different large scale soil erosion models have been reported, applied and investigated for their 

performance on calculating erosion values. They include the WEPP (Nearing et al., 1989), 

EUROSEM (Morgan et al., 1992), LISEM (De Roo et al., 1998), EROSION 3D (Schmidt et al., 

1999) and MEDRUSH (Kirby and McMahon, 1999). Results of these models have been useful 

in soil conservation measures but their prediction of erosion yield over heterogeneous 

landscapes is unreliable (Trimble and Crosson, 2000). Reasons attributed to this limitation 
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include (i) little input data of high spatial and temporal resolution (Dejong, 1994); (ii) poor 

calibration of the models (Folly et al., 1999) and (iii) uncertainties associated with model 

parameters (De Roo, 1998). Most soil erosion models simulate steady erosion processes to 

obtain solutions in the absence of temporally dynamic information such as from vegetation 

growth and ground water dynamic variables (Jetten and Roo, 1999). Results from such models 

depended on the number of times that the iterations were run, high accuracy being associated 

with many iterations and this made results subjective. Moreover, when estimating soil erosion 

over heterogeneous areas, most models are limited (Trimble and Crosson, 2000) due to 

insufficient spatio-temporal information necessary for the computation of the landscape’s 

erosion risk change. A more recent erosion model that addresses the three limitations (listed 

above) of large scale models is SEDEM (Van Rompaey et al., 2001) which uses RUSLE to 

resolve the problem of little distributed data in large catchments. This model however requires 

intensive calibration due to its empirical nature that is labour intensive. 

In the recent past, spatially dynamic models have been used in computation of potential soil 

erosion in order to recommend appropriate conservation measures for enhanced agricultural 

productivity (Cohen et al., 2008). Modelling potential soil erosion in heterogeneous landscape 

patterns such as in Kibos-Miwani requires a model that is applicable at local scale (De Jong et 

al., 1999) to facilitate recommendations on soil conservation measures that minimize impacts of 

erosion in a specific environment. There are landscape erosion models that are able to compute 

temporally dynamic erosion values such as SIBERIA (Willgoose et al., 1991), GOLEM (Tucker 

and Slingerland, 1994), LAPSUS (Schoorl et al., 2000), CHILD (Tucker et al., 2001) and 

CAESAR (Coulthard et al., 2002). These models perform successful simulations of spatial and 
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temporal distribution of erosion sediments but do require intensive data input and powerful 

processors.  

More recent studies have addressed problems associated with such conventional models by use 

of artificial intelligence technologies (Metternicht and Gonzalez, 2005) such as fuzzy logic to 

simulate complex environmental processes and to improve spatial characteristics of a given 

model (Ahamed et al., 2000). This is because the Geographic Information System (GIS) based 

fuzzy models have the advantage of being used in managing uncertainties commonly associated 

with spatial databases and ecological modelling (Robinson, 2003; Robinson, 2007). Moreover, 

fuzzy logic is important in simulating complex environments since it is capable of processing 

and representing uncertain data from complex spatial processes in continuous classes (Cohen et 

al., 2008; Svoray et al., 2007; Metternicht, 2001), in spatial classification of soil characteristics 

(Burrough and McDonnell, 1998), and in provision of erosion solutions in heterogeneous 

environments (Tayfur et al., 2003). These advantages allow modellers to minimize 

overdependence on empirical features when designing models. 

The fuzzy based dynamic soil erosion model (FuDSEM; Cohen et al., 2008) was developed 

based on physical principles to simulate landscape processes at catchment scale for enhanced 

decision making. This is because FuDSEM has the advantages of simulating erosion processes, 

while using known principles; (i) using a fuzzy logic structure that reduces calibration 

requirements and (iii) using accessible input data that minimizes pre-processing 

(Cohen et al., 2008). In this case, satellite image is used to provide information on vegetation. 

The advantage of using satellite images is that they record timely information without altering 

the state of vegetation, as opposed to the crop factor that has to be computed from global 

datasets for other models like RUSLE. Another advantage of input data into FuDSEM is its 
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fuzzy nature that permits integration of sampled data through fuzzy models to provide 

information for areas that were not sampled. Longley et al. (2005) note that collection of 

physical datasets is quite tedious, costly, time consuming, and is usually associated with errors 

due to fatigue. Moreover, FuDSEM has been validated at both small and medium scale 

heterogeneous catchments (Cohen et al., 2008; KESREF, 2013), landscapes that are similar to 

Kibos-Miwani.  

 

Owing the high spatio-temporal heterogeneity of the Western Kenya landscapes, 

this study will utilize FuDSEM at a local scale to model potential soil erosion risk 

using remote sensing data and soil physical characteristics data. This is due to the 

temporally dynamic fuzzy structure of FuDSEM and its ability to simulate erosion 

using little information (available data). 
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3.  MATERIALS AND METHODS 
 

3.1.  Study area 

 

Part 1 of the study covers the entire western Kenya sugarcane growing region (all the six sugar 

zones) at the regional scale, while part 2 covers one of the zones, the Kibos-Miwani sugarcane 

zone at a local landscape scale. 

 

3.1.1 The western Kenya region  

Western Kenya region (Figure 7) is located within the western part of Kenya, comprising six 

sugar management zones that include: (i) Chemelil, Kibos-Miwani and Muhoroni within the sub 

humid agro-ecological zone; and (ii) Mumias, Nzoia and Sony within the humid agro ecological 

zone of Kenya. These zones are further grouped under the (i) western sugar belt (Mumias and 

Nzoia); (ii) south Nyanza sugar belt (Sony) and (iii) the Nyando sugar belt (Kibos-Miwani, 

Chemelil and Muhoroni). These sugar zones are located between longitudes 34.18°E and 

35.87°E, and latitudes 1.25°N and 1.50°S, covering an area of 120,000 ha. Mumias is the 

highest producer of sugar placed at 39% in 2012 (KSB, 2012). The western Kenya region is 

characterized with a high diversity of agro-ecosystem because of contrasted topography. The 

altitude ranges from 1,000 m (Kibos-Miwani) to 1,600 m (Mumias and Nzoia), and to 1,800 m 

(in Chemelil). The slope rises between 2%, in the plains of Kibos-Miwani zone, and 38% in the 

hills of Chemelil zone. This topography influences the agro-ecological zones into receiving an 

average of 1,400 mm and 1,800 mm of rainfall in the sub humid and humid zones respectively 
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(Ribot et al., 1985). Rainfall in this area is bimodal (Shisanya et al., 2011) with a long rain 

season between March and July, with planting in March for food crops and April for sugarcane; 

and a short rain season in September to December with planting in September for all crops 

(Amolo et al., 2009). This variation in rainfall distribution influences an intensified cropping 

system with crop diversification and rotation of food crops and sugarcane development stage. 

Soils of the study area are dominantly black cotton cambisols in the low lands and sandy loamy 

acrisols in the highlands (Jaetzold et al., 1985). The hilly undulating landscape is unique with 

most hilly areas dominantly covered by the loamy sandy acrisols. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Cane growing area in Western Kenya (green area). 

KENYA 
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KENYA 

3.1.2 Kibos –Miwani sugar zone  

Kibos-Miwani sugar zone (Figure 8) is located between 34.8° E to 35.08° E and 0.01° S to 

0.11° S. It stretches from the Kano plains with an altitude of 1000 m to 1800 m in the 

escarpment. The slope rises from 2% in the plains to >20% in the hilly areas. It is located within 

the sub humid agro-ecological zone receiving rainfall of between 1400 mm and 1550 mm. The 

main crop in the zone is sugarcane, besides maize and horticultural crops. Sugarcane is planted 

in the months of April and September in accordance with the bimodal rainfall in February to 

June and September to December. Soils of the plain land are dominantly black cotton cambisols 

that easily clog with increased rainfall and crack during prolonged drought with temperatures 

rising to 33°C. The highlands are dominantly well drained sandy loamy acrisols. It is the 

spatially heterogeneous terrain, diversified cropping systems, varied soil types and rainfall in 

this zone that provide an enabling environment for evaluation of a soil service offered by 

sugarcane crop to the ecosystem within a space of 104 km2. 

 

 

 

 

 

 

 

 

 
Figure 8: Elevation map of Kibos-Miwani sugar zone. The map was established using 30m ASTER 
Digital Elevation Model (Mulianga et al., 2013). 



44 
 

3.2. Data 

3.2.1 Agronomic and environmental data  

Agronomic data 

Table 3 presents the main agronomic and climatic data traits used in this study. Average annual 

rainfall varies from 1,421 mm and 1,869 mm depending on site. 

  

Table 3: Summary of the agronomic and climate data used in the study: mean and standard 
deviation (in parenthesis) calculated over the 9-year period (2002–2010). 
 

 KIBOS MUMIAS CHEMELIL  MUHORONI  SONY NZOIA 
Rainfall 
(mm·yr−1) 

1,421 (102) 1,835 (186) 1,426 (263) 1,486 (214) 1,869 (221) 1,763 (252) 

PMR** 0.07 -0.03 -0.04 0.06 -0.07 0.01 

AEZ Sub-humid Humid Sub-humid Sub-humid Humid 
 

Humid 
 

Water  
Rainfed/ 
Irrigated 

Rainfed Rainfed Rainfed  Rainfed Rainfed 

Yield (t·ha−1) 71.1 (9.6) 75.6 (11.1) 62.6 (9.6) 63.9 (7.9) 80.1 (11.3) 75.0 (5.2) 

Sugarcane 
area (ha) 

6,480 54,173 12,757 12,264 18,417 21,014 

Sugarcane 
fraction (%)* 

32.2 (4.5) 48.7 (2.5) 38.8 (6.3) 50.5 (7.3) 33.3 (5.3) 22.2 (2.7) 

* The sugarcane fraction is calculated as the sugarcane surface area divided by total surface area under farming in 
the zone 

**PMR is the Precipitation Marginal Response computed from the yield-NDVI slope. 

Sugarcane grown in regions with less than 1,500 mm rainfall is recommended for supplemental 

irrigation (KESREF, 2010). This irrigation covers about 10% of the nucleus estate of Kibos-

Miwani. The reason for higher yield in Kibos (71 t ha−1), compared to the government owned 

Chemelil and Muhoroni sugar mills in the same AEZ whose yield is around 63 t ha−1 is 
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associated with this irrigation. Globally, yield in the humid AEZ (Mumias, Sony, and Nzoia) is 

higher (between 75 t ha-1 and 80 t ha-1) than in the sub-humid AEZ. The yield in Sony (80 t ha−1) 

is boosted by large scale farmers within the fertile highlands of Sony sugar zone. The agronomic 

(yield and cropped area) and environmental (rainfall) data were obtained from the respective 

sugar mills.  

Two yield datasets were provided from the factories (estimated vs measured yield). Estimated 

yield is obtained by use of the visual physical approach (VPA) method, where color, vigor, stalk 

population, and weeds, pests and diseases are surveyed and scored in the fields by a team of 

observers and averaged to provide the estimated yield for the assessed plot. Measured yield is 

obtained based on the area harvested and the total tonnage recorded at the factory. Figure 9 

illustrates these two yield datasets showing a large scattering of the points, thus demonstrating 

the limits of actual estimation process.  

The measured yield only includes contracted farmers within the zone. Non contracted farmers 

yield is excluded since they choose where to mill their sugarcane. Estimated yield on the other 

hand considers all sugarcane within the respective sugar zone.  It is the reason why, estimated 

annual yield data was therefore used in this study as the reference data set.  
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Figure 9: Relationship between measured and estimate yield for the six sugarcane zones in western 
Kenya during the 2001-2011 period.  
 

 

In each of the six sugar zones, we got the evolution in estimated sugarcane yield and evolution 

in the yearly cropped area (Figure 10) for the period 2001-2013. This is because production is 

the product of yield and cropped area and therefore investigation into evolution of this 

production through time is useful in enhancement of sugarcane production in Kenya. Crop area 

data are estimated by physical measurement of area that has been harvested or during land 

preparation. The yield data for the year 2012 and 2013 were used for quantitative validation of 

the sugarcane yield model established on the 2001-2011 period.  

Annual variations are observed in both yield and surface area from one zone to the other because 

of crop management practices that vary between the nucleus and out grower fields such as: 

tillage methods, variety choice, weed management; fertilizer application, edaphic and climatic 
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factors (Jamoza et al., 2013) due to financial disparity between mills and private farmers. 

Besides, variations in annual surface area depend on crop cycle and availability of land. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10:  Annual variations of the surface area under sugarcane and sugarcane yield for the six 
sugar zones (2001- 2013)   
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 Ground survey data  

This section details data collection procedure for cropping practices and soil characteristics. 

Information on the cropping calendar was obtained from all the six factories and summarized in 

Figure 12.  

i.) Cropping Calendar 

Information on the cropping calendar was obtained from all the six sugarcane management 

zones. Planting is undertaken between March and September, while harvesting is conducted 

throughout the year depending on variety and crop cycle (plant crop or ratoon) as presented in 

Figure 11. The choice of variety to plant depends on availability of seed cane within the agro-

ecological zone. Well managed ratoon crops exceed three cycles depending on sugarcane yield. 

During the planting season, other food crops are also planted which mature within a maximum 

of six months. The continuous harvesting is aimed at providing a regular supply of sugarcane to 

the factories throughout the year and minimizing cane surplus that the milling capacity of 

factories may not handle.  

 

Figure 11: Sugarcane cropping Calendar in Western Kenya. 
 
 
 



49 
 

ii.) Cropping practices  

Random sampling was used to collect data on cropping practices in Kibos-Miwani zone using a 

questionnaire for oral interview and the mobile mapper CX global positioning system (GPS) for 

field encoding.  

During the survey, 384 farmers were interviewed based on a random sample of the population 

size of 4,000 farmers. This number of sampled farmers was calculated according to Cochran 

(1963) formula that was developed for selecting a representative sample in an investigation from 

large populations: 

n0 =  Z2 p q/e2   

Where; 

n0 = sample size; 

Z2 = abscissa of the normal curve that cuts off an area α at the tails ((1 – α) equals the 

desired confidence level); 

e = desired level of precision; 

p = maximum variability of farmers that will be studied; 

q = 1-p 

 

In this study, Z = 1.96 (for 95%); e= 0.05, p= 0.5, q =0.5; leading to a theoretical number n0 of 

384 farmers to be interviewed. 

In total, 1280 fields (800 sugarcane fields and 480 other land cover) belonging to this farmers 

set were used to create the following datasets i) land cover type (sugarcane or other), ii) planting 

and harvesting dates and iii) methods of harvesting. Figure 12 illustrates the location of the 

surveyed points in Kibos-Miwani zone. The ‘other’ land cover referred to in this study consist of 
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other crops, natural vegetation (shrubs and pasture), roads and buildings. These data were 

collected during (i) a ground survey conducted in October 2013, and (ii) from Kibos Sugar 

Factory data base. 

(i) The ground survey data was composed of 831 observations, where 530 points were sugarcane 

and 301 points were other land cover. These points were encoded during a ground survey 

conducted between 14th and 18th October 2013 using the Magellan professional mobile mapper 

CX global positioning system (GPS) in the Kibos-Miwani sugar zone. Figure 13 illustrates the 

location of the surveyed points in Kibos-Miwani zone, showing location of those used for 

training and those used for validation.  

(ii) The Kibos Sugar Factory database was composed of 449 points, where 270 points were 

sugarcane fields and 179 points were other land cover. These data were adopted from the 

existing land use data set compiled on15th August 2013 by Kibos Sugar factory. Attributes for 

these fields (planting and harvesting date) were entered in our database in accordance with the 

factory office record. The factory data was relevant since it was collected within the study time 

frame of this research. 
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Figure 12: Ground survey points collected in Kibos-Miwani. The field survey was conducted from 
14th to 18th October 2013. 75% of the points were used for land use classification training, the other 
25 % were used for classification validation. 
 
 
 

iii.)   Soil characteristics 

In total, 23 soil samples were collected from Kibos-Miwani sugar zone on 22nd and 23rd October 

2013 (Figure 13) by GIS specialist and soil technicians. During sampling, we took cognizance of 

spatial variability in soil types (based on the digital soil map for Western and Nyanza region at 

the scale of 1:100,000) of the area, land cover type and relief. Each soil type formed the basis 

for the layer within which a random number of 3 samples were collected between 0-20 cm, 20-

40 cm, and 40-60 cm of depth. These samples were collected using stainless steel cans 

considering disturbed samples (for texture and particle density) and undisturbed samples for 

analysis of soil physical properties: bulk density, hydraulic conductivity and porosity. These 

samples were collected before tillage and not in places compacted by tractors. The soils were 

mechanically analyzed at KESREF using ISO 17025 laboratory procedures to provide soil input 

variables for the erosion risk model used in this study.   
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Figure 13: Soils of Kibos-Miwani sugar zone and the positions of 23 sampled soils. Source of the 
soil map KARI (2012).  
 

 

These samples were analyzed and computed for their texture, bulk density, porosity, erodibility 

factor, field capacity, soil moisture content, and hydraulic conductivity. The approach used was 

the constant head method using a permeameter (Amoozegar, 1989) together with the sieve 

analysis method (Gee and Bauder, 1986) to determine the particle size distribution of coarse and 

fine aggregates in soils. Results of soil characteristics analyzed in this study are presented in 

Table 4. The analyzed values of erodibility index were then compared with the USDA 

Department of Agriculture (USDFA) soil textural classification triangle (Mitchell and Bubenzer, 

1980) for consistency and together with results presented in Table 4, were used as input 

variables in FuDSEM model.  
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Table 4: Soil characteristics used in the FuDSEM model. Texture = texture in US system; BD=bulk 
density; P=Porosity; Erod (k)c=Erodibility factor; FC = Field capacity; Moisture=soil moisture; 
HC= Hydraulic conductivity. See correspondence of location on figure 14.  

