

Integrating GHG dynamics in biomass-based products LCA

Anthony Benoist Dominique Dron

Chair 'New Strategies for Energy'
Center for Energy and Processes
Ecole des Mines ParisTech
Paris, France

Life Cycle Management 2009 LCM and Resources – Energy / Carbon 7th of September 2009

Introduction (1)

- Time dimension is a crucial element of the climate change challenge
 - Inertial phenomenon
 - GHG lifetimes, from years to centuries
- Influential conventions
 - GWP calculations: cut-off of GHG radiative effects after a given period of time
 - IPCC: 20, 100 or 500 yrs
 - CO₂ valuation methods
 - Marginal damage costs: discount rate
 - Marginal abatement costs: emissions reduction scenario

Life Cycle Management 2009

Introduction (2)

- LCAs deal with different timescales
- Classical industrial products LCA
 - Production impact
 Generally proportional to the FU
 Energy consumption, ...
 - Facilities impact
 Equipments and buildings

- Facilities impact shared out over lifespans (usually 20 years), no discount rate
- Generally negligible

- GHG fluxes implied by biomass production
 - Recurrent
 Savings from fossil materials substitution
 - Occasional
 Deforestation
 - Extended (over decades)
 Carbon sequestration or emission from soils
 - Same assumptions
 - Negligible?

Introduction (3)

- Should we weight CO₂ emissions to handle such different timescales?
- Should we answer the question whether it is preferable to save 3 tCO₂ now or 5 tCO₂ in 10 years? or 50 years?..

We should try...

- Presentation outline
 - Definition of dynamic Global Warming Potentials
 - Application in two case studies

Standard GWP definition

GWP definition from the IPCC:

$$GWP_{i} = \frac{\int_{0}^{T_{H}} a_{i} \cdot C_{i}(t) dt}{\int_{0}^{T_{H}} a_{CO_{2}} \cdot C_{CO_{2}}(t) dt}$$

- With:
 - T_H, time horizon (usually 20, 100 or 500 years)
 - a_i, radiative efficiency of component i (W/m²/ppm or W/m²/ppb)
 - C_i(t), time-dependent abundance of component i in the atmosphere after a pulse emission
- Assumptions for dynamic GWP calculations: a_i as constants, C_i(t) as independent of the emission year

Life Cycle Management 2009

Dynamic GWP (1)

Life Cycle Management 2009

LCM and Resources – Energy / Carbon

6

Dynamic GWP (2)

Dynamic GWP (kgCO_{2-eq} / kg_i), T_H = 100 yrs

 Is it preferable to save 3 tCO₂ now or 5 in 10 years? And what about 5 in 50 years?

Life Cycle Management 2009

- $3 \text{ tCO}_2 \text{ now are } 3 \text{ x } 1 = 3 \text{ tCO}_{2\text{-eq}}$
- 5 tCO₂ in 10 years are 5 x 0.92 = 4.6 tCO_{2-eq}
- 5 tCO₂ in 50 years are 5 x 0.59 = 2.9 tCO_{2-eq}

First case study (1)

Biofuel LCA involving a land-use change

1 ha of agricultural land
Grassland

Oil refinery
Gasoline: X + 70 GJ

System B

- LCI data
 - Biofuel emissions: 32 gCO₂, 0.07 gCH₄ and 0.06 gN₂O / MJ
 - Gasoline emissions: 83.9 gCO₂ / MJ (JRC, 2007)
 - Land-use change, in French conditions:
 92 ± 12 tCO_{2-eq} / ha in 50-60 years

(INRA, 2002)

First case study (2)

- Weighted approach over 100 yrs:
 - Saving of 6.5 gCO_{2-eq} / MJ

- Classical approaches:
 - LUC impact not integrated into LCA result
 - Saving of 33.2 gCO_{2-eq} / MJ but GHG payback time of 39 yrs
 - LUC impact shared out over:
 - 20 yrs: emission of -32.3 gCO_{2-eq} / MJ
 - 50 yrs: saving of 7.0 gCO_{2-eq} / MJ
 - 100 yrs: saving of 20.1 gCO_{2-eq} / MJ

9

Second case study (1)

- Carbon sequestration credit of wood-based materials
- Issues about wood as a building material
 - Generally lower GHG emissions due to production (PRESCO, 2005)
 - 0.22 0.32 kgCO_{2-eq} / kg of brick
 - 0.08 0.13 kgCO_{2-eq} / kg of concrete
 - $< 0.15 \text{ kgCO}_{2-eq} / \text{kg of wood}$
 - Poorer thermal characteristics
 - Sequestration effect due to carbon storage?
- Assumptions:
 - CO₂ uptake by cellulose due to photosynthesis:
 1.85 kgCO₂ / kg
 - Embodied CO₂ is released to the atmosphere at the end of the material lifespan

Second case study (2)

Results

Material lifespan (years)	10	20	30	40	50	60	70	80	90	100 and more
Carbon sequestration credit (kgCO _{2-eq} / kg)	0.14	0.29	0.44	0.60	0.76	0.93	1.12	1.32	1.56	1.85

Conclusion

- Dynamic GWP applications
 - Relevant assessments of emissions scenarios
 - First case study: biofuel LCA involving a land-use change
 - To be integrated in prospective works comparing different scenarios
 - Second case study: carbon sequestration credit of wood-based materials
 - Credit figures usable to complete existing LCI databases
- Slow or delayed emissions from biomass must be taken into account for relevant sustainability assessments
- GHG emissions weighting is helpful to consider GHG dynamics
 - Soil carbon changes, sequestration effect of carbon sinks
 - But also technical improvements, learning curves, resources scarcity, ...
- Suggested weighting method in line with IPCC calculations
 - Preliminary results improvable with IPCC emissions scenarios data

Life Cycle Management 2009

Thank you for your attention!

Contact:

anthony.benoist@mines-paristech.fr

