Modelling Fires as Pulses in Tree/Grass Interactions: Study of Long-term Impact in Forest-Savanna Dynamical Systems

A. Tchuinte Tamen1,3, Y. Dumont2, S. Bowong1,3, J.J. Tewa1,3, P. Couteron4

1 LIRIMA, GRIMCAPE, University of Yaounde 1, Cameroon
 alexis.tchuinte@yahoo.fr
2 CIRAD, Umr AMAP, Montpellier, France
3 IRD, UMI 209, UMMISCO, IRD France Nord, Bondy, France
4 IRD, Umr AMAP, Montpellier, France

Keywords: Savanna; tree/grass interactions; fires; impulsive differential equations (IDE); periodic solutions; nonstandard numerical scheme.

It is usually admitted that fires play an important role in tree-grass interactions in savanna ecosystems. In this talk, we present a model of tree-grass dynamics using impulsive differential equations, considering fires as discrete events [1]. This framework allows us to carry out a comprehensive qualitative mathematical analysis that revealed more possible outcomes than the analogous continuous model [2]. We investigated local and global properties of the equilibria and show that various states may co-exist. Though fire periodicity may drive the system to different and abrupt shifts between vegetation, we also show that direct shading of grasses by trees, through a facilitation/competition parameter, is an influential process too, leading to bifurcations. Finally, using a suitable numerical approach [3], we carried out numerical simulations related to three main climatic zones, observable in Central Africa, to illustrate our theoretical results.

References