Soil No texture BD P Erod (K) FC Moisture HC 

0 silty loam 1.3 0.43 0.38 34 0.27 0.39 

     1 silty loam 1.46 0.45 0.38 34.1 0.27 0.39 

2 silty loam 1.44 0.46 0.38 34.2 0.27 0.39 

3 silty clay loam 1.31 0.5 0.32 43 0.32 0.73 

4 silty clay loam 1.04 0.61 0.32 43.1 0.32 0.73 

5 silty clay loam 1.31 0.51 0.32 43.15 0.32 1.94 

6 silty clay loam 1.49 0.44 0.32 43.16 0.32 1.94 

7 silty clay loam 1.2 0.55 0.32 43.17 0.32 1.94 

8 silty clay loam 1.11 0.58 0.32 43.18 0.32 0.25 

9 silty loam 1.25 0.53 0.38 34.3 0.27 0.25 

10 silty loam 1.27 0.54 0.38 34.5 0.29 0.3 

11 silty clay 1.16 0.56 0.26 43.19 0.34 0.58 

12 silty clay 1.3 0.51 0.26 43.2 0.34 0.14 

13 silty clay 1.17 0.56 0.26 43.21 0.34 0.58 

14 silty clay loam 1.21 0.54 0.32 43.22 0.32 1.26 

15 silty clay loam 1.29 0.51 0.32 43.23 0.32 1.26 

16 silty clay loam 1.44 0.46 0.32 43.24 0.32 1.26 

17 silty clay loam 1.42 0.47 0.32 43.25 0.32 0.75 

18 silty clay loam 1.25 0.53 0.32 43.26 0.32 0.75 

19 silty loam 1.3 0.51 0.38 43.27 0.27 0.75 

20 silty loam 0.89 0.66 0.38 43.28 0.27 0.74 

21 silty loam 0.93 0.65 0.38 43.29 0.27 0.74 

22 silty loam 0.94 0.64 0.38 43.3 0.27 0.74 

 
 
 
 
Sediment suspension data  
 
In situ data was measured from fields in Kibos-Miwani landscape, comprising sugarcane and 

other crops respectively. This data was used to test for implementation of FuDSEM model in the 

study area. 
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Climatic data 

Rainfall data were recorded using 113 rain gauges distributed unequally among all the sugar 

zones (Figure 14). The rainfall data is submitted to respective millers by weather station 

attendants who record daily data and monthly rainfall data for the period 2002 to 2012.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 14: Location of rainfall stations in western Kenya sugarcane growing area.  
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The annual variations in rainfall in each of the six management zones are shown in Figure 15, while 

intra-zonal variations in rainfall in the six management zones are illustrated through the mean and 

standard deviations presented in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 15:  The annual variability of rainfall for each sugarcane zone (2001-2013). 
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Digital Elevation Model  

The 30 m ASTER Digital Elevation Model (DEM) was downloaded from the United States 

Geological Survey (USGS) website. The DEM was processed using the 3D – raster surface 

analyst tool in a geographical information system (GIS) to compute the slope curvature and 

aspect which were required for modelling potential soil erosion of Kibos-Miwani sugar zone 

(see Figure 8). The slope of Kibos-Miwani rises from 0% in the green area within the plain to 

10% in the red area within the escarpment foot (Figure 16). 

  
Figure 16: Topography of the studied portion of landscape in Kibos-Miwani, established using a 
30 m slope that was computed from ASTER Digital Elevation Model. 
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3.2.2 Satellite data and preprocessing 

MODIS time-series 

A complete 11-year time series (2002-2012) of the Surface Reflectance 8-Day L3 Global 250 m 

product (MOD09Q1) and a 13-year (2000-2012) time series NDVI for Kibos-Miwani; were 

downloaded through the online Data Pool at the NASA Land Processes Distributed Active 

Archive Center (LP DAAC: https://lpdaac.usgs.gov/get_data. MOD09Q1 product provides 

bands 1 (red reflectance; 620–670 nm) and 2 (near infrared reflectance; 841–876 nm) at 250-

meter resolution. Each MOD09Q1 pixel contains the `best possible observation during an 8-day 

period as selected on the basis of high observation coverage, low view angle, the absence of 

clouds or cloud shadow, and aerosol loading. The accuracy of the version-5 MODIS/Terra 

Surface Reflectance products has been assessed over a widely distributed set of locations and 

time periods via several ground-truth and validation efforts, and so they are ready for use in 

scientific publications (Cunha, et al., 2010). The red (R) and (NIR) reflectance data were used to 

compute the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) for all the 

460 images. 

In addition to the MODIS time series, a multispectral (Green, Red, and Near Infrared) 2.5 m 

SPOT image was acquired over Mumias in December 2011. This data was used to appraise land 

cover and use in different sectors of one of the zones (Mumias sugar zone) in a 250 m grid 

(Figure 17). The data shows the large heterogeneity of the landscape at MODIS scale, and the 

impossibility to use a sugarcane crop mask on a satellite image at MODIS scale in the area that 

has heavily fragmented fields (average of 2 ha). 



58 
 

 
 

 

 

Figure 17: (a) MODIS 250 m color composition of Mumias zone (sectors within the zone are 
delineated by a yellow line), and (b) subsets of a December 2011 SPOT 2.5 m image on three 
sectors; the overlaying yellow grids correspond to the 250 m spatial resolution of MODIS pixels. 
 
 
 

Landsat 8 time series 

A complete two week time series (April, 2013 - March, 2014) of 20 Landsat 8 Operational Land  

Imager (OLI) and Thermal Infrared Sensor (TIRS) images were downloaded through the online 

Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC:  

https://lpdaac.usgs.gov/get_data). The list of the images is given in Table 5.  

Landsat 8 products consist of nine spectral bands with a spatial resolution of 30 meters for 

Bands 1 to 7 and 9. New band 1 (ultra-blue) is useful for coastal and aerosol studies. New band 

9 is useful for cirrus cloud detection. The resolution for Band 8 (panchromatic) is 15 meters. 

Thermal bands 10 and 11 are useful in providing more accurate surface temperatures and are 

a) MODIS color composition b) SPOT color composition 
(©CNES 2011, Distribution Spot Image) 
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collected at 100 meters. Approximate scene size is 170 km north-south by 183 km east-west 

(106 mi by 114 mi). Table 6 summarizes Landsat 8 bands that were used in this study. 

The image were acquired orthorectified and geo-referenced in WGS84 UTM zone 36S. 

 

Table 5: List of the Kibos-Miwani Landsat 8 images used in this study.  

Date Sun elevation Sun azimuth Cloud conditions

1 19-avr-13 61.61 0%

2 05-mai-13 59.93 haze in the east part

3 21-mai-13 57.82 0%

06-juin-13 100% (not downloaded)

4 22-juin-13 54.90 0%

5 08-juil-13 54.94 30%

6 24-juil-13 56.15 0%

7 09-août-13 58.37 0%

8 25-août-13 61.19 0%

9 10-sept-13 63.92 10%

10 26-sept-13 65.71 93.28 10%

11 12-oct-13 65.81 108.58 80%  + haze

12 28-oct-13 64.17 121.62 60%

13 13-nov-13 61.42 130.32 10%

14 29-nov-13 58.50 134.58 0%

15-déc-13 56.14 135.17 80% (not downloaded)

15 31-déc-13 54.82 132.87 30%

16 16-janv-14 54.76 128.24 0%

17 01-févr-14 55.84 121.56 0%

18 17-févr-14 57.73 112.86 50% haze

19 05-mars-14 59.81 102.08 0%

20 21-mars-14 61.38 89.49 0%  
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Table 6: Landsat 8 bands used in this study (source: 
http://landsat.usgs.gov/band_designations_landsat_satellites.php) 

Landsat 8 
Operational  
Land Imager  

(OLI)  
 
 

Launched 
February 11, 2013  

Bands Wavelength 
(micrometers) 

Resolution 
(meters) 

Band 4 – Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 8 - Panchromatic  0.50 - 0.68 15 

 
 
 
 

3.3. Methods 

3.3.1 Time-Integration of MODIS NDVI Values  

A thematic layer of the limit of the sugarcane growing mill zones was used to extract 8-day 

NDVI values for each zone. These NDVI values were then spatially aggregated to allow 

comparison with the mean annual yield, at the same scale. Generally, time integration of NDVI 

is done throughout the calendar year (KSB, 2012; Goward et al., 1987; Funk and Budde, 2009). 

At the field scale, Bégué et al. (2010) and Nguyen (2005) considered a seasonal integration 

approach which utilized either the sowing or the harvesting date, while at the regional scale, 

Lofton et al. (2012) used growing degree days to compute in season NDVI for estimating yield 

and obtained good results. At regional scale in Portugal, Cunha et al. (2010) correlated yield of 

the current year with a 10-day NDVI data to develop a yield estimation model which explained 

77% - 88% of wine yield. At state scale in Brazil, Duveiller et al. (2013) used growing degree 

days instead of the calendar year and estimated sugarcane yield with a RMSE of 1.5 t ha-1 
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(around 2% of accuracy); however, they used a crop mask and selected sugarcane pixel purity 

above 95% for the establishment of the regressions.  

We tested here a new way of time integration in order to account for the duration of the cropping 

cycle and harvest calendar. In effect, since the yield is estimated on annual basis, a ratoon crop 

growing from November 2009 to its harvest in January 2011 - at the age of 15 months -  

accounts for the 2011 annual yield data. Therefore, this complicates the yield prediction scenario 

where, in this case, the 2011 annual yield includes the yield of a crop that was almost 

nonexistent on the 2011 satellite time series (except on the January image). It is argued that 

predicting yield in such rain fed sugarcane fields is complicated since NDVI from all land uses 

declines at the end of the rainfall period (Gunnula et al., 2011) and requires a keen consideration 

of the integration period. In a similar case, a weighted land cover NDVI was used to account for 

the influence of other land uses on maize yield (Rojas, 2007). We therefore applied a weighting 

matrix over a period of time corresponding to the growing calendar, and not to the calendar year 

in order to take into account the active vegetative stages of the crop and minimize any shift in 

NDVI during sugarcane development (Kastens et al., 2005). To do this we chose two different 

periods of integration, (1) an 11-month period which corresponds to the approximate length of 

the growing cycle before maturation, and (2) a 15-month period which corresponds to the 

approximate length of the whole growing cycle. For both configurations, we calculated a weight 

for each month corresponding to the probability of a sugarcane field to be harvested during the 

calendar year of yield estimations, and thus to be accounted for in the annual yield (Figure 18). 

Annual NDVI (NDVI) and weighted NDVI (wNDVI_15 and wNDVI_11) for each year was 

calculated according to Equation (1), with i equals to 15 and 11, respectively. The value 15 

corresponds to the length of the usual cropping cycle of the sugarcane (in months), while the 
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value 11 corresponds to the length of the vegetative part (in months) which is mainly related to 

cane yield (Bégué et al., 2010).  

          m

im

m
m wNDVIiwNDVI ∑

=

=

=
1

_                                                                  Equation 1 

 

where, NDVIm is the value of the NDVI for month m, wm is a coefficient equal to the NDVI 

normalized weight (Figure 3), and i is the length of the time integration (in months). The sum of 

the wm coefficients is equal to 1.  

 

Figure 18: Three sets of weights used to calculate time integration of monthly NDVI values for 
annual yield estimation (year n). The green line (between months 14 to 26) corresponds to weights 
generally used to calculate the annual NDVI (the calendar year corresponding to the yield 
measurement). The blue and red lines correspond to weights that take into account the sugarcane 
cropping calendar (15 months for the whole cycle, and 11 months for the growing period) in the 
NDVI time integration. 

 



63 
 

 

3.3.2 Modelling drivers of spatial variability in yield  

Statistical models were used to investigate the drivers of sugarcane yield in western Kenya. A 

linear regression established through time and space using a one-tailed probability test was 

adopted (Nguyen, 2005; Rasmussen, 1992; Lofton et al., 2012) while assessing the role of the 

environmental variables in the relation between yield and wNDVI, by correlating the slope of 

the “yield-wNDVI” relationships with the rainfall, and with the sugarcane fraction in each 

respective zone. 

The investigated drivers (environmental effects) therefore, were; the zone, yearly sugarcane 

fraction, rainfall, precipitation marginal response (PMR) and MODIS NDVI effects on 

sugarcane yield (estimated yield data). PMR was computed by correlating the slope of Yield-

wNDVI with the sugarcane fraction in each zone. PMR was tested to investigate the response of 

sugarcane to each millimeter change in soil moisture. The zone effect was used because these 

zones are spatially located in different agro ecological zones presenting variations in climatic 

and edaphic factors. The yearly sugarcane fraction was also considered for this analysis because 

over different years, the surface area under sugarcane is variable (Figure 10). It was presumed 

that through these models, the accuracy of forecasting sugarcane yield is improved.  

 

3.3.3 Landsat 8 image analysis 

Image processing was performed using ERDAS Imagine® (Intergraph Corp.). 

 

 



64 
 

Pre-processing 

Subset of the Landsat image, and band selection (visible, NIR and SWIR) was performed based 

on the extent of the study area.  The multispectral bands were merged with the panchromatic 

band using the Brovery transform algorithm resulting in multispectral images at 15 m spatial 

resolution. Cloud and cloud shadow masks were then prepared based on the grow properties 

drawing tool that was able to trace out areas covered with clouds and shadows.  

Calculation of NDVI and NDWI  

Two vegetation indices were derived using the following formula: 

          NDVI = (NIR – RED)/ (NIR + RED) (Rouse et al., 1974) 

          NDWI = (SWIR – NIR)/ (SWIR + NIR) (Gao, 1996)     

NDVI (Normalized Difference Vegetation Index), which is the normalized difference between 

the near infrared (NIR) and visible RED reflectance, is responsive to changes in vegetation 

cover and greenness. Higher NDVI values reflect greater vigor and photosynthetic capacity (or 

greenness) of dense vegetation canopy, whereas low NDVI values are reflective of vegetative 

stress or senescence, or low vegetation cover.  

NDWI (Normalized Difference Water Index), derived from the NIR and SWIR channels, 

responds to changes in both the water content (absorption of SWIR radiation) and structure 

(reflectance of NIR radiation) in vegetation canopies, respectively (Gao, 1996). SWIR is used in 

computation of the NDWI due to its ability to detect moisture absorption by plants. SWIR index 

is useful in detection of a harvest because it separates harvested residues from any other crop 

status (Lebourgeois et al., 2010). 
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Field limits digitalization 

A map layer showing the limits of agronomic fields was digitized from the 15 m multispectral 

Landsat 8 image of 19th April 2013, in ArcGIS 10.1 software. This digital map was used to 

extract spectral variables from the cloud-free Landsat 8 image time series.   

 

Spectral variables extraction per field 

NDVI, NDWI and SWIR images were sequentially stacked to generate 3 images of 20 layers 

each (20 dates between April 2013 to March 2014; Table 4). The mean and standard deviation 

of these three image time series were then extracted for each digitized field using the zonal 

attribute function. Cloud pixels were set to 0, and were not taken into account in the statistics. 

 

3.3.4 Mapping cropping practices 

Cropping practices (in this document) imply the crop type, sugarcane harvest date and sugarcane 

harvest mode. These practices were identified through time series analysis of temporal profiles 

of NDWI, NDVI and SWIR profiles, and classification of the Landsat 8 image time series 

(table 5). We hypothesized that changes in these indices at harvest time were significantly 

different. To understand the spatial and spectral variability of the land cover types and crop 

conditions (harvested crop or standing crop, harvest mode), we studied for a given set of known 

fields : (1) the temporal variations of NDVI, NDWI and SWIR.  The choice of these indices was 

conducted by Lebourgeois et al. (2010) who documented the use of spectral indices for 

characterization of sugarcane conditions. (2) True color composites of different sets of Landsat 8 

images were examined for color, pattern, shape, and texture to visualize and interpret the land 
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cover type, the harvest date and mode, and explore 3-date combinations identified through 

temporal analysis of MODIS NDVI. These spatial and temporal analysis were conducted to 

identify the best index to detect crop type, a harvest (harvest date), and harvest mode in Kibos-

Miwani. 

 

Classification of sugarcane fields 

A map for sugarcane was produced using the temporal stack of NDVI images (Wardlow and 

Egbert, 2008) extracted from the 20 Landsat NDVI images in Table 5 with assumption that 

NDVI was a good descriptor of land cover type. The choice of time series images was in order 

to investigate the seasonal variability of vegetation in the area based on the main vegetative 

seasons identified from the temporal analysis of MODIS NDVI.  

The sugarcane classification map was produced in two steps: 

First, the Landsat time series was classified using ground survey points and a supervised 

classification into six classes (five classes of ‘sugarcane’ at different ages, and one class of 

‘other’; Table 7). 75% of the 1280 dataset (960 points, where 600 were sugarcane and 360 were 

other land cover,) were used as training data to characterize the multispectral variability of each 

thematic class, while 25% of the data (320, where 200 were sugarcane and 120 were other land 

cover points from the ground survey) were used for validation of the classified map. A recent 

study reported that the decision tree (DT) classifier is superior to the maximum likelihood 

classifier in areas with large fields over 100 ha in Brazil (Vieira et al., 2012). The Kenyan case 

is of small fields over 0.20 ha and therefore the maximum likelihood classifier algorithm was 

adopted in this study for its ability to utilize posterior probability of a pixel to belong to a given 
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class to classify each pixel (Campbell, 2006) in a given space. This algorithm classified the time 

series into heterogeneous and homogeneous units based on crop age and land cover type. The 

six characterized units were assigned class names based on field surveyed attributes.   

Secondly, recoding and management of the assigned classes (five sugarcane classes and ‘other’) 

followed so as to form one sugarcane class, and other land cover class using the Erdas Imagine 

recoding and management modules which group relatively homogeneous NDVI pixels that form 

agronomic fields into a land cover class. The resultant map became the sugarcane map for 

Kibos-Miwani. 

Table 7: Distribution of survey points used in classification of five of ‘sugarcane’ classes at 
different ages, and one class of ‘other’. 
 

