Joint control of terrestrial gross primary productivity by plant phenology and physiology

Jianyang Xia1,2, Shuli Niu1,2, Philippe Ciais3, Ivan A. Janssens4, Jiquan Chen5, Christof Ammann6, Alfredo Arain7, Peter D. Blanken8, Alessandro Cresciti9,2, Damien Bonal1, Nina Buchmann6, Peter S. Curtis10, Shiping Chen10, Jinwei Dong5, Lawrence B. Flanagan6, Christian Frankenberger7, Teodoro Georgiadi8, Christopher M. Gough9, Dafeng Hui9, Gerard Kiely2,10, Jianwei Li6, Magnus Lund8, Vincenzo Magliulo9, Barbara Marcolla11, Lutz Merbold11, Leonardo Montagnani12, Eddy J. Moors13, Jørgen E. Olesen14, Nina Buchmann6, Shiping Chen10, Emilie Penuel15, Antonio Raschi16, Damien Bonal11, Andrew E. Suyker17,18, Marek Urbania5k, Francesco P. Vaccari14, Andrej Varlagin19, Timo Vesa6,11, Matthew Wilkinson11, Ensheng Weng20, Georg Wohlfart20,21, Liming Yan22,23, and Yiqi Luo24,25,26

*Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019; 1Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; 2Laboratoire des Sciences du Climat et de l’Environnement, 91191 Gif sur Yvette, France; 3Department of Biology, University of Antwerpen, 2620 Wilrijk, Belgium; 4Center for Global Change and Earth Observations and Department of Geography, Michigan State University, East Lansing, MI 48824; 5Climate and Air Pollution Group, Federal Research Station Agroscope, CH-8046 Zurich, Switzerland; 6School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; 7Department of Geography, University of Colorado, Boulder, CO 80302; 8European Commission, Joint Research Center, Institute for Environment and Sustainability, 21027 Ispra, Italy; 9Institut National de la Recherche Agronomique, UMR 1137 Institut National de la Recherche Agronomique-Unive rsité de Lorraine, 54280 Champenoux, France; 10Institute of Agricultural Sciences, Eidenässische Technische Hochschule Zurich, 8092 Zurich, Switzerland; 11Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210; 12State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Science, Beijing 100093, China; 13Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4; 14Topospheric sounding, assimilation, and modeling group, Jet Propulsion Laboratory, Pasadena, CA 91109; 15Institute of Biometeorology, 40129 Bologna, Italy; 16Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012; 17Department of Biological Sciences, Tennessee State University, Nashville, TN 37209; 18Civil and Environmental Engineering Department and Environmental Research Institute, University College Cork, Cork, Ireland; 19Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN 37209; 20Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark; 21Institute for Mediterranean Environment and Forest Systems, National Research Council, 89040 Ercolano, Italy; 22Sustainable Agro-Ecosystems and Bioremediation Department, Fondazione Edmund Mach, 38100 S. Michele all’Adige, Italy; 23Servizi Forestali, Provincia Autonoma di Bolzano, 39100 Bolzano, Italy; 24Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy; 25Earth System Science and Climate Change Group, Wageningen University and Research Centre, Wageningen UR, 6700 AA Wageningen, The Netherlands; 26Department of Agroecology, Aarhus University, DK-8600 Tjle, Denmark; 27Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; 28Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100085, China; 29Department of Biometeorology, National Research Council, 50145 Florence, Italy; 30Cirad-Persyst, UMR Ecologie Fonctionnelle et Biogéochimie des Sols et des Agro-Ecosystèmes, 34060 Montpellier, France; 31Tropical Agricultural Centre for Research and High Education, 7170 Turrialba, Costa Rica; 32School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0961; 33Department of Meteorology, Poznan University of Life Sciences, 60649 Poznan, Poland; 34A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia; 35Department of Physics and Forest Sciences, University of Helsinki, FIN-00014 Helsinki, Finland; 36Centre for Sustainable Forestry and Climate Change, Forest Research, Farnham GU10 4LH, United Kingdom; 37Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; 38Institute of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; 39Department for Applied Remote Sensing and Institute for Alpine Environment, European Academy of Bolzano, 39100 Bolzano, Italy; 40School of Life Sciences, Fudan University, Shanghai 200433, China; and 41Center for Earth System Science, Tsinghua University, Beijing 100084, China

Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved January 23, 2015 (received for review July 10, 2014)

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation physiology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the Northern Hemisphere heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.

ecosystem carbon uptake | growing season length | photosynthetic capacity | spatiotemporal variability | climate extreme

Largely, variability exists among estimates of terrestrial carbon sequestration, resulting in substantial uncertainty in modeled dynamics of atmospheric CO2 concentration and predicted future climate change (1). The variability in carbon sequestration is partially caused by variation in terrestrial gross primary productivity (GPP) (2), which is the cumulative rate over time of gross plant carbon fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO2 uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance.

