SCGLR: An \texttt{R} package for generalized linear regression on supervised components.

Catherine Trottier & Guillaume Cornu
with Frédéric Mortier & Xavier Bry

\textit{3èmes Rencontres R}
Montpellier
25-27 juin 2014
⇒ Question: What in X may predict what in Y?

→ Approach: Dimension reduction by construction of components
Collinearities:

to avoid **overfitting**, search for **components**. Components must:
- capture enough variance in X,
- model and predict y.

Several components:

to avoid **redundancy**, search for uncorrelation.

→ constraint of construction: **orthogonality**.

Multiple y:

same components,

but each y with its **own regression coefficients**.

Exponential family distributed

→ **generalized linear regression**.
• **First component** is a *compromise* between the direction of X that best predicts y and the first principal component (PC) of X.

 \rightarrow *Criterion:* \(\max_{\|u\|^2=1} [\text{cov}(y, Xu)] \)

\[
\max_{\|u\|^2=1} \left[\sqrt{\text{var}(y)} \sqrt{\text{var}(Xu)} \text{corr}(y, Xu) \right]
\]

 \rightarrow *Program to solve:* \(P_1 : \max_{\|u\|^2=1} [< y, Xu >_W] \)

• **Further components:** W-orthogonality of components is ensured using the part of X that is not yet used, i.e. the residuals of X regressed on previous components.
• **First component** can be obtained using several equivalent programs:

\[P_2 : \max_{\|u\|^2,\|v\|^2=1} [< Xu, Yv >_W] \]

\[P_3 : \max_{\|u\|^2=1} \left[\sum_{k=1}^{q} < Xu, y_k^k >^2_W \right] \]

\[P_3 \] is adapted to the case of multiple weighting:

\[P_4 : \max_{\|u\|^2=1} \left[\sum_{k=1}^{q} < Xu, y_k^k >^2_W \right] \]

\[\Rightarrow \text{Solution: eigenvector associated to largest eigenvalue of:} \]

\[A = X'\Omega X \text{ with } \Omega = \sum_{k=1}^{q} W_k y_k^k y_k'^k W_k \]

• **Further components**: idem, subject to constraint of orthogonality to previous components.
Multiple GLM with common predictor

In the GLM, linear predictors are constrained to be collinear to one another:

\[\forall k = 1, q : \eta^k = X\beta_k + T\delta_k = X\gamma_k u + T\delta_k \]

\[\rightarrow \text{modified Fisher Scoring Algorithm:} \]

\(u \) and \(\gamma = (\gamma_k)_{k=1,q} \) estimated iterating an alternated least squares two steps sequence:

(1) Given \(\gamma \), working data \((z^k)_k \) is regressed on matrix \([\gamma \otimes X, 1_q \otimes T] \) with respect to working matrix \(W = \text{diag}[W_k]_k \)

\[\rightarrow \text{coefficient vectors } \hat{u}, \hat{\delta} = (\hat{\delta}_k)_k \]

\[\rightarrow \hat{u} \text{ made unit norm} \quad \rightarrow \text{updated } u \]

(2) Given \(Xu \), each working vector \(z^k \) is regressed on \([Xu, T] \) with respect to working matrix \(W_k \)

\[\rightarrow \text{updated } \gamma_k, \delta_k \]
Step t of the FSA:

$$
\min_{\gamma, u: u'u=1} \left[\sum_k \|z^k[t] - X\gamma_k u\|^2_{W_k[t]} \right] \\
\iff \min_{u: u'u=1} \left[\sum_k \|z^k[t] - \Pi X u z^k[t]\|^2_{W_k[t]} \right] \\
\iff \max_{u: u'u=1} \left[\sum_k \|z^k[t]\|^2_{W_k[t]} \cos^2_{W_k[t]} (z^k[t], Xu) \right]
$$

is replaced by: $$
\max_{u: u'u=1} \left[\sum_k \|z^k[t]\|^2_{W_k[t]} \cos^2_{W_k[t]} (z^k[t], Xu) \|Xu\|^2_{W_k[t]} \right]
$$
equivalent to:

$$
\max_{u: u'u=1} \left[\sum_k <z^k[t], Xu>^2_{W_k[t]} \right]
$$

= local extended PLS2

\implies Solution: eigenvector associated to largest eigenvalue of:

$$
A = X' \Omega^{[t]} X \text{ with } \Omega^{[t]} = \sum_{k=1}^q W_k^{[t]} z^k[t] z'^k[t] W_k^{[t]}
$$
• Tuning the attraction of components towards principal components:

\[A_s = (X'WX)^sA \]

