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Bacterial wilt caused by Ralstonia solanacearum is a destructive disease for many crops. The aim of this study was to

investigate the phylogenetic relationships and genetic structure of an R. solanacearum population from diverse origins

in Taiwan. All 58 tested isolates belonged to phylotype I, except the two biovar 2 isolates from potato. These belonged

to phylotype IIB sequevar 1 and were identical to known potato brown rot strains, which were probably introduced.

Phylotype I isolates were grouped into 10 sequevars. Sequevar 15 was predominant (34 out of 56 isolates). Its distribu-

tion covered the whole island and it was largely associated with solanaceous crops such as tomato, and with tomato

field soil. A total of 14 haplotypes were identified based on a partial endoglucanase gene sequence. Parsimony network

analysis revealed that haplotype A was the oldest haplotype in the local population. It encompassed all but one of the

sequevar 15 isolates. Large variation in virulence on tomato was observed among the 58 isolates, and seven pathotypes

were identified. Significant genetic differentiation was detected among pathotypes. Moreover, genetic differentiation

was detected between biovar 3 and biovar 4 subgroups and between the strains associated with solanaceous and non-

solanaceous species, but none was detected between strains from different geographic origins. The results suggest that

the phylotype I population in Taiwan is homogeneous, while mutation and local adaptation to specific ecological

niches keep shaping the population.
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Introduction

Bacterial wilt is caused by the soilborne plant pathogenic
bacterium Ralstonia solanacearum. It is a destructive dis-
ease and a major production constraint for many eco-
nomically important crops, including tomato, potato,
aubergine, tobacco, pepper, peanut, banana and ginger
in tropical, subtropical and warm temperate regions of
the world. The pathogen can infect more than 200 spe-
cies and 50 families of plants. New hosts are still being
reported (Denny, 2006). The pathogen has been recorded
on 28 plant species from 19 families in Taiwan, where
tomato is the most important crop in economic terms
(Lin, 2008). During the summer or hot-wet seasons, dis-
ease incidence values of 15–55% have been reported on
fresh market tomato cultivars, causing annual losses of
more than $12 million (Hartman et al., 1991). The path-
ogen can survive in the soil for long periods in the
absence of host plants in sheltered sites such as plant

debris and latently infected plant tissues, deeper soil lay-
ers, and the weed rhizosphere (Denny, 2006). For long-
distance transmission, the pathogen can be carried via
contaminated water and infected planting materials
(Caruso et al., 2005; Denny, 2006; Lin et al., 2009).
Traditionally, R. solanacearum strains are separated

into five races and six biovars on the basis of host range
and carbon source utilization, respectively (Denny,
2006). The R. solanacearum species complex can be
divided into four phylotypes consistent with four genetic
groups based on the sequence analysis of the ITS region
between the 16S and 23S ribosomal RNA genes, the hrpB
gene (a conserved pathogenicity factor), and the endoglu-
canase gene (egl, a conserved virulence factor; Fegan &
Prior, 2005). These phylotypes correlate with the geo-
graphical origin of the strains: phylotype I includes
strains originating primarily from Asia, phylotype II from
America, phylotype III from Africa and surrounding
islands in the Indian Ocean, and phylotype IV from Indo-
nesia (Prior & Fegan, 2005). In Taiwan, R. solanacearum
strains associated with different reported hosts belong to
race 1 and biovars 3 or 4 (Hsu, 1991; Lin, 2008). A large
variation in the virulence of race 1 Taiwanese strains on
different plant species or tomato has been demonstrated
(Jaunet & Wang, 1999). Race 3 biovar 2 strains isolated
from potato were only reported in 2002 (Chiou, 2002).
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This group of strains is thought to have been introduced
after 1999. It later spread to other potato-growing
regions and has remained in Taiwan (Wu et al., 2011).
Genetic variation in plant pathogen populations can

be shaped by biotic and abiotic factors such as host
diversity, soil type and cropping practice (Gilbert, 2002).
Moreover, the risk of emerging disease or repeated pan-
demics increases with anthropogenic transportation, such
as seedling transport, which facilitates pathogen migra-
tion via infected plants or plant parts. Recurrent gene
flow between diverse origins or populations across geo-
graphical barriers is thought to result in a homogenous
genetic structure within a country. Thus, understanding
how continental or regional genetic diversity is parti-
tioned into distinct genetic structures helps to determine
the biotic or abiotic factors that affect the evolution of
pathogen populations.
Genetic diversity of R. solanacearum has been investi-

