

M. Christina¹,

G. Le Maire¹, J.P. Laclau^{1,2},

J.L. Stape³, Y. Nouvellon^{1,4}

1 CIRAD, Montpellier, France

2 UNESP, Botucatu, Brazil

3 NCSU, Raleigh, USA

4 USP, Piracicaba, Brazil

Introduction: Eucalyptus plantations in Brazil

30m height at 6 years

- \rightarrow Among the most productive plantation in the world (Gross Primary Production (GPP) > 3.5 kgC/m²/y)
- → Considerable use of water (Transpiration (TR) ~ total rainfall (> 1500 mm/y) after canopy closure)

Introduction: Understanding the processes controlling water and carbon exchanges with atmosphere at the **tree scale**

Uncertainty coming from the variability of the ecosystem characteristics

Objectives

- → To gain insight into the temporal and spatial variability of tree GPP and transpiration in *Eucalyptus* plantation
- → To quantify the influence of climate, biological drivers and competition on the daily variability of tree GPP and transpiration through process-based modeling
- → To provide simple predictive model of GPP and transpiration at the tree scale

Temporal and spatial variability of tree GPP and transpiration in Eucalyptus plantation

Study site

Site: EUFLUX Itatinga-SP, Brazil

200ha E. grandis plantations

Continuous eddy-covariance measurements

Process-based modeling

Site: EUFLUX Itatinga-SP, Brazil

200ha E. grandis plantations

Validation at the stand scale

- -Latent heat flux over the first 3 years after planting
- SWC down to 10m depth over the first 3 years
- Light interception (Gap fraction)

MAESPA model (Duursma & Medlyn 2012, Wang & Jarvis 1990)

A model coupling water and carbon balances at the tree scale

Sources of model parameter variability in clonal Eucalyptus plantation

Variability with tree age (ex plant conductivity)

y 20 - 10 - 10 - 10 - 20 30 40

MAESPA

oresentation

Variability with tree size (ex Leaf angle)

Variability with crown position (ex Jmax)

A model requiring a large set of parameters

Tree GPP and transpiration variability in clonal *Eucalyptus* plantation, predicted by the MAESPA model

Impact of parameters variability on GPP and transpiration predictions, First observations

→ Do we have to take into account the natural variability of parameters?

Ex: Variation in GPP if we do not take into account the variability of photosynthetical parameters

- → GPP and transpiration predictions are highly variable depending on the variability of climate and biological drivers
- → Some parameters variability seems to have a higher influence than others

But:

→ How can we quantify their influence ? How do they interact ?

Influence of climate, biological drivers and competition on the daily variability of tree GPP and transpiration through process-based modeling

Construction of random *Eucalyptus* plantations

→ Sampling of 1000 random design: Latin Hypercube method

Building of a polynomial meta-model for daily predictions

- → Approximation of a complex model with a simple one
- → Use of aggregated variables in place of complexe variables

M. Christina, Salt Lake City, October 2014

10 parameters

Sensitivity analysis of the meta-model 2, for transpiration

- → Use of Sobol indices to rank the parameters based on the model sensitivity
- → Possible approach to simplify the model

Sensitivity analysis of the meta-model 2, for transpiration

- → Sensitivity for a group of parameters
- → To distinguish climate, biological drivers and competition effects

Sensitivity analysis of the meta-model 2, for GPP

Simple predictive model of GPP and transpiration at the tree scale

Simplified meta-model validation with sapflow measurements

Simplification based on Sobol indice values

Site: Rainfall exclusion SP, Brazil

3ha *E. grandis* plantations 10 trees sap flux measurements over one year

M. Christina, S

Simplified meta-model validation with sapflow measurements

Simplification based on Sobol indice values

Site: Rainfall exclusion SP, Brazil

3ha *E. grandis* plantations 10 trees sap flux measurements over one year

M. Christina, S

CONCLUSION

- → Tree transpiration and gross photosynthesis are highly variable depending on tree traits, morphology and climate
- → Tree transpiration is driven by inter tree competition and the interaction between meteorology and tree traits in *Eucalyptus* plantations.
- → Tree GPP is essentially controlled by inter-tree competition and morphological tree traits.
- → Meta-modeling approaches provide good estimates of GPP and transpiration, at the tree and the stand scales, which could be useful for gap filling or showing tendencies.

Applications:

For example, use of simulated WUE and LUE for individual trees to optimize planting designs in mixed-species stands.