This article is a PNAS Direct Submission.

1J.X., S.N., and Y.L. contributed equally to this work.

2To whom correspondence may be addressed. Email: jxia@ou.edu, sniu@iignr.ac.cn, or yluo@ou.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413090112/-/DCSupplemental.

This article is a PNAS Direct Submission.

1J.X., S.N., and Y.L. contributed equally to this work.

2To whom correspondence may be addressed. Email: jxia@ou.edu, sniu@iignr.ac.cn, or yluo@ou.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413090112/-/DCSupplemental.
photosynthesis at the ecosystem level. Plant photosynthesis has been successfully modeled at the biochemical level (3, 4). When leaf-level biochemical models of photosynthesis are scaled up to estimate annual GPP over a region and the globe, however, great uncertainty arises from both vegetation properties, such as biome-dependent leaf parameters (5, 6), and environmental factors, such as climate variability (7–9) and episodic disturbances (10–12). As a consequence, estimated present day global GPP varies from 105 to 177 Pg C y$^{-1}$ in the fifth phase of the Coupled Model Intercomparison Project (13). Additionally, spatiotemporal patterns of GPP (2, 14), their responses to extreme climate events (12) and disturbances (10), and the underlying mechanisms are still not well-understood. Previous studies have indicated that vegetation properties and environmental factors shape annual GPP of an ecosystem directly or indirectly through affecting plant physiological activities (15) and/or phenology (16–21). Thus, integrating plant physiological and phenological properties may provide a unified approach to explain the variability of GPP over time and space and in response to disturbance.

In this study, we show that annual GPP in grams C meter$^{-2}$ year$^{-1}$, the rate at which terrestrial ecosystems take up CO$_2$ from the atmosphere in a given year, can be quantitatively decomposed into

$$GPP = \alpha \cdot CUP \cdot GPP_{max}$$ \hspace{1cm} [1]$$

where the carbon dioxide uptake period (CUP; number of days per year) is a phenological indicator of the duration of ecosystem CO$_2$ assimilation within a given year. GPP_{max} (grams C meter$^{-2}$ day$^{-1}$) is the maximal daily rate of gross photosynthesis during the CUP and represents a property of plant canopy physiology. The ratio between annual GPP and the product of CUP and GPP_{max} is represented by α. We estimated α, CUP, and GPP_{max} for 213 globally distributed terrestrial sites with daily GPP from the global network of micrometeorological tower sites (FLUXNET; La Thuile Database) (22) (SI Appendix, section S1.1.1 and Table S1) and all 0.1° × 0.1° land grid cells in North America during 2000–2010 with an 8-d GPP product from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the National Aeronautics and Space Administration Terra satellite (23) (Materials and Methods). Here, we show how CUP and GPP_{max} jointly control the spatiotemporal variability of GPP and its response to and recovery from disturbances in different terrestrial ecosystems.

Results and Discussion

Using regression analysis, we first evaluated to what extent the product of CUP and GPP_{max} ($CUP \times GPP_{max}$) explained the variability of satellite-derived GPP over broad temporal and spatial scales. $CUP \times GPP_{max}$ explained 94.9% of the interannual variability of the averaged MODIS GPP across North America from 2000 to 2010, with the minimum annual GPP (678 g C m$^{-2}$ y$^{-1}$) in 2000 and the maximum (748 g C m$^{-2}$ y$^{-1}$) in 2010 (Fig. 1A). The joint control of CUP and GPP_{max} on the interannual variability of GPP was robust in most MODIS grid cells across North America but weak in tropical and Mediterranean climates, such as the