gated mainly by genotyping fingerprints produced by
repetitive element palindromic polymerase chain reaction
(rep-PCR) with multiple primers (e.g. ERIC, REP and
BOX). On the basis of shared rep-PCR patterns among
R. solanacearum strains, Xue et al. (2011) concluded
that in China, site- or host plant-dependent factors do
affect the distribution of genotypic diversity and deter-
mine the pathogen’s clonal distribution, as nearly half of
the normalized BOX clusters were found within a single
province. In addition, in the Philippines, all R. solanacea-
rum strains isolated from aubergine grown in different
provinces displayed the same BOX patterns as those
originating from other countries; this indicates a success-
ful clonal spread across aubergine fields (Ivey et al.,
2007). Studies on the genetic diversity of the pathogen
populations in Taiwan, Japan and India failed to reveal
any relationship between genotypic variation and geo-
graphic origin, or between pathogen virulence and host

origin (Jaunet & Wang, 1999; Horita & Tsuchiya, 2001;
Kumar et al., 2004). However, these studies did not
examine microevolution dynamics to show selection as a
force that shapes local pathogen populations. Ramsub-
hag et al. (2012) used rep-PCR data to examine the pop-
ulation structure of R. solanacearum strains affecting
tomato in Trinidad, and found that the strains from the
central zone stood apart significantly from strains from
the other three zones. The application of nucleotide vari-
ation of selected genes, together with advanced phyloge-
netic algorithms, would be useful to determine the
unresolved evolutionary relationship between R. solana-
cearum populations in order to identify ecological clus-
ters with similar genetic characteristics. This kind of
information would make it possible to reconstruct ende-
mic pathogen history, which would in turn be helpful for
the development of holistic disease management strategies.
The objective of this study was to understand the phylo-

genetic relationships between R. solanacearum strains iso-
lated from diverse origins in Taiwan. The presence of
differentiation was examined according to biovar, host ori-
gin, geographic origin and virulence variation on tomato
on the basis of the egl gene sequence. The evolutionary
process of the local population was also examined.

Materials and methods

Bacterial isolates and biovar test

A total of 58 R. solanacearum isolates taken from various

sources in Taiwan between 1987 and 2003 were selected as a
representative population (Table 1). These were isolated from

four geographical zones in Taiwan and from 22 plant species.

Four isolates were obtained from farm soils collected from

tomato fields with a historical record of bacterial wilt.
CLw1488 was the only isolate obtained from irrigation water in

an endemic disease area in Hsinchu. All isolates were preserved

Table 1 Number of Ralstonia solanacearum isolates used in this study under each grouping category (shown in parentheses)

Geographic zonea Source Biovar Pathotype Phylotype/sequevar Haplotypeb

N (7) Tomato (28) 2 (2) 1 (4) I/13 (5) A (33)

S (9) Other solanaceaous

species (6)

3 (22) 2 (6) I/14 (6) B (1)

C (33) Non-solanaceaous

species (19)

4 (34) 3 (11) I/15 (34) C (1)

E (9) Field soil (4) 4 (20) I/17 (1) D (2)

Irrigation water (1) 5 (6) I/18 (2) E (1)

6 (1) I/30 (1) F (5)

7 (10) I/32 (1) G (1)

I/34 (4) H (4)

I/44 (1) I (4)

I/45 (1) J (1)

II/1 (2) K (1)

L (1)

M (1)

N (2)

aThe geographical zones of the isolates were grouped into four regions: northern (N), central (C), southern (S) and eastern (E) regions.
bHaplotype determined by partial egl sequencing.
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in 30% glycerol at �80°C for further use. They were classified

into biovars based on their ability to oxidize three disaccharides
(lactose, maltose and cellobiose) and three hexose alcohols

(mannitol, sorbitol and dulcitol), as previously described

(Hayward, 1964).

