ВЕТЕРИНАРИЯ

ФЫЛЫМИ-ТЭЖІРИБЕ ЖУРНАЛЫ / НАУЧНО-ПРАКТИЧЕСКИЙ ЖУРНАЛ / SCIENTIFIC AND PRACTICAL JOURNAL

ISOCARD ҚОФАМЫНЫҢ
«ЖІБЕК ЖОЛЫ ТҮЙЕЛЕРІ:
ТҰРАҚТЫ ДАМУДА
КАМЕЛИДТЕРДІ ЗЕРТТЕУ»
4ШІ КОНФЕРЕНЦИЯСЫ

4TH CONFERENCE OF ISOCARD
"SILK ROAD CAMEL:
THE CAMELIDS, MAIN STAKES
FOR SUSTAINABLE DEVELOPMENT"

4АЯ КОНФЕРЕНЦИЯ ISOCARD
«ВЕРБЛЮДЫ ШЕЛКОВОГО ПУТИ:
ИССЛЕДОВАНИЯ КАМЕЛИДОВ
ДЛЯ УСТОЙЧИВОГО РАЗВИТИЯ»
PROCEEDINGS
of 4th Conference of ISOCARD
“Silk Road Camel: The Camelids, Main Stakes For Sustainable Development”
June 8-12, 2015 Almaty, Kazakhstan

МАТЕРИАЛЫ
4-ой конференции ISOCARD
“Верблюды шелкового пути: исследования камелидов для устойчивого развития ”
8-12 июня, 2015 Алматы, Казахстан
SESSION 2. THE PRODUCTION AND PRODUCTS OF CAMELIDS

EFFECT OF SLAUGHTER SEASON ON FATTY ACIDS COMPOSITION OF DESERT CAMEL MEAT (CAMELUS DROMEDARIUS)

Abdelhadi O.M.A. 1, Babiker S.A. 2, Bouchart D. 3, Hocquette J.F. 4, Faye B. 5
1 Dept. of Animal Production, Faculty of Natural Resources & Environmental Studies, University of Kordofan, P.O. Box: 716, Khartoum, Sudan, abusin9112@yahoo.com; 2 Dept. Meat Production, Faculty of Animal Production, University of Khartoum, Sudan; 3 INRA, UR1213, Herbivore Research Unit, 63122 Theix, France; 4CIRAD, UR 18, Campus International de Baillarguet, 34398 Montpellier cedex 5, France.

Abstract

The study aimed to study the effect of slaughter season on fatty acids composition of camel Longissimus thoracis muscle. Desert camel calves (n=30) were fattened by local camel herders in Sudan and slaughtered in different seasons of the year: winter, summer and autumn (ten camels each). The average of total lipids of the three seasons was 11.7 g/100g fresh muscle, showed no differences among seasons. Camel LT muscle contained 52.2% SFA, 35.8% MUFA, 11.6 PUFA and 0.5% CLA, respectively. Slaughter season influenced the total MUFA which found high in summer compared to other seasons. As well, the ratio of 18:2 n-6/18:3 n-3, n-6/n-3 as well as UFA/SFA were influenced by slaughter season (P<0.05). CLA content and the percentages of trans11, cis9 18:2 isomer are relatively high, while n-6/n-3 ratio was within the recommended values for the human diet which indicated that camel LT muscle has a high nutritional value throughout the year.

Key words: lipids, desert camel, fatty acids, slaughter season

Introduction

Camel population in Sudan estimated by 4.7million heads (1) raised on pasture or fattened for short finishing periods. The demand for camel meat appears to be increasing recently due to health reasons, as they produce meat with relatively low fat (2, 3, 4 and 5) in addition to low price compared to other species. Fatty acids profiles affect sensory attributes of meat such as flavour and juiciness (6).

Recently, nutritionists have focused on PUFA which is relatively high in camel meat in comparison to beef (4) and sheep (7). The balance in the diet between n-3 PUFA formed from alpha-linolenic acid (18:3) and n-6 PUFA formed from linoleic acid (18:2) (8) which is a risk factor in cancers and coronary heart disease, especially the formation of blood clots leading to heart attack (9). Limited reports are available on fatty acid composition in camel meat in Sudan (10). Therefore, there is a need to assess fatty acids composition and their seasonal variations in camel meat.
The objective of the current study was to investigate the effect of slaughter season on lipids and fatty acids composition of longissimus thoracis (LT) muscle from Sudanese desert camel (Camelus dromedarius).

Materials and methods
Thirty intact males, 2-3 years old of the one humped desert camels from Sudan were used for the purpose of the study. The animals were fattened by the herders on concentrated diet (21.4% crude protein and 11.8 Mj/kg ME) and Groundnut hay (Arachis hypogea) approximately 2 kg/ day (12.2% crude protein and 11.2 Mj/kg ME), Table 1. They were slaughtered at each season: winter, summer and autumn (ten camels per season) following the normal procedure in the abattoirs. Further details about the animals and sample collection have been reported previously (11). Samples from Longissimus thoracis muscle (L7-L8) (LT) were stored in plastic bags at -18° C until analysis.