Class name Age (months) Number of points % coverage 
Sugarcane #1 0-2 131 14% 
Sugarcane #2 3-5 129 13% 
Sugarcane #3 6-8 150 16% 
Sugarcane #4 9-11 100 10% 
Sugarcane #5 Over 12 90 9% 
Other - 360 38% 

 

 

Characterization of cropping practices (harvest date and mode) 

We investigated the best index for characterizing cropping practices (harvest date and harvest 

mode). For each field, we computed differences in NDWI, NDVI and SWIR between each two 

dates for the 20 image dates (April 2013-March 2014).  
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First, we assumed that the larger change in SWIR index happened at the harvest time. So it was 

easy to detect for each field the harvest period (defined in days between two image acquisitions) 

that corresponds to the maximum difference between two dates.  

Secondly, for each field we computed the NDVI and NDWI differences before and after the 

harvest, for both burnt and green harvest separately. On a set of 58 sample fields, where 29 

fields were of green harvest and 29 were of burnt harvest. We checked the significance of these 

differences for the burnt and green harvest fields using a t-test. In case of 99% confidence level, 

the frequency of occurrence of the most significant spectral variable was plotted and fitted with 

polynomial models to check for the threshold that distinguishes between burnt and green 

harvest.  

 

Accuracy Assessment  

Accuracy assessment is important because it estimates the accuracy of the classified image by 

comparing the classified map with the reference map. Moreover, accuracy assessment provides 

information on the product quality and identifies probable sources of errors. A confusion matrix 

is a standardized method to represent the accuracy of classification results derived from remote 

sensed data by calculating accuracy measurements which include: overall accuracy, producer’s 

accuracy, and user’s accuracy (Congalton and Green, 2009).  

For the SC map, we evaluated accuracy of the classification by creating a confusion matrix 

based on the 25% of the unused ground data (320 points).  

For the harvest mode map, we evaluated accuracy of the classification by creating a confusion 

matrix based on the 25% of the unused ground data (200 points).   
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3.3.5 Soil erosion modelling 

This study has used FuDSEM model to estimate the potential soil erosion risk in the sugarcane 

landscape of Kibos-Miwani zone for informed decision making to improve sugarcane yield 

based on cropping practices. The FuDSEM model (Cohen et al., 2008) is computed using 

ArCGIS software®.  

The principles of FuDSEM model according to Cohen et al. (2008) are: 

• It simulates soil erosion processes by utilizing known deterministic processes.  

• It uses fuzzy logic structure to reduce calibration requirements and simplify the results 

for easy interpretation by providing potential risk and not quantitative maps 

• It uses accessible data as input, such as soil characteristics and Landsat data. 

This model was computed at the catchment scale by Cohen et al. (2008). In our case, we 

compute potential erosion risk at a local scale based on a 104 km2 Kibos-Miwani landscape 

within which sugarcane growing is undertaken.  

The main features of the model presented in Figure 19 are:  

• Soil moisture potential is computed spatially based on the field capacity, aspect, 

time taken after last rainfall and soil moisture measured from the field data. 

• Runoff potential is calculated spatially, based on soil moisture potential, 

vegetation data and digital elevation data 

• Transport capacity potential is calculated in consideration of  runoff potential and 

the slope  

• Erosion potential is calculated based on transport capacity potential. 
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Figure 19: FUDSEM flow chart, adopted from Cohen et al. (2008).  
 

To calculate potential erosion risk, we followed the steps outlined in Figure 19. First, we 

analysed soil characteristics from the 23 soil samples using methods discussed under SETS 1,2 

and 4 (see the characteristics in Table 4). Next, we computed the aspect, slope and slope 

pedoform, from the 30 m digital elevation model (DEM) using the ArcGIS spatial analyst tool. 
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We then computed the rainfall erosivity as described under SET 2. Finally, we selected four 

Landsat 8 NDVI images corresponding to February (the first minimum vegetative season); May, 

(the first maximum vegetative season); September (the second minimum vegetative season); and 

November (the second maximum vegetative season), the seasons exposed by MODIS NDVI 

(Figure 24). These images were aimed at capturing the temporal variations in vegetation. In our 

simulations, we used soil characteristics data from 19 ‘sugarcane’ fields (13 of burnt harvest and 

6 of green harvest) and 4 ‘other’ fields from the sugarcane map to assess the effect of cropping 

practices on erosion risk. We interpolated these data to the other fields within Kibos-Miwani 

through spatial analysis in GIS, using ordinary Kriging, based on a linear semivariogram model. 

The choice of a linear semi-variogram was in line with the semi-variogram scatter plot used in 

this study. These data (listed in Table 8) were input in FuDSEM model using fuzzy equations 

detailed under equations 2 to 12. 

 

Soil moisture potential (SET 1) 

Soil moisture potential is the energy of water in soil which is measured in energy/mass soil 

(J/kg). It controls the movement of water in soils. These moisture conditions vary over time 

(Jetten et al., 1999) depending on soil characteristics, rainfall events, crop development, 

harvesting method.  

SET 1 is computed based on the: i) moisture content (MC), ii) field capacity (FC), iii) the aspect 

(AS), iv) time elapsed from previous rainfall (Te); and iv) the bulk density (BD) 

The moisture content is calculated for each sampled soil as: 

       MC = (mass of wet soil – mass dry soil)/ mass of wet soil    
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A sigmoidal membership score is assigned to MC in Equation 2 due to the exponential ratio in soil 

moisture decrease with time (Hillel, 1998). 

A = 1/ {1 +  e β(MC - α)}                                Equation 1   
   
Where; 

Α = the mid membership value of moisture content  

MC = moisture content for each sampled soil in % 

β = the function slope of MC values.  

α = user input variable estimated based on the soil type in accordance with Cohen et al. 

(2008).  

The field capacity, FC, represents the water holding capacity of the soil which may locally vary 

depending on soil moisture, texture, organic matter and permeability of the soil (Hillel, 1998). A 

linear membership score is assigned to FC in Equation 3: 

FC = - (x - Pmin) / (Pmax – Pmin)      Equation 2     
 

Where;  
 
x = FC values in % 

Pmin and Pmax are function parameters; and are therefore the minimum and maximum values of 

the dataset in accordance with the approach of Cohen et al. (2008). The linear function in 

Equation 3 is chosen from ArCGIS fuzzy membership functions library based on the 

exponential ratio in soil moisture decrease with time (Hillel, 1998). 

The aspect AS takes into account the influence of solar radiation on soil moisture. The 

membership score assigned to AS therefore increases with radial distance from 180°. AS is 

therefore calculated based on a cosine membership function in Equation 4 (Cohen et al., 2008):  
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AS = cos2 {( π (x - Pmin)) / (2 (Pmax - Pmin))}      Equation 3     

 

Where; 

x = input value of the aspect in % 

Pmin and Pmax are function parameters; and are therefore the minimum and maximum 

values of the dataset in accordance with the approach of Cohen et al. (2008). 

The time that has elapsed since the previous rainfall (Te) is assigned a sigmoidal membership 

function: 

 Te = 1 / [1 + e β (x-α)]                      Equation 4 

 
Where; 

 β = the function slope of Te values.  

 α = the mid membership value of x in accordance with Cohen et al. (2008)  

The bulk density, BD was measured using the oven drying method based on dry and wet soil 

weights in Kenya Sugar Research Foundation (KESREF) ISO certified laboratory. 

A combination of the four membership functions compute the soil moisture potential (SET 1) in 

this study using Equation 6 

 

SET 1   =   0.4 BD + 0.2 AS + 0.2 FC + 0.2 MC    Te >0,   
 =   0.0       Te =0         Equation 5                 
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Runoff potential (SET 2) 

We calculated the runoff potential using four variables: 1) wetness potential (SET 1); 2) 

hydraulic conductivity (HC); 3) rainfall erosivity (RE); 4) vegetation cover (NDVI).  

Hydraulic conductivity, HC, represents how easy the water moves through the soil profile. This 

parameter was computed using a constant head method using a permeameter. 

Rainfall erosivity, RE, was computed based on average rainfall amount and intensity (average 

monthly rainfall (MR) and average daily rainfall (DR)), above a 40 mm threshold (RI) and 

below a 40mm rainfall (RS)) and was used because it describes the potential for soil to be 

washed off by rainfall. RE is calculated using equation (7). 

RE =   (MR  DR) + (RS  RI)    Equation 6  
   

Where; 

DR = Daily rainfall depth  

MR = Monthly rainfall depth 

RI = Daily rainfall above threshold of 40 mm/day  

RS =Monthly rainfall above threshold of 40 mm/month 

NDVI was used to represent vegetation cover data of Kibos-Miwani. It was computed from the 

Landsat 8 images (Table 5) using the zonal attribute parameter in Erdas Imagine based on the 

digitized shape file of Kibos-Miwani sugar zone. NDVI image for 5th May, 10th September, 13th 

November and 17th February for this area was used to simulate the effect of vegetation growing 

seasons on soil erosion risk. February NDVI represented the first minimum vegetative season, 

May NDVI for the first maximum vegetative season, September for the second minimum 
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vegetative season and November for the second maximum vegetative season (see Figure 25). 

The choice of these images was because they are the seasons this study used. These were the 

best images because besides corresponding to the minimum and maximum vegetative seasons, 

they were also cloud free. 

In our simulations, we used seasonal NDVI images at pixel level as the variable input to enable 

us capture the influence of management practices and climatic conditions on crop cover in the 

landscape during different weather seasons. In their simulation, Cohen et al. (2008) chose their 

images based on each simulation year. Whereas Cohen et al. (2008) captured seasonal variations 

as in our approach they referred to each year as a seasons, opposed to our seasons which were 

within one calendar year. The approach in this study aimed at assessing the sensitivity of crop 

type, slope and soil physical properties of this landscape to soil erosion risk. The functions used 

(Table 8) are those proposed by Cohen et al. (2008) and also additional information from ground 

surveys on sugarcane harvesting practices (multiple planting and harvesting dates; and green and 

burnt harvest modes).  

Cohen et al. (2008) stated that weights assigned to NDVI are higher than those assigned to other 

variables due to its importance in semi-arid environments. In this study, Kibos-Miwani sugar 

zone does not fall within semi-arid environments and therefore the weights assigned are derived 

from the cropping calendar and harvesting practices at the particular field scale.   

The potential runoff is thus calculated by combining these variables in equation 8: 

SET 2   =  0.0                                          HC ≤ 0, 
            =  0.2 HC + 0.2 RE + 0.2 NDVI + 0.2 SET 1       HC > 0               Equation 7 
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Transport capacity potential (SET 3) 

The influence of vegetation cover and topography of the landscape on runoff is investigated here 

in accordance with Cohen et al. (2008). Sediments are transported by water from hill slopes in 

rills which develop into galleys and eventually siltation of the downstream. This capacity is 

calculated by combining two variables: the slope pedoform (SP) and the slope (S).  

The slope pedoform SP is the convexity of the slope, computed from the 30 m Digital elevation 

model using the 3D analysis curvature function in ArcGIS software. Cells found within convex 

slopes have a high runoff potential and are considered to be the sources of erosion for 

downslope cells; while concave slopes have low run off cell values and are considered as sinks. 

The slope (S) illustrates effects of gravity on runoff, where steep slopes accelerate runoff which 

results in higher transport capacity. S in this study is computed from the 30 m Digital elevation 

model using the 3D analysis slope function in ArcGIS software. A sigmoidal membership 

function in Equation 9 was used to describe this slope: 

S = 1/ [1+ e-β(x-α)]                           Equation 8            
  

where; 

x = Slope 

β = the function slope of the dataset.  

α = user input variable estimated in accordance with Cohen et al. (2008)  

The two variables α and β were assigned equal weights since they were assumed to contribute 

equally to the transport process. Equation 10 combines the parameters to calculate transport 

capacity as follows: 

SET 3 =  0.33S + 0.33SP + 0.33 SET 2      Equation 9  
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Soil erosion potential (SET 4) 

Top soil erodibility is assumed to influence sediment transportation, accelerating erosion in soils 

that are susceptible to runoff detachment and transport. Potential erosion is therefore calculated 

based on the transport capacity and the soil erodibility index (K).  

K represents the average soil loss per ton per hectare for a particular soil type and is computed 

according to Goldman et al. (1986) in equation (11). High K values denote higher erosion 

potential. Cohen et al. (2008) adopted K-values from Wischmeier and Smith (1978). This study 

calculated the soil erodibility factor (K) from the sampled soils using the method proposed by 

Lu et al. (2004).  

K = (1.292) [2.1 10-6 fp
1.14 (12 - Pom) + 0.0325 (Sstruct - 2) + 0.025 (fperm - 3)] 

                                                      Equation 10 

In which,   fp = Psilt (100 - Pclay)  

Where;  

fp = the particle size parameter (unitless)  

Pom = the percent organic matter (unitless)  

Sstruc =the soil structure index (unitless)  

fperm = the profile-permeability class factor (unitless)            

Pclay = the percent clay (unitless) 

Psilt = the percent silt (unitless) 

The potential soil erosion is thus calculated by combining transport capacity and soil erodibility 

in equation 12: 

SET 4 = 0.1K + 0.9 SET 3     Equation 11 
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Comparison of FuDSEM model with RUSLE model  

For the year 2013, we compared FuDSEM model results in estimating potential erosion risk 

through correlation analysis, with results of physical Revised Universal Soil Loss Equation 

(RUSLE) model for Kibos-Miwani. The Intergovernmental Authority on Development (IGAD) 

conducted the survey through the African Monitoring of the Environment for Sustainable 

Development (AMESD) project that used RUSLE model in June 2013 through Regional center 

for mapping and regional development (RCMRD) offices, Nairobi Kenya (AMESD, 2014). This 

map was produced at national scale for drought and climate change predictions. We used 

RUSLE model because its input variables were mostly similar to those used in FuDSEM model 

in this study which include: (i) 30 m Landsat NDVI after each six months to represent the first 

and second vegetative seasons of the year; (ii) rainfall erosivity from daily rainfall; (ii) 

erodibility factor from soil analysis; and, (iii) the slope from 30 m Aster DEM; and (iv) crop 

management factors (land use). The different variable in RUSLE model was the slope length, 

while in FuDSEM we used the aspect and slope pedoform. 

For this comparison, we extracted potential erosion values for the 23 soil sampled fields from 

both FuDSEM and RUSLE models. We computed the average of the four seasons (February, 

May, September and November) of FuDSEM model values; then evaluated these against 

RUSLE values through regression analysis. The reason for using IGAD data is because in situ 

measurements were lacking for this validation. Previous researches have also shown the 

difficulty in evaluating large scale models due to lack of sufficient insitu data (Merrit et al., 

2003).  
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Influence of cropping practices on potential soil erosion risk 

For this investigation, we used the classified sugarcane map. First, we observed erosion trends 

and examined the influence of vegetative seasons through time on potential soil erosion risk by 

identifying and describing unique areas in the hilly and plain areas of the landscape on all the 

four erosion risk maps. Secondly, we used an analysis of variance (ANOVA) in R software to 

evaluate the significance of crop type and harvest modes on soil erosion risk. Erosion risk values 

from 23 fields from the sugarcane map were used, where, 13 were of burnt harvest, 6 were of 

green harvest while 4 were of other land cover.   

Comparison of erosion risk simulations to field data 

A survey by KESREF conducted between 2012-2013 (KESREF, 2013; Unpublished data) 

conducted measurements on sediment suspension from fields measuring approximately 30 m x 

30 m. Ten run off plots (five comprising sugarcane and five comprising other crops such as 

maize and natural vegetation) were established along the same contour line with a distance 

interval of 30 m for replications within a slope > 2% and within the silty clay loam soils. The 

choice of this slope was to minimize on the rate of run off, while the choice of silt clay soils 

(soils 2, 3, 6 and 7; Figure 34) was because these are the dominant soil type of Kibos. The 

experiment was set up for one year from May 2012 to April 2013 in the same landscape studied 

here (see Figure 13) using FuDSEM model. In this experiment, plots were isolated from 

upstream fluxes using terraces while metal borders were inserted to a depth of 10 cm at each 

outlet (Rumpel et al., 2006). The total run off was measured after each rainfall event and 

sediments dried in the oven at 40° C. In total, 70 samples were collected and their means 

computed. Results of these measurements were compared with the mean potential erosion 
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values from FuDSEM (Table 16). The simulated value was aggregated at the pixel level which 

measured the size of experimental plots in ArcGIS spatial analyst tool. The purpose of the 

analysis is to ensure the relevance of simulated data in terms of magnitude and trends. 

 

Table 8: Input variables used in FUDSEM model functions. 

 
 
 
 
 
 
 

 VARIABLE NAME UNIT METHOD 
(membership 
function) 

REF DATA 
SOURCE  

SPATIAL 
property 
(resolutio
n) 

Temporal 
property 

1 Moisture 
Content 

MC  Oven drying  
(Eq.2) 

Barling et 
al. (1994) 

Ground 
Survey 

Point Daily  

2  Field 
capacity 

FC  Sieve analysis 
(Eq.3) 

USDA Texture Point Constant 

3 Erodibility 
factor 

K  Sieve analysis Goldman 
et al. 
(1996) 

Ground 
Survey 

Point Constant 

4 Aspect AS degree Spatial analyst 
(Eq. 4) 

 DEM 30m Constant 

5 Bulk density BD  Oven drying  Ground 
Survey 

Point Constant 

6 Hydraulic 
conductivity 

HC  Constant head 
using a 
permeameter 
 

 Ground 
survey 

Point Constant 

7 Rainfall 
erosivity 

RE  
 

Equation 7  Cohen et 
al. (2008) 

Daily & 
monthly 
rainfall, 
rainfall 
intensity 

30m Constant 

8 Vegetation 
cover 

  NDVI  Satellite 
image 

30m Season  

9 Slope  degree Spatial analyst 
(Eq. 9) 

De Jong et 
al. (1999) 

DEM 30m Constant 
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4. RESULTS AND DISCUSSION 
 

4.1. Yield estimation models at regional 
scale 

In this chapter we present results from the two approaches we used to identify the remote 

sensing indicator (NDVI, wNDVI) and environmental effects (zones, rainfall) on sugarcane 

yield are presented in this section. 

