Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty

Carnes Jason, Anupama Atashi, Balmer Olivier, Jackson Andrew, Lewis Michael, Brown Rob, Cestari Igor, Desquesnes Marc, Gendrin Claire, Hertz-Fowler Christiane, Imamura Hideo, Ivens Alasdair, Koreny Ludek, Lai De-Hua, MacLeod Annette, McDermott Suzanne M., Merritt Chris, Monnerat Severine, Moon Wonjong, Myler Peter, Phan Isabelle, Ramasamy Gowthaman, Sivam Dhileep, Lun Zhao-Rong, Lukes Julius, Stuart Ken, Schnaufer Achim. 2015. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Neglected Tropical Diseases, 9 (1):e3404, 21 p.

Journal article ; Article de revue à facteur d'impact Revue en libre accès total
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (1MB) | Preview

Url - jeu de données : / Url - jeu de données :

Quartile : Q1, Sujet : TROPICAL MEDICINE / Quartile : Q1, Sujet : PARASITOLOGY

Abstract : Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase c subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei. (Résumé d'auteur)

Mots-clés Agrovoc : Trypanosoma evansi, Trypanosoma brucei, Génome, Phylogénie, Marqueur génétique, Microsatellite, Séquence nucléotidique

Mots-clés complémentaires : Séquencage

Classification Agris : L72 - Pests of animals

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Carnes Jason, Seattle Biomedical Research Institute (USA)
  • Anupama Atashi, Seattle Biomedical Research Institute (USA)
  • Balmer Olivier, ITS (CHE)
  • Jackson Andrew, University of Liverpool (GBR)
  • Lewis Michael, LSHTM (GBR)
  • Brown Rob, Seattle Biomedical Research Institute (USA)
  • Cestari Igor, Seattle Biomedical Research Institute (USA)
  • Desquesnes Marc, CIRAD-BIOS-UMR INTERTRYP (THA) ORCID: 0000-0002-7665-2422
  • Gendrin Claire, Seattle Biomedical Research Institute (USA)
  • Hertz-Fowler Christiane, University of Liverpool (GBR)
  • Imamura Hideo, Institute of Tropical Medicine (BEL)
  • Ivens Alasdair, University of Edinburgh (GBR)
  • Koreny Ludek, University of South Bohemia (CZE)
  • Lai De-Hua, University of South Bohemia (CZE)
  • MacLeod Annette, University of Glasgow (GBR)
  • McDermott Suzanne M., Seattle Biomedical Research Institute (USA)
  • Merritt Chris, Seattle Biomedical Research Institute (USA)
  • Monnerat Severine, Seattle Biomedical Research Institute (USA)
  • Moon Wonjong, Seattle Biomedical Research Institute (USA)
  • Myler Peter, Seattle Biomedical Research Institute (USA)
  • Phan Isabelle, Seattle Biomedical Research Institute (USA)
  • Ramasamy Gowthaman, Seattle Biomedical Research Institute (USA)
  • Sivam Dhileep, Seattle Biomedical Research Institute (USA)
  • Lun Zhao-Rong, Sun Yat-Sen University (CHN)
  • Lukes Julius, University of South Bohemia (CZE)
  • Stuart Ken, Seattle Biomedical Research Institute (USA)
  • Schnaufer Achim, University of Edinburgh (GBR)

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-26 ]