Virulence assay

All tested isolates were inoculated individually on three tomato

varieties, L390, L180-1 and Hawaii 7996, a susceptible, a mod-

erately resistant and a resistant genotype, respectively. Virulence

was assessed following the soil drenching method described by
Hanson et al. (1996) in the greenhouse under natural light with

a mean temperature of 27–29°C. Tomato seedlings with four to

six true leaves in individual pots were inoculated by pouring

20 mL of inoculum (OD600 = 0�3; at 108 colony-forming units
(CFU) mL�1) around the stem base. The experiment was con-

ducted using a split-plot design with two replications and six

plants per replication per variety. Isolate was used as the main
factor and variety as the subfactor. The percentages of wilted

plants were recorded once a week for up to 28 days after inocu-

lation. The final percentage of wilted plants for each isolate on

the three tomato varieties was analysed by principal component
analysis using the PRINCOMP procedure of SAS (SAS Institute).

Clusters of isolates with similar virulence were determined using

the average linkage method and the three clustering criteria

(cubic clustering criterion, pseudo-F and pseudo-t2) using the SAS

CLUSTER procedure.

DNA assay and phylotype identification

Genomic DNA from each isolate was extracted following the

method described by Chen & Kuo (1993). The genomic DNA
of reference strains kept at CIRAD, France were used, represent-

ing each phylotype.

The phylotype identity of each isolate was determined follow-

ing a multiplex PCR protocol reported by Fegan & Prior
(2005). Four forward primers, Nmult21:1F, Nmult21:2F,

Nmult23:AF, Nmult22:InF and one reverse primer, Nmult22:

RR and a species-specific primer pair, AU759f and AU760r,

were used for multiplex PCR amplification.

egl gene sequencing and phylogenetic analysis

An 850 bp fragment of the egl gene was amplified from each

isolate using the primer pair Endo-F (50-ATGCATGCCGCTG

GTCGCCGC-30) and Endo-R (50-GCGTTGCCCGGCACGAAC
ACC-30) (Fegan et al., 1998). PCR products of the egl gene were

purified using a purification kit (Gel Advanced Gel Extraction

Miniprep System; Viogene-Biotek Corporation), then sequenced

(Genomics BioSci & Tech Co., Taiwan). The sequences were
aligned and manually adjusted with BIOEDIT (http://www.mbio.

ncsu.edu/BioEdit/BioEdit.html). Finally, a 734 bp fragment of

the egl consensus region of 58 R. solanacearum isolates was
obtained for sequevar determination (Fegan & Prior, 2005) and

the subsequent phylogenetic analysis. All nucleotide sequences

were deposited in GenBank under accession numbers

EU407264–EU407304 and EU407315–EU407331.
Phylogenetic trees were constructed by neighbour joining (NJ)

and maximum likelihood (ML) methods embedded in MEGA v.

5.0 (Tamura et al., 2011) and PHYML v. 3.0 (Guidon & Gascuel,

2003), respectively. Bootstrapping was performed with 100 rep-
licates for ML and 1000 replicates for NJ. DNASP v. 5.0 (Libra-

do & Rozas, 2009) was used to estimate genetic diversity, i.e.

nucleotide diversity (p, the average number of nucleotide differ-
ences per site between sequences), number of haplotypes (h, a

set of alleles inherited by an individual from a single parent),

and haplotype diversity (Hd, the number and frequency of differ-

ent haplotypes in the sample). Pairwise genetic distance among
populations and the population differentiation index (FST, the

proportion of genetic diversity due to allele frequency differ-

ences among populations) were calculated using ARLEQUIN (Ex-
coffier et al., 2005). The hierarchical structural analysis of

genetic diversity (AMOVA: analysis of molecular variance) among

R. solanacearum isolates at levels corresponding to virulence

and geographic origins, respectively, was implemented in ARLE-

QUIN and was also used to hierarchically assess the relative dis-

tribution of genetic variation. The estimated values from

ARLEQUIN were tested for 95% statistical significance by running

1000 permutation steps. To identify the evolutionary relation-
ship among the 58 R. solanacearum isolates, a haplotype net-

work was built with TCS v. 1.2 software (Clement et al., 2000)
using statistical parsimony with a 95% confidence interval

(Templeton et al., 1992).