4.1.1 Spatial aggregation and temporal analysis 

4.1.2 Relationship between Yield and NDVI  

When the whole data set (6 zones and 9 years) is used, the analysis shows that the annual NDVI 

is not strongly related to the sugarcane yield (p = 0.1; Figure 20a). This finding is close to those 

of Gunnula et al. (2011) whose results showed low significance when correlating historical yield 

and NDVI at annual level (P = 0.1) (Bastidas-Obando and Carbonell-Gonzalez, 2007). However, 

when adjusted NDVI (wNDVI) is used, the relationship is highly significant for wNDVI_11 

(P = 0.001) (Figure 20b) and significant for wNDVI_15 (P = 0.01) (Figure 20c) with the R2 

increasing from 0.01 for yield-NDVI relationship to R2 = 0.12 for yield-wNDVI_15 and 

R2 = 0.13 for yield-wNDVI_11 respectively, through linear relationship. This result is in 

agreement with a study demonstrating that yield estimations based on metrics obtained a little 

after the peak of APAR can be done without seriously compromising performance (Duveiller et 
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al., 2013). However, the strength of these correlations is weak, justifying further analysis by this 

study on other factors that affect yield. 

When the whole dataset is aggregated over the whole period (2002-2010), at the zone level 

(spatial analysis), the correlation between yield and wNDVI is significant (Figure 21a) with 

R2 = 0.53, P < 0.001; while when the whole dataset is aggregated over the six zones, at the year 

level (temporal analysis), there is no significant correlation between yield and wNDVI (Figure 

21b). The good result obtained through the spatial analysis is due to different environmental 

variables exuded through rainfall distribution. The absence of significant results through the 

temporal analysis could be explained by (1) the difficulty to make coherent yield measurements 

over a calendar year and wNDVI (considering the length of time sugarcane takes to mature), and 

(2) the sugarcane cover fraction changes during the 2002-2010 period. This interpretation is 

exemplified by the variable standard deviation figures over the years (see standard deviation 

values of the fraction of sugarcane cropped area in each zone, Table 1). 

a)      
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 b) 
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Figure 20: Relationship between (a) yield and annual NDVI, (b) yield and wNDVI_11, and (c) yield 
and wNDVI_15. 
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a) 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 
Figure 21: Variability with wNDVI_11 averaged (a) at zone level on the 2002–2010 periods, and (b) 
at annual level on the six zones. 
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4.1.3 Relationship between Yield and Rainfall 

In order to better understand the spatial and temporal variability of yield, we studied the 

relationship between yield and annual rainfall. When using all the data (6 zones * 9 years; 

Figure 22a), the relation between annual yield and rainfall was significant, but weak (R2 = 0.08; 

p = 0.03). Such a weak relationship has been attributed to the time lag between yield and rainfall 

because vegetation takes a considerable period to respond to soil moisture (Shisanya et al., 

2011). This effect is amplified in Western Kenya, where the annual yield is dependent on the 

rainfall of the previous year due to the length of the sugarcane cycle. On removal of the time lag 

through spatial and temporal averaging over the nine year data (6 zones * 9 years; Figure 22b,c), 

this study showed a strong relationship as noted by other studies (Lofton et al., 2012; Shisanya 

et al., 2011) with R2 = 0.8 and p < 0.001 at the spatial level (Figure 22b). It is assumed that this 

relationship is stronger because yield is not only affected by rainfall but by other agro-

environmental factors that may be specific to different zones. The relationship between yield 

and rainfall (Figure 22b) is stronger than the relationship between yield and wNDVI (Figure 

21a) at the zone scale. This is because unlike rainfall which is an environmental variable, 

wNDVI value integrates not only sugarcane cultivated area, but also other types of land covers 

that are in different proportions according to the zone.  

The temporal analysis of yield and annual rainfall shows no correlation between both variables  

(Figure 22c), because (1) rainfall is not the only yield driving factor, and (2) because annual 

rainfall should be integrated on a longer period and with different weights (as wNDVI) in order 

to take into account the particular cropping calendar of the sugarcane crop. These results are in 

agreement with a study that pointed out that rainfall amounts and pattern may not be a reliable 

predictor of yield (Gunnula et al., 2011). However, rainfall aggregated at zonal level (Figure 
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22b) shows a significant correlation (R2 = 0.80, P = 0.001) with yield because each zone has 

unique agro environmental conditions that impact of yield. 

a) 

 

b) 

 

c) 

 

Figure 22: Relationship between yield and rainfall using: (a) all the data, (b) the data aggregated at 
the zone scale (spatial analysis), and (c) the data aggregated at annual scale (temporal analysis).  
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4.1.4 Relationship between Yield-wNDVI Slope and with Rainfall and 

Yield-wNDVI Slope and sugarcane fraction 

In order to better understand the main driving factors of the yield-wNDVI relationship, we 

correlated the slope (residuals or values) of the relation between yield and wNDVI aggregated at 

the zone scale with the rainfall (Figure 23a), and with the fraction of sugarcane in each zone 

(Figure 23b). Results show a strong correlation with high significance at p < 0.001 in both cases. 

The sensitivity of the yield-wNDVI variations to each millimeter rainfall received in each 

management zone also called the Precipitation Marginal Response, or PMR (Veron et al., 2005) 

separates two groups of these sugar zones, three geographically located in sub humid AEZ from 

three located in the humid AEZ (Figure 25a). The ability to separate the two climatic regimes in 

this study therefore strengthens the ability to use wNDVI in forecasting crop yield. Results of 

the PMR relationship were highly significant with R2 = 0.75; P = 0.001. The positive slope of 

this relationship (Figure 23a) indicates that the sensitivity of the yield to rainfall is higher than 

the sensitivity of the wNDVI to rainfall.  

The negative slope (the higher the fraction, the lower the slope) resulting from the relationship 

between yield-wNDVI slope and sugarcane fraction R2 = 0.42; P = 0.01 (Figure 23b) indicates 

that wNDVI is not only affected by the amount of rainfall received in the zone, but is also 

influenced by other surrounding vegetation cover. 
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a) 

 

b) 

 

Figure 23: Relationship between the “yield-wNDVI” slope and (a) rainfall, and  
(b) sugarcane fraction, aggregated at the zone scale.  
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4.1.5 A Quantitative Evaluation of the sugarcane yield Model 

WNDVI_11 data for the period 2001-2011 was used to estimate the 2012 sugarcane yield 

(Table 9), while wNDVI_11 data for the period 2001-2012 was used to estimate yield for the 

year 2013 (Table 10) using the models established at the zone scale (Figure 21a). This was done 

in order to utilize data that is independent from the one used in development of this model. 

  

Table 9: Zonal model validation using 2012 yield data. 

 
 

In 2012 (Table 9), we obtained a Root Mean Squared Error (RMSE) of 4.25 t ha−1, with all the 

zones modelled to have higher yields than the measured yields in each zone. The highest yield 

over-estimation was realized in Mumias zone (6.2 t ha−1), where the land holdings are 

particularly small (up to 0.1 ha), and where the landscape is very heterogeneous (Figure 18). 

This result is similar to the low accuracy obtained for fields smaller than the pixel size 

(Fernandes et al., 2011). When excluding Mumias zone, the RMSE decreases to 3.41 t ha−1, 

which is below the user specification of RMSE 5 t ha−1.   

 

 

 

Zone wNDVI_11 Model  Yield(t·ha−1) Measured Yield (t·ha−1) Error (t ·ha−1) 
Mumias 566.5 54.2 48 6.2 
Nzoia 602.8 68.4 64.7 3.7 

Chemelil 586.9 62.2 59 3.2 
Muhoroni 604.4 69.1 63.6 5.5 

Kibos 596.1 65.8 62.7 3.1 
Sony 610.5 71.5 69 2.5 

RMSE       4.25 
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Table 10: Zonal model validation using 2013 yield data.  
 

 

 

 

 

In 2013 (Table 10), we obtained a Root Mean Squared Error (RMSE) of 1.6 t ha−1. Like in 2012, 

all the zones are considered with higher modelled yields than the estimated yields in each zone 

with the highest over-modelled yield in Mumias (2.41 t ha−1).  

 

 

 

 

 

 

 

 

 

 

 

Zone wNDVI_11 Model Yield(t·ha−1) Measured Yield (t·ha−1) Error (t ·ha−1) 
Mumias 568.3 56.7 54.29 2.41 
Nzoia 601.4 68.7 67.66 1.04 

Chemelil 588.5 62.6 61.4 1.2 
Muhoroni 589.2 60.1 58.2 1.9 

Kibos 591.1 62.3 60.7 1.6 
Sony 615.7 67.1 66.2 0.9 

RMSE    1.6 
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4.2. Mapping of cropping practices using 
remote sensing data  

In this chapter, we tested if the spatial and temporal information contained in the satellite images 

could be interpreted in terms of cropping practices (crop types and sugarcane harvest mode). 

 

4.2.1 Temporal variability 

Results of time series analysis on MODIS normalized difference vegetation index (NDVI) 

captured seasonal variations in vegetation that result from the rainfall pattern in Kibos-Miwani. 

These seasonal variations facilitated the choice of Landsat images used in characterization of 

cropping practices in this area and in soil erosion risk modeling. Results demonstrate four main 

vegetative seasons for the sugarcane crop. These results exhibit two peaks (May and November) 

and two minimum vegetative seasons (February and September), corresponding to the 

interaction between sugar-cane physiology and the bimodal rainfall (Shisanya et al., 2011) with 

a one month time lag (Figure 24). Two minimum vegetative seasons in February and September 

are also exhibited, corresponding to the dry season. February indicates the first minimum 

vegetative season while September is the second minimum vegetation season. The first 

maximum vegetation season is experienced in May, while November is the second maximum 

vegetative season. We infer that rainfall distribution is the main driver of temporal NDVI 

variations and that farmers plan their crop management activities based on these two rainfall 

seasons.  
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Figure 24: Mean seasonal vegetation conditions as measured by MODIS and monthly rainfall 
variability for the period 2000-2012 in Kibos. 
 

4.2.2 Spatial variability 

A color-composition of 15 m NDVI Landsat images for three vegetative seasons (May, 

September and November) is displayed in Figure 25.  Results show varied cropping practices 

such as fields with young crop whose germination commenced in May, those harvested in 

November, mature crop that is due for harvest and other cover crops within Kibos-Miwani. 

These results have revealed multiple planting and harvesting dates at pixel level, between fields 

in the area with different types of crops, vegetated and harvested fields exemplified on the image 

composite. In this study, the variable NDVI pattern in different fields is an indicator of different 

types and ages of crops in the area where environmental conditions such as the dry season may 

affect mature crops thereby reducing their NDVI. This finding compliments the cropping 

calendar of Kibos-Miwani, where food crops are planted during the same period as sugarcane.  

This result is similar to a different study which showed that low NDVI may indicate start of 
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growth season, for young crop or; for crop of higher age, low NDVI may depict crop stress or 

start of maturation (senescence) (Vintrou et al., 2012). Landsat8 images have demonstrated 

spatial variability in vegetation conditions at the pixel scale with vegetated, harvested, planted 

fields and natural vegetation being identified on the image composite for the selected months. 

We assert that these cropping practices are the main driver of these local variations.  

 

 

Figure 25: Landsat 8 NDVI colored composite image (R: May 2013; G: September 2013; B: 
November 2013) Located at 34° 30’E to 35°E and between 0°S to 0° 45’S. 
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4.2.3 Time profile analysis in terms of cropping practices 

The harvest date was detected thanks to an abrupt increase in the SWIR band (see example in 

Figure 26).  

 

 

 

 

 

 

 

 

Figure 26: NDVI, NDWI and SWIR for a field that is harvested by burnt method. Where SB= 
burnt harvest. This field was harvested on 8th July 2013. The dotted line indicates the harvest day. 
 

The harvest mode map was obtained through a characterization of spectral indices selected 

through a t-test. Table 11 shows results of the t-test on the values of two spectral indices, NDWI 

and NDVI, before and after the harvest, for sampled fields. Results show that, at harvest time, 

changes in NDWI are high (mean=0.41) for burnt harvest and low (mean = 0.10) for green 

harvest. The differences for green and burnt harvest modes are significantly different for 

NDWI_Diff at P = 0.000, while they are not significant for NDVI_Diff (P = 0.345). These 

results show that both SWIR and NDWI are useful in description of sugarcane harvest time and 

harvest mode respectively.  

 

 

Harvest 
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Table 11: Statistics of NDWI and NDVI values for green and burnt harvest fields, and p-value for 
testing the difference between the two harvest modes (Bef = value before harvest; Aft = value after 
harvest; Diff= value difference between before and after harvest). Bold values indicate a significant 
difference at 0.01%.    
 

  NDWI_Bef NDWI_Aft NDWI_Diff  NDVI_Bef NDVI_Aft  NDVI_Diff 

Mean  
Green harvest 0.21 0.11 0.10 0.65 0.39 0.26 
 
Std  
Green harvest 0.07 0.08 0.06 0.06 0.07 0.08 
 
Mean  
Burnt harvest 0.26 -0.15 0.41 0.59 0.35 0.24 
 
Std  
Burnt harvest 
 

0.09 
 

0.07 
 

0.12 
 

0.06 
 

0.05 
 

0.07 
 

 
P-values (difference 
Green/Burnt harvest) 

0.002 0.000 0.000 0.000 0.026 0.345 

 
 
Figure 27 illustrates the mean and standard deviation of these results which show that at harvest 

time, NDWI values between green and burnt harvest are significantly different.   

 

Figure 27: Mean and standard deviation (+/- 1 std) of NDVI and NDWI vegetation indices 
differences (Bef = value before harvest; Aft = value after harvest; Diff= value difference between 
before and after harvest), for two harvest modes (Green bars: green harvest – Red bars: burnt 
harvest). 
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Figure 28 shows the frequency in value occurrence for differences in NDWI before and after 

harvest (NDWI_Diff), for green and burnt. The NDWI_Diff frequency of occurrence shows that 

at harvest, over 90% of the green harvested fields have NDWI_Diff below 0.27 while over 90% 

of the burnt harvested fields have NDWI above 0.27. We infer that NDWI_Diff value of 0.27 is 

a threshold for separating the burnt and green harvest classes.  

 

 

Figure 28: The bars correspond to the frequency distribution of NDWI differences, for green and 
burnt harvests. The lines correspond to Gauss-fitted frequencies. 
 

The significance in NDWI value differences at harvest has facilitated the use of NDWI in field 

by field classification of the harvest mode map.  
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4.2.4 Sugarcane classification  

The NDVI image was used in characterization of the land cover map. Figure 29 illustrates these 

results which show a classified NDVI image of Kibos-Miwani into six classes. Five classes are 

‘sugarcane’ that results from variation in sugarcane age and one for ‘other’ class (Table 7).   

 

 

 

 
 
 
 
 
 
 
Figure  29: The classified Landsat image of Kibos-Miwani showing six land cover classes: five 
classes of ‘Sugarcane’ based on different stages of the crop, and one class of ‘Other’.  
 
A zoom on area “A” shows spatial heterogeneity within and between sugarcane fields 

(Figure 30). This zoom exposes heterogeneity in the landscape resulting from the cropping 

calendar and alternatives in the crop management systems in Kibos-Miwani. The spatial 

heterogeneity between sugarcane fields in figure 33 implies that crop management such as weed 

control, harvesting mode, fertilizer application and soil characteristics (Jamoza et al., 2013) are 

the drivers of these local variations. This result is similar to a study which showed that 

sugarcane landscapes are spatially heterogeneous due to variable cropping practices (Mulianga 

et al., 2012; Zarco-Tejada et al., 2005).  

A 



98 
 

 
 
 
 
 
 
 
 
 

Figure 30: A zoom on the classified Landsat image of Kibos-Miwani sugar zone in area “A”.  

 
Figure 31 shows the classified Landsat image of Kibos-Miwani after post classification. The 

figure illustrates two classes: Sugarcane and other. The figure shows over 85% of the landscape 

is under sugarcane and heterogeneity in the land cover is driven by cropping activities that are 

influenced by intensification in the heavily fragmented landscape (Mulianga et al., 2012). 

 
Figure 31: A classified Landsat image of Kibos-Miwani sugar zone after re-coding of all sugarcane 
and other pixels in two classes: sugarcane and other cover.  
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Figure 32 presents the result of the crop type map produced through a field by field 

classification method. 

Figure 32: The sugarcane field map classification, obtained using a majority filter applied on the 
classified Landsat time series (Figure 31) 
 

The sugarcane classification accuracy was based on data that were not used for classification. 

Results derived from the confusion matrix (Table 12) give an overall classification accuracy of 

83.8%. The class “sugarcane” has a user accuracy of 95.8%, while the class “other” has a user 

accuracy of 83.1%.  
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Table 12: Confusion matrix of the classified Landsat image for Kibos-Miwani after post-
classification. The bold values are the pixels that were classified correctly. 

  Classification   

G
ro

un
d 

  t
ru

th
 

 Sugarcane Other Unclassified Line 
total 

Producer 
Accuracy 

Omission 
error 

Sugarcane 160 22 18 200 80.00% 20% 

Other 7 108 5 120 90.00% 10% 

Row total 167 130 23 320    

User Accuracy 95.8% 83.1%    83.8%  

Commission 
error 

4.2% 16.9%     

 

where; 

User accuracy = Number of pixels of the ground class/total pixel in classification class 

Producer accuracy = Number of pixels of the classification class/ total pixels in the ground class 

Omission error = 1 - Producer's Accuracy 

Commission error = 1- User's Accuracy  

Results of this classification show that sugarcane class has 20% omission error and 4.2% 

commission error, while; the ‘other’ class has 10% omission error and 16.9% commission error. 

Only 20 pixels (6% of the sugarcane data set), were not classified. 