The larger the value of \(s \), the closer the components to PC’s

\[\text{if } s = +\infty, \text{ SCGLR components } = \text{ PC’s}. \]

• Choice of the number of components:

Cross-validation subsampling \(\rightarrow \) prediction error

\(\rightarrow \) model selection
Functions and methods

1. **Main functions**
 - scglr()
 - scglrCrossVal()

2. **Utility functions**
 - multivariateFormula()
 - multivariateGlm()
 - infoCriterion()

3. **Methods**
 - print()
 - summary()
 - barplot()
 - plot()
 - pairs()

'genus' sample dataset

1. Samples: 1000 plots (8 by 8 km laid on a grid)
2. Y: abundance of 27 common tree genera in the tropical forest
3. X: 40 environmental variables
First Example, known number of components

Model building

```r
> library(SCGLR)
> # load sample data
data(genus)
> # get variable names from dataset
n <- names(genus)
y n <- n[grepl("\^gen", n)]       # Y <- names that begins with "gen"
x n <- n[-grepl("\^gen", n)]     # X <- remaining names
> # remove "geology" and "surface" from nx
> # as surface is offset and we want to use geology as additional covariate
nx <- nx[!nx %in% c("geology", "surface")]
> # define family
fam <- rep("poisson", length(ny))
> # build multivariate formula
> # we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny, c(nx, "I(lat*lon)"), c("geology"))
```

form is a Formula object:

\[y_1 + y_2 + ... \sim x_1 + x_2 + ... \mid t_1 + \]
First Example, known number of components

Model fitting

```r
> genus.scglr <- scglr(formula=form, data = genus, family=fam, K=2, 
+ offset=genus$surface)
> str(genus.scglr, max.level=1)
```

List of 11
$ call : language scglr(formula = form, data = genus, family = fam, K = 2, offset = genus$surface)
$ u : 'data.frame': 46 obs. of 2 variables:
$ comp : 'data.frame': 1000 obs. of 2 variables:
$ compr : 'data.frame': 1000 obs. of 2 variables:
$ gamma : List of 27
$ beta : 'data.frame': 51 obs. of 27 variables:
$ lin.pred: 'data.frame': 1000 obs. of 27 variables:
$ xFactors: 'data.frame': 1000 obs. of 1 variable:
$ xNumeric: 'data.frame': 1000 obs. of 40 variables:
$ inertia : Named num [1:2] 0.227 0.315
 ..- attr(*, "names")= chr [1:2] "cr1" "cr2"
$ deviance: Named num [1:27] 2307 2790 1632 1479 1468 ...
 ..- attr(*, "names")= chr [1:27] "gen1" "gen2" "gen3" "gen4" ...
 - attr(*, "class")= chr "SCGLR"
First Example, known number of components

Graphics outputs

```r
> barplot(genus.scglr)
```

```r
> plot(genus.scglr, style="simple, threshold")
```
Second example, unknown number of components
Cross-validation

```r
genus.cv <- scglrCrossVal(formula=form, data=genus, family=fam, K=12,
                          + offset=genus$surface)

mean.crit <- t(apply(genus.cv, 1, function(x) x/mean(x)))
mean.crit <- apply(mean.crit, 2, mean)
K.cv <- which.min(mean.crit)-1
cat("Best number of components: ", K.cv)
```

Best number of components: 8
Second example, unknown number of components

Fitting and pairs-Plot

> genus.scglr <- scglr(formula=form, data=genus, family=fam, K=K.cv, + offset=genus$surface)
> pairs(genus.scglr, components=c(1:3,5), style="simple,threshold")

C. Trottier, G. Cornu, F. Mortier, X. Bry

A new R package for SCGLR

June 2014 14 / 16
Ongoing works

SCGLR 1.3 version, soon on CRAN
- with new alternate optimization algorithms: Eigen vector and Iterative Normalized Gradient
- Enhancements for plot customization

SCGLR 2 version, in progress
- Multiple explanatory theme support
- New distribution families (Negative-Binomial, Exponential, Inverse Gaussian)