Results

Biovar, phylotype and pathotype of the Taiwanese
population

The biovar identity of 58 R. solanacearum isolates was
determined according to their ability to utilize three sugars
and three sugar alcohols. There were 2, 22 and 34 isolates
of biovar 2, 3 and 4, respectively (Table 1). Using the mul-
tiplex PCR protocol with primers designed from the ITS
region, the 144 bp fragment specific to phylotype I was
observed with all tested isolates except the two R. solana-
cearum isolated from potato, Pss525 and Pss526. The
phylotype II-specific 372 bp fragment was observed only
for Pss525 and Pss526. These two isolates were identified
as biovar 2 and race 3 (Chiou, 2002).
Considerable variation in virulence was observed

among the 58 tested isolates in terms of the disease inci-
dence that occurred on three tomato varieties. The mean
final percentage of wilted plants ranged from 0 to 83�4%
on Hawaii 7996, 0 to 100% on L180-1 and 8�4
to 100% on L390. Cluster analysis revealed seven
pathotypes among the 58 isolates (Fig. 1). The first two
principal components accounted for 88�7% of the stan-
dardized variance, with 64�6 and 24�1% for the first and
second components, respectively. Pathotype 1 contained
isolates Pss158, Pss190, Pss525 and Pss526 and was
highly virulent on all three varieties with an average final
wilting of 92�4 � 4�2%. Pathotypes 2, 3, 4, 5 and 7
demonstrated similar interactions with the tested tomato
varieties. However, they displayed decreasing overall
virulence. Pathotype 6 consisted of only one isolate,
Pss169, obtained from custard apple in the eastern
region of Taiwan. It showed a unique pattern when
interacting with tomato. While the average wilting
percentage was 27�8%, this isolate had low virulence
on L390 and L180-1 (25�0% final wilting), but
relatively high virulence on Hawaii 7996 (33�4% final
wilting).

Plant Pathology (2014) 63, 1395–1403

R. solanacearum population structure 1397



Phylogenetic relationships and sequevar of the
Taiwanese R. solanacearum population

Partial nucleotide sequences of the egl gene from 58 Tai-
wanese R. solanacearum isolates were determined and
aligned. The phylogenetic relationships according to egl
gene sequences were analysed together with 10 reference
strains. The two phylogenetic methods (NJ and ML)
yielded similar results; only the NJ tree is displayed for
discussion. The NJ tree showed a distinct phylogenetic
relationship with high bootstrap values among four phyl-
otypes. It even distinguished phylotype IIA from IIB
(Fig. 2). Pss525 and Pss526 from potato belonged to
phylotype IIB. Within phylotype I, although two major
phylogenetic clusters were obtained, the short branch
length indicates low genetic diversity among the isolates.
Clear correlation was not readily observed between phyl-
otype I clusters and geographical origin, host species or
pathotypes.
A total of 10 sequevars was determined within phylo-

type I. Sequevar 15 was the most frequent (34 out of 56
isolates), and was found mostly on tomato and soil sam-
ples from tomato fields. The other sequevars were
detected mainly on non-solanaceous hosts, such as radish
(Raphanus sativus), bitter gourd (Momordica charantia)
and comfrey (Symphytum officinale). Interestingly, nearly
all sequevars were identified from more than two host
species and were randomly distributed across geographic
zones (Fig. 3). The two phylotype II isolates found in
Taichung belonged to sequevar 1, together with the

reference strain for potato brown rot. A total of 14 hapl-
otypes were defined. Haplotype A, corresponding to se-
quevar 15 was predominant, apart from Pss190
(haplotype B). Overall, the sequevar and haplotype
grouping results were consistent with each other. How-
ever, haplotype grouping is more discriminating than se-
quevar grouping.
The short phylogenetic relationships within phylotype

I provided limited evolutionary information on the Tai-
wanese population. To determine the evolutionary rela-
tionships among the 56 R. solanacearum isolates, a
haplotype network characterized by statistical parsi-
mony analysis was constructed based on egl gene
sequences. The result of the statistical network yielded
a similar topology to the consensus phylogenetic tree
(Fig. 4). The 13 haplotypes were connected and split
into three haplotype groups: (i) group 1 contained
the putative ancestral haplotype A, and included 33
R. solanacearum isolates mainly from tomato (21 out
of 33 isolates), and haplotype B; (ii) group 2 consisted
of haplotypes H, I, J, K, L and M that all belong to
biovar 3, except Pss71 and Pss166 of haplotypes H
and J, respectively; (iii) group 3 consisted of haplotypes
C, D, E, F and G, which contained biovars 3 and 4
isolated from diverse hosts. Moreover, when the spec-
trum of mutation steps on the network was examined,
five transition sites were found that were shared
between groups 2 and 3, and one transversion site
with reversal mutation (C413G) was located within
group 2.
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Figure 1 Principal component and cluster analysis of the final percentages of wilted plants on three tomato varieties caused by 58 Ralstonia