 

4.2.5 Sugarcane harvest mode classification  

The sugarcane harvest mode was classified using NDWI differences. NDWI Differences > 0.27 

were classified as burnt harvest, while NDWI Differences ≤ 0.27 were classified as green 

harvest. The classified harvest mode (green harvest and burnt harvest) map is displayed in 

Figure 33. Our results have shown that changes in both SWIR and NDWI are highest at harvest.  
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We therefore accepted our hypothesis and also concluded that the highest NDWI difference 

occurs at harvest. NDWI was used in this section due to its ability to distinguish between the 

two harvest modes. This map shows three classes: green harvest, burnt harvest and fields with 

other cover. 

Figure 33 : Map of the sugarcane harvest mode and other cover in Kibos-Miwani. 

 

Table 13 shows the fraction area covered by each class. Area under green harvest mode accounts 

for 25% of the total area, while area under burnt harvest accounts for 75% of the total area. 

These results confirm ground information, where, burnt harvest is a dominant practice in Kibos-

Miwani with 74.5% coverage compared to 25.5% for green harvest mode. 
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Table 13: The harvest mode and the percentage coverage in Kibos 

Harvest mode Total (ha) % coverage 

Green 2,284 25.5 

Burnt 6,672 74.5 

 8,957 100 

 

Results derived from the confusion matrix (Table 14) give an overall classification accuracy of 

90%. The class “green harvest” has a user accuracy of 88%, while the class “burnt harvest” has 

a user accuracy of 92%.  

 

Table 14: Confusion matrix of Kibos-Miwani after post classification of sugarcane fields into burnt 
and green harvest modes. The bold values are the pixels that were classified correctly. 

 

 Classification  

tr
ut

h
  Green 

Harvest 
Burnt 

Harvest 
Line 
total 

Producer 
Accuracy 

Omission 
error 

G
ro

un
d 

 

Green Harvest 90 8 98 0.92 0.08 

Burnt Harvest 12 90 102 0.88 0.12 

Row total 102 98 200   

 User Accuracy 0.88 0.92  90%  

 Commission error 0.12 0.08    

 

Results of this classification show that green harvest class has 8% omission error and 12% 

commission error, while the burnt harvest class has 88% omission error and 12% commission 

error. This result shows the effective use of NDWI in distinguishing harvest modes from a 

satellite image.   
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4.3. Soil erosion risk at local scale 

 
In this chapter, we present results on the impact of cropping practices on soil erosion risk of 

Kibos-Miwani landscape using FuDSEM model at local (field) scale.  

 

4.3.1 Erodibility factor 

The erodibility index K for Kibos-Miwani ranges between 0.26 in the lowlands (with silt clay 

soil), and 0.38 in the uplands (with silt loam soil) giving a range of 0.20. These values 

correspond to the particle size distribution of each soil type and 4% and 2% organic matter 

respectively on a USDA Department of Agriculture (USDFA) soil textural classification triangle 

which has a range of 0.20 between the highlands and lowlands of the sugarcane landscape 

(Mitchell and Bubenzer, 1980).  Figure 34 illustrates results of the distribution of these 

erodibility values and the particle distribution curve for each soil in Kibos-Miwani.  Further, this 

range is within the standard range of 0.02 to 0.69 documented by Mitchell and Bubenzer (1980).  

This local variation in the erodibility index in this area is due to variations in soil type with the 

silt loam soil in the hilly areas resulting in high porosity values (66%) in the silt loam soils of 

the hilly areas that allows fast percolation of water compared to porosity of 44% in the silt clay 

lowland soils that retain water.  
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Soil 1 
Silt loam  
K = 0.38 

Soil 2 
Silty clay loam 
K = 0.32 

Soil 3 
Silty clay loam  
K = 0.32 
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Soil 6 
Silty clay loam  
K = 0.32 

Soil 4 
Silt loam  
K = 0.38 

Soil 5 
Silty clay  
K = 0.26 



106 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 34: Particle size distribution and erodibility factor (K) for each of the eight soil types 
observed in Kibos-Miwani. Where soil 1=Luvisols and Cambisols; soil 2= Chromic Vertisols and 
Eutrific Planosols; soil 3=Lithosols; soil 4=Gleysols; soil 5=Eutric Fluvisols; soil 6=Chromic 
Vertisols; soil 7=vertic Fluvisols; soil 8=Solodic Planosols (US classification). 
 
 
 
 
 
 
 
 

 
 

Soil 7 
Silty clay loam  
K = 0.32 

Soil 8 
Silt loam soil 
K = 0.38 
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4.3.2 Potential Soil Erosion risk 

i.) Temporal vegetative seasons and potential soil erosion risk  

The functions and weights used in FuDSEM are the outcome of generalized interpretation of 

common knowledge of erosion processes. Unlike standard, physically-based models, the 

weights are not intended to represent an accurate quantitative relationship between the 

parameters, but to provide a general interpretation of the process, as envisaged by the modeller 

(Baja et al. 2002; Robinson 2003). This is acceptable, since the model predicts the potential of 

the parameters, thus representing its relative spatial and temporal distribution, rather than 

providing a quantitative prediction of erosion yield. Inherently, FuDSEM produces potential, 

qualitative erosion maps, and not quantitative erosion values.  

Resultant erosion risk values range from 0 to 8.1 with a mosaic of low to high erosion risks in 

both the cropped area and natural vegetation (Figure 36). Globally at the portion of the selected 

landscape, the mean value for erosion (1.71) changes through time between 2.04  in February, 

1.92 in May, 1.08 in September and 1.8  in November. Generally, September presents the lowest 

erosion risk and this is attributed to presence of highly vegetated sugarcane crop having been 

planted in March or ratoon which has regenerated after harvest, while February presents the 

highest erosion risk value due to land preparation activities that expose soils to rainfall (Amolo, 

2009). 

Marked areas in Figure 36 are distinguished based on risk criteria: always high through time 

(area 1), low and intermediary (areas 2, 3, 4); intermediary only in September otherwise high 

(area 5). The spatial pattern realized by this analysis is also linked to the slope, soil map and 

crop type. Area 1 is within a slope of over 7% in the escarpment foot, covered by perennial 

vegetation (woodlot) and food crops (other crops) on silt loamy soils. Areas 2, 3 and 4 are 
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within a slope of over 3% with 80% sugarcane and 20% of other crops (maize, natural 

vegetation) growing on silt loamy soils.  Area 5 is found within a plain with slope < 3% and on 

silt clay loam soils, where 100% of other crops are found (natural vegetation).  

Results show a consistent high risk pattern of erosion in area 1 throughout the four seasons 

studied. Being an area under the escarpment foot and other crops (forest), we infer that the 

erosion pattern is influenced by slope and the type of crop. The consistent high erosion patches 

shown in area 1 is likely to be presumptive spots of gulley erosion in the hilly terrain as also 

found by Valentin et al. (2005) in areas of high risk of gulley formation. Further, Valentin et al. 

(2005) recommended use of continuous vegetation cover, minimum tillage and use of terraces as 

conservation measures for sustainability.  

Areas 2, 3 and 4 show a spatially variable intermediary erosion pattern through the four seasons. 

Being an area dominated with sugarcane crop, a mixture of low, moderate and high erosion risk 

is seen in February. This result is related to the land preparation activities mostly conducted in 

February-March (Amolo, 2009). In May, moderate erosion risk is seen and this can be attributed 

to growth of young crop either planted at the onset of rains in March-April or regenerated after 

harvest; and this has reduced the rate of transport capacity. We infer that enhanced vegetation 

during the main rain season (May) minimizes erosion risk. Low erosion seen in area 3 is 

attributed to the impact of pure sugarcane stand of Kibos (Milimani) nucleus which is able to 

reduce run off and transport capacity except when harvested. We infer that sugarcane crop 

protects the landscape from erosion risk. In September, potential erosion map exhibit a general 

decrease in risk value, while in November, an intensified mixture of low and high erosion 

pattern is seen in areas 2, 3 and 4. The lower erosion risk in September is attributed to the 

combined effect of dry weather conditions at the end of the main rainy season, minimal land 
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preparation activities, and the presence of vegetation cover over the landscape. The exposed 

soils in young cropped fields planted during the short rainy season increases erosion risk in 

November. We infer that this cropping practice is the driver of this erosion pattern. Area 5 

exhibits a consistent high erosion risk in February and November, while in May and September 

this erosion intensity has reduced to moderate and isolated high risk pixels in this area. Being an 

area covered with other type of vegetation and in land that has not been cultivated for over five 

years (fallow land), we infer that vegetation cover is sparse in February and November due to 

open grazing activities exposing soils in area 5 to run off, and therefore crop type is the driver of 

this erosion risk. This finding is similar to that of Valentin et al. (2005) who found that 

overgrazing was a driver of soil erosion due to exposure of soils to run off and suggested soil 

conservation measures to be put in place to minimize potential erosion risk. 

Further, our survey results show that crop residues from green harvest are trash lined between 

rows and this is assumed to protect soils from rain drops, consequently reducing transport 

capacity and erosion risk. On the contrary burnt harvest exposes soils to rainfall, consequently 

increasing erosion risk. This presumption is similar to findings of a study which found that green 

harvesting increases the number of crop cycles and improves soil physical properties (Mendoza 

et al., 2001), thereby improving sugarcane productivity. This result is verification that FuDSEM 

model correctly represents the trends cited in literature implying that burnt harvest destroys soil 

nutrients and depletes soil moisture which is protected by crop residues on harvest thus 

increasing soil erosion risk. In addition, because positive NDWI values have been observed on 

green harvested fields, our results have shown that green harvesting method provides available 

crop residues for soil conservation. Observed data has presented positive soil moisture after a 

green harvest using the normalized difference water index (NDWI). This implies that on green 
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harvest, crop residues retain soil moisture that supports the next crop cycle.  This result 

corroborates findings  of  Mendoza et al. (2001) who realized that trash increases soil moisture 

retention, improves soil nutrients and increases soil resilience to erosion risk. Moreover, other 

studies recommend green harvesting to provide residues for soil cover to reduce soil erosion risk 

(Valentin et al., 2005). Besides crop residues, Valentin et al. (2005) and Okoba et al. (2007) 

recommend increase in vegetation cover; reduced destruction of soil structure through minimum 

tillage of hilly areas; use of terraces to reduce the slope e for soil conservation purposes.  
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Figure 35: Potential soil erosion risk in Kibos-Miwani sugarcane zone, calculated using FuDSEM 
for (a) February, (b) May, (c) September, and (d) November. 
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Relevance of FuDSEM simulated results in Kibos-Miwani 

Potential soil erosion risk values calculated using FuDSEM (calculated by averaging all the four 

vegetative seasons) were regressed against the corresponding potential erosion values using 

RUSLE (Renard et al., 1997), a model dedicated to potential risk simulation that do not use 

fuzzy based approach. Results are shown in Figure 36. A strong linear correlation is observed in 

23 sampled fields with an R2 = 0.73; P=0.001. This result shows the advantages of FuDSEM 

that allows drawing maps of potential erosion risk based on limited input data requirement. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36: Preliminary validation of FuDSEM versus RUSLE (Renard et al., 1997).  
 
 
 
Magnitude of erosion risks in Kibos-Miwani 

Table 15a shows observed potential risk results in Kibos-Miwani (KESREF, 2013) as measured 

in sugarcane experimental plots and plots with other crops. The observed erosion yield values 

ranged from 1.4 to 3.4 kg m-2 y-1. These values fall within the range of erosion risk values 
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observed by Lufafa et al. (2003) as 0 - 9 (kg m-2 y-1), for an agricultural landscape in western 

Kenya, under environmental conditions similar to those of Kibos-Miwani. These values were 

compared with the simulated erosion risk values under agro-environmental conditions similar to 

that of experimental plots (Table 15b).  

 

Table 15: (a) Measured erosion yield (KESREF, 2013) and (b) simulated potential erosion risk, in 
Kibos-Miwani.  
 

(a) Measured erosion yield (kg m-2 y-1) 

Station Erosion yield Crop 
1 1.4 SC G 
2 1.7 SC B 
3 2 Other 
4 2.1 SC G 
5 2.5 Other 
6 1.5 SC G 
7 2.3 SC B 
8 2.9 Other 
9 3 Other 
10 3.4 Other 

 

(b) Potential erosion risk per year using FuDSEM 
Station X_Ordinate Y_Ordinate Crop Slope % Erosion risk value Soil 

1 34°49'32.973"E   0°1'57.964"S SC G 2.9 1.7 Silty 
loam 
clay 
soil 

2 34°51'28.755"E  0°2'3.233"S  SC  B   2.6 2.9 
3 34°51'51.912"E  0°2'3.986"S  Other 2.7 2.4 
4 34°52'32.998"E  0°2'5.492"S SC  G 2.5 2.1 
5 34°49'6.829"E 0°1'59.467"S  Other 2.9 2.7 
6 34°52'10.587"E  0°2'7.747"S  SC G 2.4 2.2 
7 34°52'54.662"E  0°1'56.468"S  SC B 2.8 2.5 
8 34°49'53.888"E  0°1'57.213"S  Other 2.7 3.3 
9 34°50'23.02"E  0°1'58.718"S  Other 2.5 3.8 

10 34°50'49.165"E 0°1'55.711"S  Other 3 4.7 
Where SC G = Sugarcane harvested by  green mode; SC B =  Sugarcane harvested by burnt mode 
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On Figure 37, simulated potential erosion risk data were plotted with measured erosion yield 

data. A significant linear relationship was found with R2 = 0.86, P = 0.001 (Figure 37). Results 

from KESREF (2013) have shown that higher risk of soil loss occurred in fields with other crops 

(1.5 - 3.4 kg m-2 y-1) than fields with sugarcane crop (1.4 to 2.5 kg m-2 y-1). Owing the 

significant linear relation obtained, FudSEM represents correctly the differences in erosion risk 

due to cover characteristics and environmental conditions (slope, location in the landscape). 

Simulations suggest that burnt harvest mode increases the risk of erosion (2.9) vs. green harvest 

mode (1.7). Under similar environmental conditions, Lufafa et al. (2003) found higher erosion 

yield out of covers with food seasonal crops than those with perennial cover. In this study, 

sugarcane crop is a perennial crop but with a sensitive phase to erosion after harvest. Except on 

burnt harvest fields with bare soil,  sugarcane covers soils over several years including mulching 

on green harvest, minimizing soil erosion risk. We therefore infer that crop type and sugarcane 

harvest modes are the main drivers of soil erosion risk in a heterogeneous landscape. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37: The correlation between measured erosion yield and simulated potential erosion risk 
within Kibos-Miwani landscape.  
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5. GENERAL DISCUSSION 

5.1. Estimating regional sugarcane yield 
with remote sensing data 

 
This research has investigated the influence of cropping practices and environmental conditions 

on sugarcane yield at regional scale through two approaches. Firstly, historical yield was related 

to annual NDVI with the assumption that yearly sugarcane yield is significantly correlated to 

annual NDVI. This hypothesis was rejected since the significance of this correlation was only 

achieved after adjusting the NDVI time integration through the sugarcane growing period. The 

strength of this relationship was then enhanced when the data were aggregated over the whole 

period (2002-2010) at the zone level. Secondly, historical yield was related to rainfall and the 

strength of this relationship was low, although the correlation was of high significance. The 

relationship was equally strengthened through spatial aggregation and through rain use 

efficiency. The relation between yield and rainfall exists owing to the fact that sugarcane yield is 

significantly related to rainfall on removal of time lag at zone scale since crops take a 

considerable period to respond to rainfall.  

This study has shown that remote sensing technology together with environmental information 

has potential to be used to estimate crop yield and evaluate the impact of environmental 

conditions to crop production as opposed to physical methods. In effect, it has been reported that 

accuracy of physical methods such as visual physical approach (VPA) on yield estimation is 
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minimized due to gross errors associated with fatigue, variability in assessment of natural 

phenomena using the naked human eye, and lack of consideration of diverse environmental 

variables (such as rainfall) during the growth period of the cane crop. The use of remote sensing 

data can highlight variations in environmental variables within respective zones, and this is 

uniquely evidenced by the separation of the two agro-ecological zones through spatial 

aggregation. Additionally, variations within and between the zones are influenced by 

environmental variables such as soil characteristics and rainfall distribution over different years. 

Our findings are in agreement with a study noting that rainfall was not the single determinant of 

crop yield in different environments, but rather, other factors such as soil characteristics, and 

other agricultural land use need to be included (Zarco-Tejada et al., 2005).  

In summary, our results are in agreement with most of the previous studies on this subject. 

Through this study, we have contributed knowledge to remote sensing fraternity (1) by 

developing an original method for NDVI time integration that takes into account the local 

cropping practices (length of the growing season), and (2) by analyzing the spatial and temporal 

dimensions of the yield-NDVI relationship and response of its slope to rainfall. Sugarcane yield 

forecasting has been exemplified through spatial aggregation of weighted NDVI. The 

information presented in this study is useful for proper, foresighted and informed planning in the 

Kenya’s Sugar Industry at the zone management scale. This is because the information explains 

the influence of environmental conditions on sugarcane production, thus providing knowledge 

for monitoring sugarcane productivity at the zone scale. 
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5.2. Mapping crop management 
practices using remote sensing 

This research has investigated the spatial and temporal information contained in the satellite 

images through three approaches.  

Firstly, we investigated the temporal variability of spectral response from the effect of rainfall 

pattern, the effect of the land cover type and the effect of the cropping calendar of sugarcane. To 

realize this, we compared the time series profiles of NDVI with rainfall (2000-2012) to 

understand crop conditions in the year, with the assumption that rainfall is the main driver of 

seasonal variations in vegetation. This hypothesis was accepted when four vegetative seasons 

(minimum seasons in February and September and maximum seasons in May and November) 

were identified from this relationship, corresponding to the interaction between sugar-cane 

physiology and the bimodal rainfall with a one month time lag. Our finding is similar to 

Shisanya et al. (2011) who realized a bimodal rainfall pattern in Kenya and argued that its 

pattern influenced vegetation growth. In effect, planting activities in Kenya are scheduled in 

accordance with climatic conditions (Amolo et al., 2009) and this has been realized by the four 

vegetative seasons which correspond to the cropping calendar. This study has shown that remote 

sensing data together with rainfall data can be used to exemplify the effect of agro-

environmental variations on physiological conditions of the crop.  