![Fig. 1. Joint control of the temporal variability of satellite-derived annual GPP and the spatial variability of FLUXNET annual GPP by CUP and GPP_{max}. (A) The temporal variability of GPP in North America from 2000 to 2010 can be better understood by splitting annual GPP into GPP_{max} and CUP. The flat color interpolated surface reflects a good relationship between annual GPP and $GPP_{max} \times CUP$ ($R^2 = 0.95$, $P < 0.001$). Vertical lines were added to improve readability. (B) Contribution of $GPP_{max} \times CUP$ to GPP temporal variability over 2000–2010. The contribution in each grid cell was derived from the R^2 in the linear regression analysis between GPP and $GPP_{max} \times CUP$. C and D show relationships between GPP and $GPP_{max} \times CUP$ across FLUXNET sites in forest and nonforest biomes, respectively. Each data point in C and D represents one flux site with average data over different years. CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.](diagram)
Caribbean region and California (Fig. 1B). Spatially, across all FLUXNET sites, although there was no relationship between CUP and GPP\text{max} (SI Appendix, Fig. S1), CUP × GPP\text{max} explained >95% of the spatial variation of annual observed GPP in all biomes (all P < 0.001) (Fig. 1C and D).

The product of CUP and GPP\text{max} also explains the impact of a climate extreme on ecosystem CO\textsubscript{2} uptake. Linear regression analysis showed that the GPP reduction caused by the European heatwave in 2003 (12) across FLUXNET sites was well-explained by CUP × GPP\text{max} (R2 = 0.90, P < 0.001) (Fig. 2A, Inset). However, CUP and GPP\text{max} played different roles in heatwave-induced GPP reduction among sites. For example, the reduction in annual GPP mainly resulted from a decrease of GPP\text{max} (−37%) for a beech forest in Sarrebourg, France but a shortening of CUP (−11%) for a spruce site in Tharandt, Germany (Fig. 2A).

We also analyzed the dynamics of satellite-derived annual GPP, CUP, and GPP\text{max} during recovery from a wildfire that occurred on August 24, 2000 in the Black Hills National Forest in South Dakota (24) (SI Appendix, Fig. S2). Although GPP\text{max} and CUP followed contrasting postfire trajectories, the recovery trajectory of annual GPP was well-captured by the product of CUP and GPP\text{max} (R2 = 0.88, P < 0.001) (Fig. 2B). Immediately after the fire, GPP was sharply reduced by 27% in 2001 (624 g C m-2 year-1) and 28% in 2002 (636 g C m-2 year-1) relative to GPP before the disturbance in 2000 (858 g C m-2 year-1). Thereafter, annual GPP gradually recovered to 816 g C m-2 year-1 in 2010 (Fig. 2B). The dynamics of GPP\text{max} after the fire paralleled those of annual GPP, with 40% and 36% reduction in 2001 and 2002, respectively, and then gradual recovery to 89% of prefire levels in 2010. In contrast, the CUP was extended by 30 to 60 days from 2000 (219 d) and then gradually shortened and returned to predisturbance values (Fig. 2B). The rapid extension of the CUP may have resulted from the return of grass in spring after fire disturbance (25).

Not only did the product of CUP and GPP\text{max} capture the variability in annual GPP over space and time and after disturbances, but the ratio α between annual GPP and CUP × GPP\text{max} also converged across a broad range of vegetation types and environmental conditions (Fig. 3). The most frequent value of α was 0.62, with 90% of α-values falling within a range from 0.61 to 0.76 (Fig. 3A) based on an analysis of 213 FLUXNET sites. Those sites with α > 0.76 were mainly located in tropical and subtropical climate zones (Fig. 3A and SI Appendix, Fig. S3). The analysis of the MODIS product showed a similar convergence of α over North America (Fig. 3B), with the most frequent value of 0.62 and a 90% range from 0.61 to 0.83. To explore the spatial distribution of α, we mapped the mean annual GPP, CUP, GPP\text{max} and α over 2000-2010. Although annual GPP, CUP, and GPP\text{max} showed great spatial variability (SI Appendix, Fig. S4), α was relatively constant around 0.62 in most areas at a latitude of 37° N northward and gradually approached 1.0 toward the tropical regions of North America (Fig. 3C). Across North America, the temporal linear correlation between CUP × GPP\text{max} and annual GPP was the highest in regions with α around 0.62 and gradually reduced with the ratio α approaching 1.0 (Fig. 3D).

High α-values were mainly distributed in tropical evergreen forest and regions with multiple growing seasons, where GPP\text{max} and CUP exert weak controls over GPP variability (Fig. 3A, Inset). Values of α were high in tropical evergreen ecosystems, because GPP seasonality and amplitude were minimal, with plants assimilating CO\textsubscript{2} all year round. For example, daily GPP varied minimally across seasons in a tropical rain forest in Brazil (SI Appendix, Fig. S1.3.1), with α ranging between 0.77 and 0.80 from 2001 to 2003. The nontropical regions with high α-values usually have two or more peaks of daily GPP within a single year. For example, the Vevey site in France, which is comprised of a maritime pine forest, had two separate GPP peaks in late May and September of 2005 (SI Appendix, Fig. S5). This phenomenon may also occur in Mediterranean regions with hot and dry summers (26) or double/triple cropping systems, where two or more crops are grown within a single year, such as winter wheat during winter and maize during summer in the North China Plain (27). Seasonally water-limited regions where two growing season peaks are present are widely distributed in the southern part of North America, leading to an abrupt increase in α at latitudes lower than about 30° N (Fig. 3C).