solanacearum isolates collected from different sources and locations in Taiwan. Each point represents one isolate plotted in a plane defined by the
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Figure 2 Neighbour-joining phylogenetic tree

of 58 Ralstonia solanacearum isolates of a

Taiwanese population plus 10 reference

strains obtained from four distinct

phylotypes. Bootstrap values above the

branch were obtained from neighbour joining

(left) and maximum likelihood (right),

respectively.
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Genetic structure of Taiwanese phylotype I strains

The presence of genetic differentiation among the Tai-
wanese phylotype I isolates was examined according to
pathotype, biovar, host origin and geographic zone. The
seven pathotypes formed three groups based on the viru-
lence reactions on the susceptible tomato variety L390.
AMOVA results showed that most of nucleotide variation
appeared within groups (80�2%) compared to variation

between groups (24�8%) (Table 2). Significant genetic
differentiation between groups (ΦcT = 0�248, P < 0�05)
was detected, and indicated a correspondence between
virulence phenotype and genetic variation. Thus,
sequence variation within the egl gene correlates with the
variation in virulence.
Pairwise comparison of genetic distances and differentia-

tion between pathotypes based on inherent nucleotide vari-
ation provided an alternative method for the quantitative
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characterization of the relationships between pathotypes.
Pathotype 6 was excluded from the analysis due to its
small sample size (n = 1). Genetic distances across the six
pathotypes ranged from 0�003 to 0�007 (Table 3). Patho-
type 7 displayed more genetic differences than the other
pathotypes. Significant genetic differentiation was detected
between pathotype 7 and the other pathotypes, except
pathotypes 1 and 5.
Mean nucleotide diversity (p) and haplotype diversity

(Hd) values of the 55 phylotype I isolates were 0�004 and
0�629, respectively (Table 4). Subgroups of biovars 3 and
4 consisted of eight haplotypes. However, biovar 3 har-
boured higher nucleotide diversity and haplotype diversity
than biovar 4. Ralstonia solanacearum isolates obtained
from non-solanaceous species (n = 19) displayed higher
nucleotide diversity, haplotype numbers and haplotype
diversity than those from solanaceous species (n = 36).
Based on an estimation of the population differentiation
index of biovar and host origins, significantly large FST
values were obtained for both parameters (biovar = 0�219,
P < 0�001; host origin = 0�242, P < 0�001), indicating sig-
nificant genetic differentiation among biovar or host popu-
lations. Four geographic zones, as well as the Central
Mountain Range (the major dispersal barrier between the
eastern and western regions), were assessed to determine

whether genetic variation distribution correlated with
geographic origins. The AMOVA showed that most genetic
variation occurred within geographic zones (104�2%), not
within or between regions (Table 5). In addition, no
significant genetic differentiation was detected among any
hierarchical level. The results confirm that R. solanacea-
rum populations in Taiwan basically consist of two
separate genetic clusters in relation to phenotypic charac-
teristics (biovar and host preference), rather than
geographic origin.

Discussion

Ralstonia solanacearum is a species complex displaying
large phenotypic and genotypic variation. The pathogen
was first reported in Taiwan on tobacco in 1942 (Tsai,
1991). Its host range currently includes 28 plant species
belonging to 19 families. It is present in all geographic
zones with different climatic environments. In this study,
a population of R. solanacearum isolates obtained from
different host plants or sources and geographical origins
in Taiwan was characterized for its biovars, virulence
and phylogenetic origins. Sequence variation of the egl

Table 2 Analysis of molecular variance (AMOVA) between Ralstonia

solanacearum phylotype I isolates based on virulence phenotype on

tomato L390a

Source of variation

Percentage

of variation Φ statistic P valueb

Between groups 24�8 0�248 (ΦCT) 0�013
Between clusters

within groups

�5�0 �0�066 (ΦSC) 0�894

Within clustera 80�2 0�199 (ΦST) 0�022

aThe seven pathotypes defined in Table 2 were put into three groups

according to the virulence reactions on L390: pathotypes 1–4, patho-

type 5, and pathotypes 6–7.
bThe hierarchal statistical significance among different Φ values was

calculated using probabilities derived from 1000 permutations.