Secondly, we undertook crop mapping at field scale to understand the spatial and spectral 

variability of the land cover types using two approaches: (i) identify the best index to undertake 

crop mapping, detect a harvest date, and characterize harvest mode; and (ii) undertake crop 

mapping and harvest mode characterization using the best index. In (i) we assumed that changes 
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in NDVI, NDWI and SWIR (April 2013 - March 2014) at harvest time were significantly 

different. We investigated this significance by correlating value differences in NDVI, NDWI 

and SWIR at harvest. Results have shown that NDVI is a good descriptor of land cover having 

shown significance in value before harvest. We therefore conducted mapping of crop types 

using time series NDVI. Through a supervised classification our results provided an overall 

accuracy of 83.3%. This result is similar to a study which used NDVI to separate green 

vegetation from other surfaces (Sader et al., 2003) and recommended accuracies over 80% 

(Wardlow and Egbert, 2008) as acceptable.  We accepted our hypothesis that NDVI is a good 

descriptor of land cover type. 

Our results have also shown that SWIR is a useful descriptor of sugarcane harvest time. Our 

finding is similar to a different study that also found SWIR a good descriptor of a harvest time 

because it presents an immediate increase in value after a harvest (Lebourgeois et al., 2010). 

Moreover, our results are similar to Daughtry et al. (2004) who realized high reflectance for dry 

residues and low reflectance for wet residues in the SWIR band due to its ability to separate crop 

residues from other crop status, presenting high values for harvested fields and low values for 

vegetated fields.  

The harvest mode map was obtained through characterization of NDWI whose results presented 

significant values for both green and burnt harvest modes. In this classification, NDWI 

differences > 0.27 were characterized as burnt harvest while those ≤ 0.27 were classified as 

green harvest, yielding an overall accuracy of 90%. This accuracy is higher than the 

recommended acceptable accuracies of over 59% (Todd et al., 1980; Longley et al., 2005) and 

over 80% (Wardlow and Egbert, 2008), implying that NDWI is an effective descriptor of the 

harvest mode. Moreover, NDWI results have shown negative values on burnt harvest opposed to 
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positive values on green harvest. These results are similar to recent studies that used NDWI to 

monitor spatial variations in moisture conditions of vegetation over large areas and found 

negative NDWI values on burnt harvest (Gao, 1996) and on vegetation stress (Sader et al., 2003; 

Gu et al., 2008; Chen et al., 2005). We infer that on burnt harvest, moisture in the soil 

evaporates and this is compared to drought stress (Gu et al., 2008) in crops. NDWI has been 

proposed and evaluated for extraction of surface water features and change detection Rokni et 

al. (2014) and for vegetation drought monitoring (Gu et al., 2008). Findings of this study 

associate harvest with crop stress due to drought that drains water from vegetation. Detection of 

harvest mode using NDWI is a new idea which this study has developed using an original 

method through a t-test.  

 

5.3. Impact of sugarcane cultivation on 
soil erosion at landscape scale 

This study has used the fuzzy based dynamic soil erosion model (FuDSEM) model to investigate 

the influence of sugarcane cropping practices on soil erosion risk in Kibos-Miwani zone at local 

scale through three approaches: (i) Run off potential, (ii) Transport capacity and (iii) Erodibility 

factor. Input variables in the FuDSEM model included the slope, soil physical properties, 

rainfall, aspect and vegetation. NDVI was used to represent vegetation because this study has 

found NDVI value before and after harvest significantly linked to both crop type (sugarcane and 

other crops) and harvest mode. NDVI was therefore used to represent the spatial and spectral 

responses to the effect of environmental variables (rainfall and soil characteristics). We 

hypothesised that cropping practices are the main drivers of soil erosion risk. This hypothesis 
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was accepted because results suggest that both crop type and harvest mode impact on soil 

erosion risk. Our results give us confidence in use of FuDSEM model with potential simulated 

risks highly correlated to measured data such as found by Cohen et al. (2008). Based on 

observations, erosion risks out of sugar cane –a perennial crop- and food crops are consistent 

with erosion yield found by Lufafa et al. (2003) under similar environmental conditions in 

Western Kenya. 

Moreover, our findings on harvest mode are similar to those of Lovett et al. (2005) who found 

that post fire erosion on loose soils is usually high. We infer that in Kibos-Miwani where 75% is 

burnt harvest, post fire erosion in harvested fields influences the spatial and temporal 

susceptibility of the landscape to erosion risk. In effect, the multiple planting and continuous 

harvesting together with the crop type (natural vegetation) in areas marked 1 and 5 contribute to 

the erosion risk pattern which varies from one pixel to the other due to the spatio-temporal 

heterogeneity exemplified between the sugarcane fields in the area (Mulianga et al., 2012). 

These results show that cultivation of sugarcane crop minimizes erosion intensity of the 

landscape on which it is grown, due to its physiological characteristics. 

In his study, we found that minimum erosion risk occurred in September. High risk of erosion 

occurred in May and November, respectively corresponding to mid long and short rainy seasons. 

Surprisingly, high risk of erosion also appeared in February (2.04) at the beginning of the long 

rainy season, similar to that in May (1.92) when rainfall is at its first peak.  This study attributes 

the increase in erosion in February to the effect of land preparation activities that expose soils to 

rainfall in readiness for planting in March (Amolo, 2009; Jamoza et al., 2013).  On harvest, 

management of crop residues, land grading, levelling and terracing among other factors follow, 

to enhance growth of the ratoon crop and this influences the rate of surface run off (FAO, 2012) 
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depending on the harvest method. In Kibos-Miwani where 75% of sugarcane residues are burnt 

before harvest, increase in erosion risk is unavoidable. This result shows that cropping practices 

(crop type and harvest method) and rainfall are the main drivers of erosion risk in the four 

seasons. This result is similar to a study which demonstrated that soil loss varied according to 

crop type (Kirkby, 1980).  

Transport capacity increases in November (second rainfall peak / short rainy season) rather than 

May (first rainfall peak / long rainy season) is attributed to influence of cropping practices such 

as land preparation, harvest mode and crop type. Our results are similar to those of Cohen et al. 

(2008) who concluded that continuous vegetation cover influences rain drop intensity and rate of 

infiltration at different levels depending on type of vegetation. Cultivation of sugarcane alongside 

other crops increases erosion risk on localized spots (such as area 3 in Figure AA) over different 

vegetative seasons. This is because the perennial rooting system in sugarcane favors quick 

regrowth which provides quick cover for the soils. This finding is similar to different studies 

which realized that root network of perennial crops protects landscapes from soil erosion risk 

(Wood, 1991; Gravois et al., 2011). This result implies that appropriate management of the 

landscape such as planting of perennial crops, terracing and trash lining of crop residues may 

reduce the overall risk at the local scale for sustainable crop production. 

The K values computed in this study are similar to those of the USDA values for different types 

of soil (Mitchell and Bubenzer, 1980). Spatio-temporal variability has been shown within fields 

during classification of land cover and through seasonal variations of erosion risk. We infer that 

erodibility index is a driver of these spatial variations in erosion. Our findings are similar to a 

different study which showed that different types of soil influence heterogeneity in landscape 

vulnerability to erosion risk (Reich et al., 2000). This result is similar to a different study which 
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noted that the impact of heterogeneous landscapes on regulatory ecological processes such as 

soil transport from the sloppy terrain into valleys and carbon sequestration using water as a facet 

for matter cycling in sugarcane fields is important. In a different study, Martinez and 

Mollicone (2012) also found that this matter cycling influences crop production and ecosystem 

functioning for improved crop management and regulation of environmental services in space 

and time. 

Moreover, our findings are similar to a study that realized sugarcane trash facilitates a reduction 

in soil loss from sloppy areas and that changes in vegetation conditions such as introduction of 

trash on harvesting and development of root network on crop maturity introduces other 

environmental factors such as organic matter which influence erosion amounts in space and 

pattern of a given landscape (Wood, 1991). Further, Wood (1991) complements our findings by 

asserting that sugarcane crop offers almost permanent mulch to the landscape in which it is grow. 

Other studies also found that during vegetative seasons, there is almost no tillage on the gentle 

sugarcane slopes and this is simultaneous with the rainy season (April to June and October to 

December) (Shisanya et al., 2011). Our results have shown a higher erosion risk in fields with 

burnt harvest than those with green harvest. The luck of residues for mulching the sloppy 

landscape if harvested during the rainy season is the likely reason for the higher erosion risk. The 

mulch provided by green harvested sugarcane in Kibos-Miwani thus lessens occurrences of 

erosion even when heavy rains (April-June) are received. Additionally, this mulch has effects on 

soil physical properties (FC and BD) because of soil organic matter content and soil cover after 

green harvest (Wood, 1991; Mendoza, et al., 2001). 

This study attributes the effect of crop type to crop’s root network and harvest modes as 

documented by Wood (1991). This result implies that potential erosion is consistent with 
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transport capacity. This is because burnt harvest exposes bare soils to erosion by rainfall while 

green harvest provides trash that prevents soil erosion. The study has shown that cropping 

practices (crop type and harvest mode) are the main drivers of local variations in erosion risk in 

Kibos-Miwani. A comparison of FuDSEM with RUSLE models has been undertaken in this 

study. Validation of this model with in situ data has been conducted and significant correlations 

realized. Implementation of this model for similar agro-environmental conditions requires 

validation of this model with data from varied slopes of the sugarcane landscape. 

 

5.4. A synthesis on landscape: the 
intermediate object between remote 
sensing and environmental services 

This study has shown that remote sensing is a descriptor of spatial and temporal environmental 

conditions that result from environmental services offered by the main land uses of a given 

landscape. In this study, spectral indices from remote sensing have been used to (i) develop 

yield estimation models, (ii) describe cropping practices and (iii) simulate erosion risk. This is 

because signatures drawn from spectral indices are associated with a particular vegetation cover 

type in response to agro environmental conditions. Results of this study have shown that spectral 

signature variations of respective land cover in Kibos-Miwani are complementary to variations 

in climatic (rainfall) seasons of western Kenya. Additionally, the study has shown that remote 

sensing offers opportunities for data that represents wide spatial extents with detailed feature 

characterization that is collected across spatial scales  
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Firstly, this study has developed sugarcane yield models at regional scale using remote sensing 

indicators. Our results have shown that remote sensing is complementary to crop models 

because it takes into account the impact of the agro-environmental conditions on the crop 

development while a crop model is limited by the availability of the spatial input data that is 

costly and time consuming to collect. Our results are similar to a different study which used 

climate variables to study the effects of climate change on sugarcane yield through a crop 

model. In this study, vegetation indices have been used because they are indicators of rainfall 

and soil characteristics of a given space, while in their study, Wuld et al. (2004) realized that 

sugarcane productivity was positively related to air temperature and rainfall. The response to 

temperature and rainfall is reflected in the vegetative index through NDVI and rainfall as used in 

this study. Further, these models may also be used as input data in crop models and production 

estimations at the zonal level. 

Secondly, this study has described cropping practices using remote sensing at landscape scale. 

The landscape scale has exemplified heterogeneity in crop type and harvesting modes. NDVI 

has been used to characterize the crop type, exemplifying different ages in sugarcane and other 

crops. The normalized difference water index (NDWI) has been used to describe harvest modes 

because at harvest time NDWI difference between green and burnt methods is significantly 

different. Further, NDWI presents negative values on burnt harvest and positive values on green 

harvest. NDWI is therefore an environmental indicator of stress conditions in soils and dry crops 

(Gao, 1996). These varied cropping practices introduce local variations in the landscape that has 

diversified soil types and characteristics which impact on crop productivity.  

In this study, remote sensing has exemplified the impact of rainfall on vegetation conditions of 

the landscape. Through time series NDVI, a bimodal vegetative season comprising two 
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maximum vegetative seasons (May and November) and two minimum vegetative seasons 

(February and September)  has been exemplified. These seasons are similar to the bimodal 

rainfall pattern of western Kenya.  This result is unique because rather than no vegetation during 

dry seasons in the area, the bimodal seasons indicate the presence of vegetation through the year 

with maximum and minimum variations being response to agro environmental conditions. These 

changes impact environmental services such as crop productivity and soil protection that have 

been examined in this study. These results as also noted by a different study facilitate policy 

applications that are focused on understanding the role of the agricultural sector on 

environmental changes (Wardlow and Egbert, 2008). 

Thirdly, FuDSEM model was used to model soil erosion risk using remote sensing and 

landscape data over four vegetative seasons. The study found that the amount of rainfall 

influences the rate of run off, while based on slope, the crop type and harvest mode influences 

transport capacity of sediments. Globally, the erosion risk ranged between low to medium in 

sugarcane cultivated areas and low to high erosion in areas with natural vegetation, presenting a 

variable pattern between 30 m pixels in the landscape. These results have shown that crop 

management activities such as land preparation, crop type (sugarcane or other crops) and harvest 

mode are the main driver of erosion risk and pattern. This is because based on crop type the 

intensity of raindrops determines the amount of sediments that are transported by rainfall in 

Kibos-Miwani. Moreover, results of this study have shown that variations in environmental 

variables through time are studied through temporal remote sensing data to reveal changes in 

environmental services such as production and soil protection services. 
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 5.5. Impact of the results for the 
Kenyan sugarcane industry  

This chapter presents four main results obtained in this study and the expected impact of these 

results for the Kenyan sugar industry: 

Firstly, significant statistical sugarcane yield models have been obtained in this study at P>0.00. 

These statistical models will be improved each year by the introduction of a year and fraction 

area under sugarcane in the linear model. These models will address sugar Industry census needs 

such as: (i) Increased accuracy using real time remote sensing data. (ii) Reduced time in 

conducting sugarcane census by 50%. (iii) Reduced expenditure on sugarcane census by 

1.5 million Kenya shillings which if relieved from farmers’ levy, will improve their lives 

through subsidized farm inputs and consequently sugarcane productivity.  This is a paradox shift 

from the previous method which estimated yield using manual methods whose results were 

prejudiced with errors.  Information from sugarcane census is useful for effective planning of 

sugar industry operations. Production being a product of surface area and sugarcane yied, the 

sugarcane map is key in realizing effective planning. 

The sugarcane map was obtained using NDVI at the accuracy of 83%. Results have proved that 

time series of NDVI as measured by Landsat (decametric resolution) is important in 

classification of land cover in Western Kenya. By using NDVI, the Kenyan sugar industry will 

address their need for a sugarcane crop map and sugarcane production estimates. This is because 

NDVI is able to visualize locations of sugarcane fields for increased accuracy compared to the 

conventional methods currently being used. This mapping approach minimizes errors accrued 
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during physical methods of survey to increase accuracy is estimating sugarcane production. The 

sugarcane map, coupled with NDVI is also a decision support tool. This is because by knowing 

sugarcane fields, managers will use NDVI, for monitoring crop conditions by identifying critical 

stages of crop development that need the attention of experts for improved productivity. 

Cropping practices such as harvesting modes impact on soil fertility and hence productivity, 

necessitating the need for a harvest mode map.  

The sugarcane harvest mode map was produced using time series NDWI differences at an 

accuracy of 90%. NDWI was used because values for green and burnt harvest are significantly 

different. The sugar Industry needs this map to evaluate the impact of harvest modes on 

sugarcane productivity through time and develop sustainable measures for improved sugarcane 

productivity. The Kenya sugar industry may use these indices to characterize sugarcane 

landscapes, identify harvested fields, and determine harvest modes for effective planning and 

management of operations such as transportation and fertilizer supply at the zonal level.  

Seasonality of vegetation in the landscape is dependent on cropping practices and rainfall.  This 

study has evaluated soil erosion risk using seasoned NDVI in FuDSEM model to evaluate 

erosion sensitivity during different vegetative seasons. This information could contribute to the 

limited documentation on vegetative seasons and their implication on environmental services. A 

comparison of this model with RUSLE model has shown that that FuDSEM could be used to 

produce potential erosion risk maps with lower constraints on data input thanks to fuzzy 

approach. Moreover, our results are consistent with those of Valentin et al. (2005) who also 

found crop type a driver of soil erosion. Green harvest method investigated in this study avails 

vegetation cover on the landscape tremendously reducing erosion risk. Other studies have also 
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recommended methods such as use of perennial crops, zero tillage and terracing for sustainable 

management (Valentin et al., 2005; Okoba et al., 2007).    

The Kenya sugar Industry may use the harvest mode map and erosion risk information to 

develop tools dedicated to sustainable management by integrating data at the field, water shed, 

and mill management scales for enhanced productivity, profitability, and environmental 

considerations. If validated, FuDSEM model could be used by the industry to recommend soil 

conservation measures for sugarcane landscapes in Kenya based on severity of soil erosion risk 

in specific areas.  
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6. CONCLUSION AND 
 PERSPECTIVES 

 

6.1 Main research results 

The overall objective of this study was to examine the relationship between environmental 

services and the sugarcane landscapes in Western Kenya using remote sensing and a soil erosion 

model. The study investigated this objective through establishing (i) the relationship between 

remote sensing data and sugarcane yield at a regional scale, (ii) the role of remote sensing data 

in mapping crop management practices at landscape (local) scale; and (iii) the impact of 

sugarcane cultivation on soil erosion at landscape (local) scale. The relationship between remote 

sensing data and sugarcane yield at a regional scale has been achieved by using MODIS data to 

(1) develop an original method for normalized difference vegetation index (NDVI) time 

integration that takes into account the local cropping practices (length of the growing season); 

and (2) by analyzing the spatial and temporal dimensions of the yield-NDVI relationship and 

response of its slope to rainfall and sugarcane fraction. Sugarcane yield forecasting has been 

exemplified through spatial aggregation of weighted NDVI at eleven months, considering the 

unique agro-environmental conditions in each sugar management zone. The discrimination of 

the main agro-ecological zones (humid and sub humid) through spatial aggregation of yearly 

information has proved the potential of MODIS NDVI in exonerating the impact of 

environmental conditions on sugarcane production at regional scale.  Additionally, the positive 
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slope exemplified through precipitation marginal response (PMR) is an indicator of crop 

response to environmental variable, rainfall, and thus an implication for production as an 

environmental service to Kibos ecosystem. The negative slope presented on yield-NDVI slope 

with sugarcane fraction is an indicator of interdependence of available biomass and cropping 

practices (area under crop). Remote sensing data has been used to study these environmental 

effects on sugarcane production and also develop the yield estimation model at the regional 

scale.  

