Joint control of terrestrial gross primary productivity by plant phenology and physiology

Xia Jianyang, Niu Shuli, Ciais Philippe, Janssens Ivan A., Chen Jiquan, Ammann Christof, Arain M. Altaf, Blanken Peter D., Cescatti Alessandro, Bonnal Damien, Buchmann Nina, Curtis Peter S., Chen Shiping, Dong Jinwei, Flanagan Lawrence B., Frankenberg Christian, Georgiadis Teodoro, Gough Christopher M., Hui Dafeng, Kiely Gérard, Li Jianwei, Lund Magnus, Magliulo Vincenzo, Marcolla Barbara, Merbold Lutz, Montagnani Leonardo, Moors Eddy J., Olesen Jørgen E., Piao Shilong, Raschi Antonio, Roupsard Olivier, Suyker Andrew E., Urbaniak Marek, Vaccari Francesco P., Varlagin Andrej, Vesala Timo, Wilkinson Matthew, Weng Ensheng, Wohlfahrt Georg, Yan Liming, Luo Yiqi. 2015. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112 (9) : pp. 2788-2793.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
Version Online first - Anglais
License CC0 1.0 Public Domain Dedication.
Xia PNAS-2015 Joint control of terrestrial gross primary productivity by plant phenology and physiology.pdf

Télécharger (1MB) | Preview
Published version - Anglais
Use under authorization by the author or CIRAD.
Xia supporting material 2015.pdf

Télécharger (3MB) | Preview
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (4MB) | Preview


Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Economie-gestion; Psychologie-éthologie-ergonomie

Abstract : Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. (Résumé d'auteur)

Mots-clés libres : Ecosystem carbon uptake, Growing season length, Photosynthetic, Capacity, Spatiotemporal variability, Climate extreme

Classification Agris : F62 - Plant physiology - Growth and development
U10 - Mathematical and statistical methods

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Xia Jianyang, University of Oklahoma (USA)
  • Niu Shuli, University of Oklahoma (USA)
  • Ciais Philippe, CEA (FRA)
  • Janssens Ivan A., Universiteit van Antwerpen (BEL)
  • Chen Jiquan, MSU (USA)
  • Ammann Christof, ACW (CHE)
  • Arain M. Altaf, McMaster University (CAN)
  • Blanken Peter D., University of Colorado (USA)
  • Cescatti Alessandro, IES (ITA)
  • Bonnal Damien, INRA (FRA)
  • Buchmann Nina, ETH (CHE)
  • Curtis Peter S., Ohio State University (USA)
  • Chen Shiping, Nanjing Agricultural University (CHN)
  • Dong Jinwei, University of Oklahoma (USA)
  • Flanagan Lawrence B., University of Lethbridge (CAN)
  • Frankenberg Christian, JPL (USA)
  • Georgiadis Teodoro, Institute of Biometeorology (ITA)
  • Gough Christopher M., Virginia Commonwealth University (USA)
  • Hui Dafeng, University of Tennessee (USA)
  • Kiely Gérard, UCC (IRL)
  • Li Jianwei, University of Oklahoma (USA)
  • Lund Magnus, Aarhus University (DNK)
  • Magliulo Vincenzo, National Research Council (ITA)
  • Marcolla Barbara, IASMA (ITA)
  • Merbold Lutz, ETH (CHE)
  • Montagnani Leonardo, Forest Services and Agency for the Environment (ITA)
  • Moors Eddy J., Wageningen University (NLD)
  • Olesen Jørgen E., Aarhus University (DNK)
  • Piao Shilong, Peking University (CHN)
  • Raschi Antonio, CNR (ITA)
  • Roupsard Olivier, CIRAD-PERSYST-UMR Eco&Sols (CRI)
  • Suyker Andrew E., University of Nebraska (USA)
  • Urbaniak Marek, Poznan University of Life Sciences (POL)
  • Vaccari Francesco P., Institute of Biometeorology (ITA)
  • Varlagin Andrej, Russian Academy of Sciences (RUS)
  • Vesala Timo, University of Helsinki (FIN)
  • Wilkinson Matthew, Centre for Sustainable Forestry and Climate Change, (GBR)
  • Weng Ensheng, University of Oklahoma (USA)
  • Wohlfahrt Georg, Institute of Ecology (AUT)
  • Yan Liming, Fudan University (CHN)
  • Luo Yiqi, University of Oklahoma (USA)

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-21 ]