Table 3 Pairwise genetic distance (above diagonal) and genetic

differentiation (below diagonal) among Ralstonia solanacearum

pathotypes (P) based on the egl nucleotide sequences

P1 P2 P3 P4 P5 P7

P1 – 0�003 0�003 0�003 0�005 0�007
P2 0�036 – 0�003 0�003 0�004 0�006
P3 0�013 �0�116 – 0�003 0�005 0�006
P4 0�028 �0�041 �0�036 – 0�004 0�006
P5 0�070 0�073 0�013 �0�007 – 0�006
P7 0�252 0�279** 0�226** 0�202* 0�017 –

Pathotype 6 was not included in the analysis because of the presence

of only one isolate, neither were phylotype II isolates Pss525 and

Pss526.

*P < 0�05, **P < 0�01 indicate degrees of significance of FST value

based on 1000 permutation tests.

Table 4 Descriptive genetic analysis of nucleotide diversity (p),

haplotype number (h) and haplotype diversity (Hd) according to the

biovar type and host origin of Ralstonia solanacearum phylotype I

isolates

na p h Hd FST

Biovar 3 21 0�006 8 0�843 0�219***
Biovar 4 34 0�003 8 0�419
Solanaceous originb 36 0�003 6 0�432 0�242***
Non-solanaceous originb 19 0�006 19 0�871
Total/mean 55 0�004 12 0�629

aBoth Pss525 and Pss526 were excluded from the analysis due to

incongruent biovar type (biovar 2). CLw1448 isolated from irrigation

water was also excluded.
bIsolates from species belonging to solanaceous crops or farm soils

collected from tomato fields were grouped as solanaceous origin; the

other isolates were grouped into non-solanaceous origin.

***P < 0�001 indicates degree of significance of FST value based on

1000 permutation tests.

Table 5 Analysis of molecular variance (AMOVA) of Ralstonia

solanacearum phylotype I isolates from four geographic zones

Source of variation

Percentage

of variation Φ statistic P valuea

Between regionsb �3�1 �0�031 (ΦCT) 0�756
Between geographic

zones within regions

�1�1 �0�011 (ΦSC) 0�510

Within geographic zones 104�2 �0�042 (ΦST) 0�674

aThe hierarchical statistical significance among different Φ values was

calculated using probabilities derived from 1000 permutations.
bAccording to the orientation of Taiwan’s Central mountain range, four

geographical zones can be further grouped into the western region

(North, Central and South), and the eastern region (East).

Plant Pathology (2014) 63, 1395–1403

R. solanacearum population structure 1401



gene was used to infer the phylogenetic relationships and
genetic structure of the Taiwanese population.
The 58 R. solanacearum isolates used in this study

belonged to biovars 2, 3 and 4, as well as phylotypes I and
II. The two biovar 2 isolates were obtained from potato in
central Taiwan in 1999, where outbreaks of potato brown
rot occurred. Studies indicated that the pathogen that
caused the outbreak was biovar 2 race 3 of R. solanacea-
rum, and it had probably been introduced (Chiou, 2002).
These biovar 2 race 3 isolates were grouped under seque-
var 1, phylotype IIB, together with the typical potato
brown rot strains. They formed the unique haplotype N.
This confirms the different phylogenetic origins of phylo-
types I and II (Fegan & Prior, 2005).
Haplotype network analysis based on egl partial