The role of remote sensing data in mapping crop management practices at landscape scale was 

achieved by using (i) MODIS and rainfall data to describe vegetative seasons and (ii) Landsat 

data to describe crop type and harvesting mode. MODIS data has exemplified a bimodal 

minimum and maximum vegetative seasons complementing the bimodal rainfall pattern in 

western Kenya with a one month time lag, an indicator of a multiple cropping system that is 

driven by rainfall in the area. This result is important in characterization of land cover and also 

in choice of images for simulating soil erosion risk. Landsat NDVI has shown great potential for 

detecting crop type, crop conditions (harvested or growing) and mapping sugarcane cropped 

areas for medium sized farms over 1 ha in Kibos-Miwani. Farms that are less than 1 ha are 

however difficult to map at this image scale (15 m - 30 m).  Landsat normalized difference water 

index (NDWI) has been used to develop an original method to characterize sugarcane harvest 

modes because its values for green and burnt harvest were significantly different. The sugarcane 

map prepared in this study will be used to provide precise acreages for increased accuracy in 

yield forecasting, while NDWI will be used in mapping sugarcane harvest modes.  

The impact of sugarcane cultivation on soil erosion has been investigated at local scale using 

fuzzy based dynamic soil erosion model (FuDSEM). Agronomic variables; crop type, rainfall, 
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slope and soil characteristics were input variables. Moderate slope sensitivity to erosion risk has 

been realized through the four vegetative seasons. Results have shown that sugarcane crop 

minimizes erosion risk during rainfall peaks and that the erosion pattern shown between 

neighboring pixels is due to management practices such as crop type (age, cycle) and harvest 

mode. This study attributes low erosion potential in Kibos-Miwani to continuous sugarcane 

cover in the landscape throughout the year. This study recommends validation of these results 

using insitu measurements. Satellite imagery has been able to characterize the spatial and 

temporal dynamics of Kibos-Miwani landscape by identifying relevant images to feed in the 

erosion model.  

 

6.2. Research perspectives 

The use of MODIS 250 m NDVI in the medium to small scale farms of Kenya has been limited 

at the zonal scale. There is need for consideration of available data to increase remote sensing 

strength in monitoring sugarcane crop. Further research is recommended by this study, to refine 

the zone scale to farm level. The issue of scale is suggested to minimize the influence of other 

crops and natural vegetation on NDVI extracted from sugarcane fields; and also to address site 

specific effects of varied crop management practices in the sugarcane landscape of western 

Kenya. Future Earth Observing satellite systems, such as Sentinel-2 (ESA), with decametric 

spatial resolution, and a high visiting frequency (10 days in 2015, and 5 days in 2016), will give 

access to farm level information. This satellite mission will also benefit for sugarcane mapping 

that is presently done using Landsat time series, with a resolution that is able to capture 

boundaries of nucleus fields, but not for small growers.  
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Additionally, the effect of crop residues on soil organic matter has been implied in this study. 

This study recommends experimental research to assess the effect of harvest mode on soil 

organic matter in Kibos-Miwani landscape to ascertain its environmental impact on spatially 

heterogeneous landscapes. The soil erosion sensitivity model in this study is a desk top solution. 

The study proposes a further study to validate this model for improved soil conservation 

measures that will improve soil quality and enhance sugarcane productivity. Moreover, a study 

to validate the presumed galleys in the simulation results will be important to recommend site 

specific conservation measures for that portion of the landscape. The effect of sugarcane root 

network on soil erosion risk has also been implied in this study. This study recommends 

research to assess the effect of sugarcane root network, tillage methods, terraces and 

agroforestry on soil erosion risk in the sugarcane growing landscape of Kenya for sustainable 

management.  

 

6.3. Operational perspectives (other 
environmental services) 

This research documents the use of remote sensing and dynamic soil erosion model to exemplify 

environmental services provided by sugarcane cropping practices in Western Kenya. The Kenya 

Sugar Research Foundation (KESREF) will implement results of this study in assessment of 

forecasting of crop yield, harvest modes and erosion risk at the field level in her hilly environs.  

Similarly, the sugar Industry will implement findings of this study for industrial and sustainable 

purposes. This is because the use of climatic information to predict sugarcane yield facilitates 

information on the influence of climatic conditions on crop production. Influence of rainfall 
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amounts on crop production is important in evaluating soil water balance that would inform 

irrigation rate in stressed crops. Additionally, investigation of soil organic matter in fields that 

are harvested by burnt and green harvest is important in order to find out its impact on sugarcane 

production and soil protection. 

Additionally, this study found that the multiple crop variety, planting and harvesting practice is 

the reason for a heterogeneous landscape that offers almost permanent mulch to the landscape. 

Sugarcane being a conservative crop in the world with a dense crop cover and root network 

offers a soil protection environmental service in the hilly sugarcane landscape of western Kenya. 

In the future, other environmental services offered by sugarcane such as: climate regulation, 

carbon sequestration and emission, clean air and biodiversity should also be studied. 
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Abstract: This study explored the suitability of the Normalized Difference Vegetation Index 

(NDVI) from the Moderate Resolution Imaging Spectrometer (MODIS) obtained for six 

sugar management zones, over nine years (2002–2010), to forecast sugarcane yield on an 

annual and zonal base. To take into account the characteristics of the sugarcane crop 

management (15-month cycle for a ratoon, accompanied with continuous harvest in Western 

Kenya), the temporal series of NDVI was normalized through an original weighting method 

that considered the growth period of the sugarcane crop (wNDVI), and correlated it with 

historical yield datasets. Results when using wNDVI were consistent with historical yield 

and significant at P-value = 0.001, while results when using traditional annual NDVI 

integrated over the calendar year were not significant. This correlation between yield and 

wNDVI is mainly drawn by the spatial dimension of the data set (R2 = 0.53, when all years 

are aggregated together), rather than by the temporal dimension of the data set (R2 = 0.1, 

when all zones are aggregated). A test on 2012 yield estimation with this model realized a 

RMSE less than 5 t·ha−1. Despite progress in the methodology through the weighted NDVI, 

and an extensive spatio-temporal analysis, this paper shows the difficulty in forecasting 

sugarcane yield on an annual base using current satellite low-resolution data. This is 

particularly true in the context of small scale farmers with fields measuring less than the size 

of MODIS 250 m pixel, and in the context of a 15-month crop cycle with no seasonal 

cropping calendar. Future satellite missions should permit monitoring of sugarcane yields 

using image resolutions that facilitate extraction of crop phenology from a group of 

individual plots 

Keywords: MODIS; NDVI; Environment; Sugarcane; Yield forecasting  
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1. Introduction 

Sugarcane (Saccharum Spp. Hybrids) is a graminae of the tribe of Andropogonae and 

Poaceae family. It is defined as a tropical semi perennial crop which is harvested through the 

manual system in Kenya at variable periods depending on the date of planting, variety, tiny 

climatic variations along the year and mill preparedness. Consequently, re-growth of sugarcane, 

known as ratooning, matures at different periods, introducing spatio-temporal variability in the 

sugarcane landscape. In Kenya where sugarcane is rain fed, this variability is exacerbated with 

an unspecified cropping calendar and diversification of the cropping system both at spatial 

(sugar management zone) and temporal (inter-annual) levels, presenting a heterogeneous 

sugarcane landscape. Sugarcane being the second largest contributor to Kenya’s agricultural 

growth saves the country in excess of USD 229,885,057 annually in foreign exchange, while 

contributing to poverty reduction and national development [1]. Knowledge of crop productivity 

is therefore necessary for proper, foresighted and informed planning for competitiveness in the 

sugar industry [2] and national development. 

   In Kenya, sugarcane yield is estimated using conventional approaches through biennial field 

surveys by millers and the Sugar Board, basing their methodology on visual physical assessment 

(VPA) [3]. In VPA, a stratified random sampling approach is used, considering 15% field 

coverage in each administrative sector of the zones. A monthly productivity index ranging 

between 0 and 5 is then applied to sample cane crop from the age of one month, while 

considering the parameters: (i) crop vigour, (ii) crop colour, (iii) crop density, (iv) weed status, 

pests and diseases at the time of yield assessment. The average scores are then computed against 

preset reference yields for each crop cycle with the assumption that the crop has been managed 
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under recommended standard guidelines [1]. The estimated yield is used by the Sugar Industry 

to project sugarcane production for the current and subsequent year. Although this method has 

been used since sugarcane was first grown in Kenya, accuracy of manual methods has been 

proven to introduce gross errors  in the results due to variability in time scale and fatigue [4]. 

This manual method assumes that the crop properties remain constant at the age of yield 

estimation till crop maturity at 14 to 16 months for ratoons, and 18 to 20 months for plant crop, 

respectively. Further, it is assumed that 15% of the sample is sufficient to represent crop 

conditions in the entire mill zone. This could only be true if the crop calendar is defined and not 

in a spatially heterogeneous landscape such as is the case in Kenya. Similarly, the method 

assumes that environmental variables such as rainfall distribution and amount will not change in 

the subsequent year. More so, the human eye is limited in its ability to discriminate colors of an 

object quantitatively, compared to multispectral systems [5]. Additionally, physical ground data 

collection has been proven to be time consuming and unreliable in its temporal scale [6, 7]. It is 

the subjectivity of the current traditional method for monitoring sugarcane production that 

creates most of the gap for a near real time method that will integrate timely environmental 

variables in estimating sugarcane yield through a remote sensing approach [4]. 

Remote sensing is the near real time method. The advantage of remote sensing over ground 

systems, such as that used by the millers, is that they cover wide areas explicitly, providing 

timely spatial and temporal data. Such temporal data has been commended for monitoring 

vegetation development in response to changes in the environment and in response to human 

management practices [7, 8, 9, 10]. These conditions vary over large areas due to diverse 

topography, soil type, rainfall distribution and management practices, to which sugarcane 

phenology and productivity is dependent [11]. Most vegetation indices have proven successful 
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in estimating crop yield and biomass [4]. The Normalized Difference Vegetation Index (NDVI) 

from remote sensing imagery for example, has been expansively used to determine crop 

phenology, biomass and productivity in spatial distribution [12, 13]. The quality of methods 

developed depends on the scale of study and on the crop management practices, which influence 

the temporal and spatial resolutions of the relevant data. The cost of satellite imagery, however, is 

high when fine resolution is required. Crop monitoring studies have therefore resolved this impasse 

by successfully using free low resolution images from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), SPOT-VEGETATION, or NOAA-AVHRR sensor data for crop 

studies [14].  

Recent studies have used low resolution imagery to estimate sugarcane yield production in 

different countries. In Brazil for example [15], 1 km SPOT-VEGETATION data was used, 

taking advantage of its daily temporal resolution and coupling it with meteorological data to 

monitor sugarcane development. Cropping seasons were successfully identified using the NDVI 

data and further facilitated classification of the data for analysis. In the three yield classes 

assessed (24–73 t·ha−1; 42–110 t·ha−1, and 74–85 t·ha−1), the yield predicted was consistent with 

the historical yield with accuracies of 8.3%, 66.7% and 86.5%, respectively. The low accuracy 

of the first class would be attributed to coarseness of the 1 km image that limits discrimination 

of individual phenology for plots that are smaller than the pixel size, a case similar to the small 

scale sugarcane farming community of Kenya. Accuracies for the second and third class were in 

the municipality areas, characterized with large farms such as the nucleus fields of Kenyan sugar 

mills that are under pure sugarcane stand. A similar study, [11] noted that neither average 

rainfall nor average MODIS NDVI was related to the average sugarcane yield of the farmers’ 

fields situated within the 5 km radius of the nine weather stations. On a larger scale, MODIS 
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NDVI had a positive correlation (R = 0.57) with yield when averaged across all nine 

management zones, but only for the rainy-season planting. In a different study [16], NOAA-

AVHRR data was utilized to develop and validate a model for forecasting crop yield in Pakistan. 

District data was then used to validate the model, resulting in a root mean square error of 

13.5 t·ha−1 for sugarcane yield. In their recommendations, actual daily sunshine hours, air 

temperature, and a crop map were argued to be indispensable for refinement of the model. 

A recent study on forecasting sugarcane crop season in Brazil using simple correlations 

between time series NDVI from AVHRR and an agro-climatic index on sugarcane yield, 

realized significant correlations (R = 0.69 to 0.79) after applying a cross correlation method on 

the datasets used [17]. In a different study on maize, [18] MODIS NDVI was used in Zimbabwe 

to realize strong relationships with the national maize production estimates after the data was 

adjusted to match onset of the rainy season. The strength of correlations in these two studies is 

attributed to normalization of the time lag in the climate and NDVI data through the methods 

used. It is inferred that normalization of satellite data through an appropriate method improves 

the strength of correlations and is appropriate in future studies. It is also important to note that a 

combination of satellite and climatic datasets such as those used in these studies utilizes newer 

methods in forecasting sugarcane productivity [17]. A similar study in Louisiana used thermal 

variables (Growing Degree Days accumulated from planting to sensing) to adjust in-field NDVI 

measurements, and to develop a sugarcane yield forecasting method [4]. They obtained a 

positive exponential correlation, with R2 improving from 0.20, when using unadjusted NDVI, to 

R2 = 0.46, when using adjusted NDVI. These authors argued that a weak correlation from 

application of the model was attributed to the spatial variability of sugarcane fields due to 

different crop ages and diverse environmental conditions in different locations.  
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In the agricultural landscape of Kenya, sugarcane crop exhibits extreme age differences 

alongside diversified subsistence cropping in different environmental conditions and is thus 

highly heterogeneous [19]. MODIS 250 m data has been used successfully to determine 

temporal dynamics of crops at local scales due to its good geometric and radiometric properties 

that make the data interoperable with other GIS datasets [20]. However, at MODIS 250 m 

resolution and in a small agriculture region such as in Kenya, the measured radiation is a 

mixture of different crops and natural vegetation [19]. It is therefore important to apply a 

method that will normalize data by removing time lag since this will decrease the effect of 

mixed crop-natural vegetation pixels in the satellite data used for yield forecasting. The effect of 

mixed pixels while developing a maize yield model using the land cover weighted NDVI rather 

than the traditional NDVI reduced the unknown variance by 26% [21]. It was argued that yield 

estimation using NDVI may vary during respective months of the crop growth because NDVI is 

reduced at the end of the rainy season, emphasising the need for careful consideration on time 

integration [11].  

The objective of this study was to test how time integrated Normalized Difference Vegetation 

Index data from MODIS 250 m imagery can be used for annual sugarcane yield assessment at 

the sugarcane mill management scales (zones) in Western Kenya. This objective is challenging, 

since sugarcane in this region is grown in fragmented fields scattered in highly variable 

environments with various land uses and land covers, soil types, and altitudes. For crop yield 

forecasting, the ideal approach would be to use crop-specific masks. However, with 

medium/coarse resolution (about 5–100 ha per pixel) imagery, identifying mono-cropped pixels 

is not always feasible. This is particularly true in low-producing regions and in regions with 

sparse crop distribution [14], such as Kenya. Therefore the method proposed here is based on 
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the concept that all vegetation in a region integrates the season’s cumulative growing conditions 

[22]. We first analysed the spatio-temporal variability of the yield-NDVI relationship, using the 

data set acquired in Western Kenya on six sugarcane zones covering nine years (2002–2010). 

We used linear models to test the effect of the time integration period of NDVI in relation to the 

annual yield estimation, and tested the effect of annual rainfall on sugarcane yield. We 

hypothesize that zones’ yield is influenced by cropping practices and environmental conditions 

at the zonal scale. 

 

2. Data and Methods 

2.1. Study Area  

The study area (Figure 1) is located within the western part of Kenya, comprising six sugar 

management zones that include: (i) Chemelil, Kibos and Muhoroni within the sub humid  

agro-ecological zone; and (ii) Mumias, Nzoia and Sony within the humid agro ecological zone 

of Kenya. These zones are located between longitudes 34.18°E, and 35.87°E, and latitudes 

1.25°N and 1.50°S, covering an area of 120,000 ha [23]. Mumias is the highest producer of 

sugar placed at 39% in 2011 [23]. The landscape of this area is characterized by a mosaic of 

hills and valleys, with altitudes ranging from 1,000 m (Kibos) to 1,600 m (Mumias and Nzoia), 

and 1,800 m (Chemelil), and slope rising between 8%, in the plains of Kibos zone, and 38%, in 

the hills of Chemelil zone. 
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Figure 38. Western Kenya sugar management zones (Source: Sugar mills). 

  

 
 
 

The topography influences the agro-ecological zones receiving an average of 1,400 mm and 

1,800 mm of rainfall in the sub humid and humid zones, respectively [24]. Rainfall in this area is 

bimodal [25] with a long rain season between March and July, with planting in March for food 

crops and April for sugarcane; and a short rain season in September to December with planting 

in September for all crops [26]. This variation in rainfall distribution influences an intensified 

cropping system with crop diversification and rotation of food crops and sugarcane age. Soils of 

the study area are dominantly black cotton cambisols in the low lands and sandy loamy acrisols 

in the highlands [27].  

Western KENYA 
sugar management 
zones  
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The location of the study area in different agro-climatic zones, diversified topography, soils 

types and cropping practices provides an ideal scenario to explore the relationship between 

sugarcane productivity, environmental variables, and management practices in Western Kenya. 