Total lipid and fatty acid analysis were performed according to the standard method described by Folch (12) to determine saturated, monounsaturated and poly unsaturated fatty acids.

Results and discussions
Saturated fatty acids
Total saturated fatty acids (SFA) constituted 52.2% of total fatty acids which was lower than the values reported in LT muscle (13 and 14) of one humped camel (51.5 and 53%). In all the studied samples, palmitic acid (16:0) was the most abundant fatty acid among SFA during all seasons followed by Stearic acid (18:0); together they comprised 80.6 % of total SFA, however low concentration of Stearic acid was found (7.7%) in one humped camels (13). Furthermore, slightly high values of Palmitic and low values of stearic in bovine LT muscle fed on grains (16). No significant effect of slaughter season on palmitic and stearic acid in bovine LD muscle (17). Slaughter season significantly affected stearic acid which was higher in autumn compared to winter and summer (21.2 vs. 19.4 and 18.5 %), respectively while no differences were found in palmitic acid. Furthermore, season did not influence Myristic acid (14:0) which was 5.2% (average of three seasons) which was higher than reported earlier 3.1% (14). Myristic acid was not realized in previous studies (21) and reported in low levels compared to our results (17).

Monounsaturated fatty acids
The total MUFA and cis MUFA were significantly high in summer compared to other seasons (P<0.05). No significant differences were found in the 18:1 trans isomers (9, 10+11 and 12) among slaughter seasons although high levels in winter and summer observed compared to autumn. Olic acid (18:1 9+10 cis) was the most concentrated MUFA among seasons (25.2%) followed by (3.3%) palmitoleic acid (16:1 Δ 9 cis), comprising together 76.3% of the total MUFA. In contrast high levels of oleic acid (18:1) in camel LT muscle reported previously (13 and 14). Slaughter season significantly influenced (P<0.05) 18:1 delta 11 cis with level in winter being higher (2.24%) than in summer and autumn (2.2 and 1.9%). The concentration of the 18:1 trans isomers remained stable and could be due to the similar hay intake among seasons. However, the C18:1 trans isomers are ruminal biohydrogenation product of C18 PUFA associated with high intake of grass and quality that supplied PUFA substrates (22).

Polyunsaturated fatty acids
Linoleic acid was the major fatty acid in the studied samples constituting 50.9% (P>0.05) of the total PUFA followed by arachidonic acid (ARA; 20:4 n-6) 17.2%. Similar trend was found in bovine lean meat (23) and in camel LT muscle (13 and 14). The average of ARA was 1.9% which was higher than the values reported in camels (1.2%). Alpha-linolenic acid [18:3 n−3, All-cis] significantly affected by the slaughter season (P<0.05). It was 2 folds higher in winter than in autumn and summer [1.1 vs. 0.5 and 0.6%]. Eicosapentaenoic acid (EPA; 20:5, n−3) which is revealed in the studied samples and docosahexaenoic acid (DHA; 22:6, n−3) which was found in all the samples studied. The concentration of the major linoleic acid trans11, cis9 18:2 (CLA) was 0.5%, however no differences among seasons were observed. Total PUFA was high in winter and summer season, but no significant differences were found. The overall mean (average of seasons) was 11%; higher than 5.3% in camel LT muscle (14).

References
EFFECT OF STARTER CULTURES ON VARIOUS CLASSES OF FATTY ACIDS IN SUDANESE FERMENTED CAMEL MILK (CAMELUS DROMEDARIUS) GARISS

Ahmed I.1, Mohamed B. E.2, Yousif N.M. E.2, Faye B.3, Loiseau G.3

1Department of Biochemistry & Food Science, Faculty of Natural Resources & Environmental Studies, University of Kordofan, Eloeib, Sudan, P.O. Box .160; 2Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat, Sudan; 3Centre De Coopération Internationale En Recherche Agronomique Pour Le Développement CIRAD, Montpellier, France ; Corresponding author: adamalgnana62@yahoo.com

Abstract

The objective of this research was to study the variation of classes of fatty acids in gariss (fermented camel milk) prepared under controlled conditions (starter cultures and time of fermentation). Inoculations of raw camel milk with selected LAB strains (E. duransR03, E. faecium NWL and L. plantarum BJ6 and their combination as well as the control - fermentation without starter cultures) was performed at varying periods of time (zero, 3, 6, 9 and 12h) at ambient temperature, then the role of these conditions on fatty acids classes were studied. Camel milk fermented under starter-culture controlled conditions contained unsaturated fatty acids, including the essential fatty acids. Considerable amounts of omega-3, omega-6 fatty acids and the absence or presence of low amounts of short chain fatty acids were found compared to cow milk.

Key words: Starter cultures, Enterococcus, fatty acids classes, control conditions, selected LAB strains.

Introduction

The study of microflora in traditional fermented dairy products as gariss and preparation of starters is of a good concern. To obtain the gariss with better quality and to produce this traditionally fermented product at the industrial level with high quality, control starter cultures must be used. For many authors, the presence of enterococci is evidence of possible fecal contamination and therefore a risk to consumers because although these strains are known for their low virulence, they pose serious health problems due to the emergence of many antibiotic-resistant strains (Akhmetsadykova et al., 2014).