sequence revealed the history of allelic changes of the egl
gene among phylotype I isolates in Taiwan. Isolates of
haplotype A (sequevar 15) were predominant and were
mostly obtained from tomato plants present around Tai-
wan. Furthermore, no significant genetic differentiation
was detected among geographic zones. Trading of tomato
seedlings might facilitate the movement of the soilborne
pathogen over geographical barriers to homogenize
genetic makeup across the island. Haplotype A might have
spread endemically to become the reservoir for bacterial
wilt epidemics on tomato and other species. Phylotype I
strains of tomato in Taiwan are known to be highly vari-
able in genetic fingerprints (Jaunet & Wang, 1999).
Although frequent recombination could take place within
a geographically isolated bacterial population (Smith
et al., 2000), in this study the non-reticulated topology of
the haplotype network suggested the lack of horizontal
gene transfer at an intraspecies level. However, this should
be confirmed with multilocus sequence typing owing to its
higher discrimination on the clonal-like bacterial pathogen
structure (Urwin & Maiden, 2003).
Phylotype I isolates have a wide host range. In Tai-

wan, hosts range from annual herbaceous plants to
perennial woody plants. In this study, the haplotypes
branching out from haplotype A displayed greater seque-
var and host origin diversity. This suggests that host ori-
gin could be the main factor affecting the genetic
dynamics of R. solanacearum populations in the agro-
ecosystem. The detection of significant genetic differenti-
ation between isolates originating from solanaceous and
non-solanaceous groups further supports the hypothesis.
Furthermore, phylotype I isolate Pss190 differentially
requires virulence genes to colonize tomato or Arabidop-
sis (Lin et al., 2008). From an ecological perspective, the
ability to infect and colonize diverse plant species could
ensure the survival of R. solanacearum. Thus, the patho-
gen population would be under selection pressure when
encountering a new plant species.
The virulence of the 58 isolates was examined on

tomato. Large, yet continuous variation in virulence was
observed. Significant genetic differentiation was detected
between groups of isolates that exhibited different
degrees of virulence (Table 2). Moreover, pathotype 7,
the population’s least virulent subgroup, was genetically

distinct from the pathotypes with intermediate virulence
(Table 3). The results imply that virulence could be asso-
ciated with the pathogen’s evolution. The gene-for-gene
model of host–pathogen co-evolution is a well-recognized
concept (Brown & Tellier, 2011). Resistance loci against
R. solanacearum have been identified in tomato (Wang
et al., 2013). However, the significance of tomato geno-
types acting as a selection force remains to be demon-
strated. Earlier studies show that Pss190, a highly
virulent strain (pathotype 1) on tomato, is not better
than the less virulent strains at colonizing the weed
species Solanum nigrum, Erechtites valerianifolius and
Cyperus rotundus (Wang & Lin, 2005). Whether the abil-
ity to colonize a susceptible host such as tomato in order
to rapidly increase population size, or to colonize diverse
weeds for better survival, has a broader effect on the
evolution of R. solanacearum remains to be determined.
The findings show that genetic diversity as mirrored by

the endoglucanase gene was higher within biovar 3 isolates
than biovar 4 isolates. Previous reports stated that biovar
3 isolates, rather than biovar 4, were predominant in Tai-
wan (Hsu, 1991; Jaunet & Wang, 1999). The higher pro-
portion of biovar 4 isolates in the population studied may
be due to sampling artefacts that covered a broad host
range. According to Lin et al. (1999), most weed species
can be latently infected by biovar 3 rather than biovar 4
isolates. This is consistent with the idea that biovar 3 has
long been established, resulting in a larger effective popu-
lation size in the field. If the impact of the genetic drift of
alleles is considered, in which generation and loss of muta-
tion randomly occur among populations, the chance of
allele fixation increases with greater population size. Thus,
greater genetic variation is preserved than in a smaller
population (Excoffier et al., 2009). Therefore, the higher
genetic diversity of biovar 3 might correlate with their
larger effective population in the field.
Wicker et al. (2012) suggest that features of free

recombination, broad host range, patterns of dissemina-
tion and plastic virulence endow phylotype I with a
higher evolutionary potential to spread quickly over long
distances. This study reveals for the first time that the
formation of R. solanacearum phylotype I genetic struc-
ture is driven by a large effective population size and
host origin. In the light of these results, it is suggested
that suppressing the pathogen field population would be
a key component in the sustainable management of bac-
terial wilt. Weed management, removal of plant debris
or regular rotation with non-host crops can achieve this.
At the same time, these crop management practices
would maintain the durability of resistant cultivars. In
the future, correlating genetic information with more
ecological parameters such as cropping practices, soil
type and weed diversity, will further develop understand-
ing of R. solanacearum microevolution.
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