2.2. Data 

2.2.1. Satellite Data and Pre-Processing 

A complete 11-year time series (2002–2012) of the Surface Reflectance 8-Day L3 Global 

250m product (MOD09Q1) was downloaded through the online Data Pool at the NASA Land 

Processes Distributed Active Archive Center (LP DAAC) [28]. MOD09Q1 product provides 

bands 1 (red reflectance; 620–670 nm) and 2 (near infrared reflectance; 841–876 nm) at  

250-m resolution. Each MOD09Q1 pixel contains the ‘best possible observation’ during an 8-

day period as selected on the basis of high observation coverage, low view angle, the absence of 

clouds or cloud shadow, and aerosol loading. The accuracy of the version-5 MODIS/Terra 

Surface Reflectance products has been assessed over a widely distributed set of locations and 

time periods via several ground-truth and validation efforts, and thus ready for use in scientific 

publications. The red (R) and (NIR) reflectance data were used to compute the NDVI [29] for all 

the 460 images. 

In addition to the MODIS time series, a multispectral (Green, Red, and Near Infrared) 2.5 m 

SPOT image was acquired over Mumias in December 2011, This data was used to appraise land 

cover and use in different sectors of Mumias sugar zone in a 250 m grid (Figure 2), showing the 

large heterogeneity of the landscape at MODIS scale, and the impossibility to use a sugarcane 

crop mask on a satellite image at MODIS scale in the area. 
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2.2.2. Agronomic and Climatic Data  

The agronomic (yield and cropped area) and climatic data were obtained from the respective 

sugar mills. At the zonal scale, yearly cropped area (ha), estimated yield (tc·ha−1), and monthly 

rainfall data were obtained for the period 2002 to 2010. We also obtained yield data for the year 

2012 which was used for quantitative validation of the model. Crop area data are estimated by 

physical measurement of area that has been harvested or during land preparation. On the other 

hand, yearly yield is obtained using the Visual Physical Assessment method (as presented in the 

Introduction section).  

Rainfall data were recorded using 113 rain gauges distributed unequally among all the sugar 

zones. The rainfall data was cross tabulated to compute the annual mean for each zone for 

comparison with the annual yield. 
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Figure 2. (a) MODIS 250 m color composition of Mumias zone (sectors within the 

zone are delineated by a yellow line), and (b) subsets of a December 2011 SPOT 2.5 

m image on three sectors; the overlaying yellow grids correspond to the 250 m 

spatial resolution of MODIS pixels. 

 

2.3. Data Analysis 

2.3.1. Time-Integration of NDVI Values 

A thematic layer of the limit of the sugarcane growing mill zones was used to extract 8-day 

NDVI values for each zone. These NDVI values were then spatially aggregated to allow 

comparison with the mean annual yield, at the same scale. Generally, time integration of NDVI 

is done throughout the calendar year [2, 11, 18]. At the field scale, [10, 20] is considered a 

seasonal integration approach which utilized either the sowing or the harvesting date, while at 

                       
                        (a) MODIS 250 m color composition    
                         @ LP DAAC online data pool 

(b) SPOT 2.5 m color composition 
(@CNES 2011, Distribution Spot 
Image) 
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the regional scale, [4]  used growing degree days to compute in season NDVI for estimating 

yield and obtained good results. At regional scale in Portugal, [30] correlated yield of the current 

year with a 10-day NDVI data to develop a yield estimation model which explained 77%–88% 

of wine yield. At state scale in Brazil,  [31] used thermal time other than the calendar year and 

estimated sugarcane yield with a RMSE of 1.5 t/ha (around 2% of accuracy); however, they 

used a crop mask and selected sugarcane pixel purity above 95% for the establishment of the 

regressions.  

In this study therefore, we tested a new way of time integration in order to account for the 

local sugarcane cropping practices at zonal scale. In effect, since the yield is estimated on a 

calendar year base (harvest lasts from January to December), a ratoon crop growing from 

November 2009 to its harvest in January 2011—at the age of 15 months—accounts for the 2011 

annual yield data. Therefore, this complicates the yield prediction scenario where, in this case, 

the 2011 annual yield includes the yield of a crop that was almost nonexistent on the 2011 

satellite time series (except on the January image). It is argued that predicting yield in such small 

rain fed sugarcane fields is complicated since NDVI from all land uses declines at the end of the 

rainfall period [11] and requires a keen consideration of the integration period. In a similar case, 

a weighted land cover NDVI was used to account for the influence of other land uses on maize 

yield [21]. We therefore applied a weighting matrix over a period of time corresponding to the 

growing calendar, and not to the calendar year in order to take into account the active vegetative 

stages of the crop and minimize any shift in NDVI during sugarcane development [22]. To do 

this we chose two different periods of integration, (1) an 11-month period which corresponds to 

the approximate length of the growing cycle before maturation, and (2) a 15-month period 

which corresponds to the approximate length of the whole growing cycle. For both 
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configurations, we calculated a weight for each month corresponding to the probability of a 

sugarcane field to be harvested during the calendar year of yield estimations, and thus to be 

accounted for in the annual yield (Figure 3).  

Figure 3. Three sets of weights used to calculate time integration of monthly NDVI 

values for annual yield estimation (year n). The green line (between months 14 to 

26) corresponds to weights generally used to calculate the annual NDVI (the 

calendar year corresponding to the yield measurement). The blue and red lines 

correspond to weights that take into account the sugarcane cropping calendar (15 

months for the whole cycle, and 11 months for the growing period) in the NDVI 

time integration.  

 
Annual NDVI (NDVI) and weighted NDVI (wNDVI_15 and wNDVI_11) for each year was 

calculated according to Equation (1), with i equals to 15 and 11, respectively. The value 15 

corresponds to the length of the usual cropping cycle of the sugarcane (in months), while the 

value 11 corresponds to the length of the vegetative part (in months) which is mainly related to 

cane yield [10].  
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where, NDVIm is the value of the NDVI for month m, wm is a coefficient equal to the NDVI 

normalized weight (Figure 3), and i is the length of the time integration (in months). The sum of 

the wm coefficients is equal to 1. 

2.3.2. Spatio-Temporal Analysis  

The relationship between NDVI, wNDVI and the annual estimated yield was studied with a 

linear regression [20, 32] and exponential regressions [4] established through time and space 

using a one-tailed probability test. We then assessed the role of the environmental variables in 

the relation between yield and NDVI, by correlating the slope of the “yield-NDVI (wNDVI)” 

relationships with the rainfall, and with the sugarcane fraction in each respective zone. 

3. Results and Discussion 

3.1. Yield and Climatic Data Variability 

Table 1 demonstrates variable annual rainfall distribution within the six zones ranging 
between 1,421 mm and 1,869 mm. This rainfall groups the sugar zones into two climatic 
regions: the sub humid with less than 1,500 mm (Kibos, Chemelil and Muhoroni) and humid 
with about 1,800 mm or more (Sony, Mumias and Nzoia) agro-ecological zones (AEZ) 
respectively, both lying within the tropical climate of the country.  

 
Table 1. Summary of the agronomic and climate data used in the study: mean and standard deviation (in 
parenthesis) calculated over the 9-year period (2002–2010). 

 

 KIBOS MUMIAS CHEMELIL MUHORONI SONY NZOIA 

Rainfall (mm·yr−1) 
1,421 

(102) 
1,835 (186) 1,426 (263) 1,486 (214) 1,869 (221) 

1,763 

(252) 

Yield (t·ha−1) 71.1 (9.6) 75.6 (11.1) 62.6 (9.6) 63.9 (7.9) 80.1 (11.3) 75.0 (5.2) 

Sugarcane fraction (%) 32.2 (4.5) 48.7 (2.5) 38.8 (6.3) 50.5 (7.3) 33.3 (5.3) 22.2 (2.7) 
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Sugarcane grown in regions with less than 1,500 mm rainfall is recommended for 

supplemental irrigation [1]. The reason for higher yield in Kibos (71 t·ha−1), compared to the 

government owned Chemelil and Muhoroni sugar mills in the same AEZ whose yield is around 

63 t·ha−1 can be explained by better crop husbandry. Globally, yield in the humid AEZ 

(Mumias, Sony, and Nzoia) is higher (between 75 and 80 t·ha−1) than in the sub-humid AEZ. 

The yield in Sony (80 t·ha−1) is boosted by large scale farmers within the fertile highlands of 

Sony sugar zone.  

 

3.2. Relationship between Yield and NDVI  

When the whole data set (6 zones and 9 years) is used, the analysis shows that the annual 

NDVI is not strongly related to the sugarcane yield (p = 0.1; (Figure 4a). This finding is close to 

those who found no relationship between average NDVI and farmers’ yield [11] and; whose 

results showed low significance when correlating historical yield and NDVI at annual level (P = 

0.1) [2]. However, when adjusted NDVI (wNDVI) is used, the relationship is highly significant 

for wNDVI_11 (P = 0.001) (Figure 4c) and significant for wNDVI_15 (P = 0.01) (Figure 4b) 

with the R2 increasing from 0.01 to 0.12 and 0.13 respectively through both linear and 

exponential relationships. This result is in agreement with a study demonstrating that yield 

estimations based on metrics obtained a little after the peak of APAR can be done without 

seriously compromising performance [31]. However, the strength of these correlations is weak, 

justifying further analysis by this study on other factors that affect yield. 
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Figure 4. Relationship between (a) yield and annual NDVI, (b) yield and 

wNDVI_15, and (c) yield and wNDVI_11. 

 

 

 

 

 

 

  

 

 

 

 

 

                                            

 
 

When the whole dataset is aggregated over the whole period (2002–2010), at the zone level 

(spatial analysis), the correlation between yield and wNDVI is significant (Figure 5a) with R2 = 

0.53, P < 0.001; while when the whole dataset is aggregated over the six zones, at the year level 

(temporal analysis); there is no significant correlation between yield and wNDVI (Figure 5b). 

The good result obtained through the spatial analysis is due to different environmental variables 

exuded through rainfall distribution. The absence of significant results through the temporal 

analysis could be explained by (1) the difficulty to make coherent yield measurements over a 

(c) 

(b(a) 
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calendar year and wNDVI (considering the length of time sugarcane takes to mature), and (2) 

the sugarcane cover fraction changes during the 2002–2010 period (see standard deviation 

values of the fraction of sugarcane cropped area in each zone, Table 1). 

Figure 5. Variability with wNDVI_11 averaged (a) at zone level on the 2002–2010 

periods, and (b) at annual level on the six zones. 

 

 

 

 

 

 

      

 

 

3.3. Relationship between Yield and Rainfall 

In order to better understand the spatial and temporal variability of yield, we studied the 

relationship between yield and rainfall. When using all the data (6 zones * 9 years; Figure 6a), 

the relation between annual yield and rainfall was significant, but weak (R2 = 0.08; 

p = 0.03). Such a weak relationship has been attributed to the time lag between yield and rainfall 

because vegetation takes a considerable period to respond to soil moisture [25]. This effect is 

amplified in Western Kenya, where the annual yield is dependent on the rainfall of the previous 

year due to the length of the sugarcane cycle. On removal of the time lag through spatial and 

temporal averaging over the nine year data (6 zones*9 years; Figure 6b,c), this study showed a 

strong relationship as noted by other studies [4, 25] with R2 = 0.8 and p < 0.001 at the spatial 

level (Figure 6b). The relationship between yield and rainfall (Figure 6b) is stronger than the 

relationship between yield and wNDVI (Figure 5a) at the zone scale. This is because unlike 

(a) (b
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rainfall which is an environmental variable, wNDVI value integrates not only sugarcane area, 

but also other types of land covers that are in different proportions according to the zone.  

The temporal analysis of yield and rainfall shows no correlation between both variables  

(Figure 6c), because (1) rainfall is not the only yield driving factor, and (2) because annual 

rainfall should be integrated on a longer period and with different weights (as wNDVI) in order 

to take into account the particular cropping calendar of the sugarcane crop. These results are in 

agreement with a study that pointed out that rainfall amounts and pattern may not be a reliable 

predictor of yield [11]. 

Figure 6. Relationship between yield and rainfall using: (a) all the data, (b) the data 

aggregated at the zone scale (spatial analysis), and (c) the data aggregated at annual 

scale (temporal analysis).  
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3.4. Relationship between Yield-wNDVI Slope and Rainfall 

In order to better understand the main driving factors of the yield-wNDVI relationship, we 

correlated the slope of the relation between yield and wNDVI aggregated at the zone scale with 

the rainfall (Figure 7a), and with the fraction of sugarcane in each zone (Figure 7b). Results 

show a strong correlation with high significance at p < 0.001 in both cases.  

The sensitivity of the yield-wNDVI variations to each millimeter rainfall received in each 

management zone also called the Precipitation Marginal Response, or PMR [33], separates two 

groups of three zones geographically located in sub humid AEZ from those in the humid AEZ 

(Figure 7a). The ability to separate the two climatic regimes in this study therefore strengthens 

the ability to use wNDVI in forecasting crop yield. Results of this relationship were highly 

significant with R2 = 0.75; P = 0.001. The positive slope of this relationship (Figure 7a) 

indicates that the sensitivity of the yield to rainfall is higher than the sensitivity of the wNDVI to 

rainfall.  

The negative slope resulting from the relationship between yield-wNDVI slope and 

sugarcane fraction (Figure 7b) indicates that wNDVI is not only affected by the amount of 

rainfall received in the zone, but is also influenced from other surrounding vegetation cover [2] 

considering that sugarcane has larger biomass than the surrounding environment. 
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Figure 7. Relationship between the “yield-wNDVI” slope and (a) rainfall, and  

(b) sugarcane fraction, aggregated at the zone scale.  

 

 

 

 

 

 

 

 

 

 

3.5 A Quantitative Evaluation of the Model 

WNDVI_11 data for the year 2011 and 2012 was used to estimate the 2012 sugarcane yield 

(Table 2) using the model established at the zone scale (Figure 5a), in order to utilize data that is 

independent from the one used in development of this model.  

 

Table 2. Model validation using 2012 yield. 

 
We obtained a Root Mean Squared Error (RMSE) of 4.25 t·ha−1 when all the zones are 

considered. The worst yield estimation was realized in Mumias zone (+6.2 t·ha−1), where the 

land holdings are particularly small (up to 0.1 ha), and where the landscape is very 

Zone wNDVI_11 Model Yield(t·ha−1) Measured Yield (t·ha−1) Squared Error (t ·ha−1) 
Mumias 566.5 54.2 48 38.44 
Nzoia 602.8 68.4 64.7 13.69 

Chemelil 586.9 62.2 59 10.24 
Muhoroni 604.4 69.1 63.6 30.25 

Kibos 596.1 65.8 62.7 9.61 
Sony 610.5 71.5 69 6.25 

RMSE       4.25 
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heterogeneous (Figure 2). This result is similar to the low accuracy obtained for fields smaller 

than the pixel size and high accuracies for large fields [15]. When excluding Mumias zone, the 

RMSE decreases to 3.41 t·ha−1, which is in agreement in both cases, with the user specification 

of RMSE 5 t·ha−1. 

4. General Discussion and Conclusions 

This research has investigated the influence of cropping practices and environmental 

conditions on yield at zone scale through two approaches. Firstly, historical yield was related to 

annual NDVI with the assumption that yearly sugarcane yield is significantly correlated to 

annual NDVI. This hypothesis was rejected since the significance of this correlation was only 

achieved after adjusting the NDVI through time integration of the sugarcane growing period to 

remove the time lag in crop growth. The strength of this relationship was then enhanced when 

the data were aggregated over the whole period (2002–2010) at the zone level. Secondly, 

historical yield was related to rainfall and the strength of this relationship was low, although the 

correlation was of high significance. The relationship was equally strengthened through spatial 

aggregation and through rain use efficiency. The relation between yield and rainfall exists owing 

to the fact that sugarcane yield is significantly related to rainfall on removal of time lag at zone 

scale since crops take a considerable period to respond to rainfall.  

This study has shown that remote sensing technology together with environmental 

information has potential to be used to estimate crop yield and evaluate the impact of 

environmental conditions to crop production as opposed to physical methods. In effect, it has 

been reported that accuracy of physical methods such as visual physical approach (VPA) on 

yield estimation is minimized due to gross errors associated with fatigue, variability in 

assessment of natural phenomena using the naked human eye, and lack of consideration of 
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diverse environmental variables (such as rainfall) during the growth period of the cane crop [6]. 

The use of remote sensing data can highlight variations in environmental variables within 

respective zones, and this is uniquely evidenced by the separation of the two agro-ecological 

zones through spatial aggregation. Additionally, variations within and between the zones are 

influenced by environmental variables such as soil characteristics and rainfall distribution over 

different years. Our findings are in agreement with a study noting that rainfall was not the single 

determinant of crop yield in different environments, but rather, other factors such as soil 

characteristics, and other agricultural land use need to be included [8].  

In summary, our results are in agreement with most of the previous studies on this subject. 

Through this study, we have contributed knowledge to remote sensing fraternity (1) by 

developing an original method for NDVI time integration that takes into account the local 

cropping practices (length of the growing season), and (2) by analyzing the spatial and temporal 

dimensions of the yield-NDVI relationship and response of its slope to rainfall. Sugarcane yield 

forecasting has been exemplified through spatial aggregation of weighted NDVI. The 

information presented in this study is useful for proper, foresighted and informed planning in the 

Kenya’s Sugar Industry at the zone management scale. This is because the information explains 

the influence of environmental conditions on sugarcane production, thus providing knowledge 

for monitoring sugarcane productivity at the zone scale. 

Further research is recommended by this study, to refine the zone scale to farm level. The 

issue of scale is suggested to minimize the influence of other land cover on NDVI extracted 

from sugarcane fields. Future Earth Observing satellite systems, such as Sentinel-2 (ESA), with 

decametric spatial resolution, and a high visiting frequency, will give access to farm level 

information. 
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