The decomposition of annual GPP into GPP\text{max} and CUP allowed us to investigate the relative importance of GPP\text{max} and CUP individually in regulating annual GPP variability among/within biomes (Fig. 4). The linear correlation analysis across eight noncrop biomes showed that the biome-level GPP variability was significantly correlated to the variations in both GPP\text{max} (r2 = 0.79, P = 0.003) (Fig. 4B) and CUP (r2 = 0.64, P = 0.017) (Fig. 4C). The partial correlation analysis across noncrop biomes revealed a larger contribution of GPP\text{max} (partial r2 = 0.78, P = 0.004) than CUP (partial r2 = 0.21, P < 0.001) to GPP variability. A more important role of GPP\text{max} than CUP in explaining the spatial variability of FLUXNET GPP was found within most biome types, including grassland (partial r2 = 0.70, P = 0.005), shrubland (partial r2 = 0.52, P = 0.005), savanna (partial r2 = 0.89, P = 0.001), wetland (partial r2 = 0.91, P < 0.001), and all forest types (partial r2 = 0.79–0.87, all P < 0.01) (SI Appendix, Fig. S6 and Table S2). A recent analysis has found that temperature and precipitation changes impact the net primary productivity of woody plant ecosystems mainly through their effects on growing season length, standing biomass, and stand age (28). Thus, standing biomass and stand age might be very important determinants of GPP\text{max} in forest ecosystems.

The joint control of GPP\text{max} and CUP on GPP variability indicates that environmental changes influence annual GPP by simultaneously affecting vegetation phenology and photosynthetic capacity. For example, climate warming leads to greater ecosystem CO\textsubscript{2} uptake by extending CUP in most cold regions (7, 17, 29) but could reduce ecosystem CO\textsubscript{2} uptake when
the GPP$_{\text{max}}$ is suppressed by the reduced snow melt water in spring (30, 31). Similarly, a recent analysis showed that warming-induced earlier springs reduced summer peak productivity during 1982–2008 in the North American boreal forests (32), which may have contributed to the declining trend of vegetation productivity associated with the climatic warming at northern high latitudes in the past few decades (33).

Given that simulated global GPP and its sensitivity to environmental factors vary substantially among current terrestrial biosphere models (13, 34), the findings in this study suggest that such uncertainty could largely stem from the different representations of vegetation phenology and photosynthetic capacity in the models. For example, although numerous vegetation phenology models have been developed for different biomes over the past few decades (35, 36), some existing terrestrial biosphere models poorly represent vegetation phenology in North America (8). Moreover, in those models, vegetation photosynthetic capacity may be unrealistically limited by the fixed parameterization of maximum rate of carboxylation (37), with observations indicating substantial temporal and spatial variations in maximum carboxylation (38, 39). Broadly collected vegetation phenology data derived from observations (40, 41), remote sensing (42, 43), and digital repeat photography (44, 45) as well as additional mechanistic understanding of canopy photosynthetic capacity (39, 46–48) could be useful to diagnose or benchmark model performances of simulating GPP (49).

Because the GPP$_{\text{max}}$ and CUP estimates were derived from existing data, our approach cannot be used for GPP prediction unless GPP$_{\text{max}}$ and CUP can be inferred from other indicators. We first examined whether GPP$_{\text{max}}$ derived from MODIS GPP data was comparable with that measured by the flux towers in North America. We found that, although the two datasets had different spatial and temporal scales, the GPP$_{\text{max}}$ estimates from MODIS data were close to those from FLUXNET data at most sites with low GPP$_{\text{max}}$ (SI Appendix, Fig. S7). The FLUXNET data had much higher GPP$_{\text{max}}$ than MODIS data, mainly in the cropland sites with high GPP$_{\text{max}}$ (SI Appendix, Fig. S7). In addition to FLUXNET data, the maximum monthly sun-induced chlorophyll fluorescence data could be useful to estimate GPP$_{\text{max}}$ globally (50). We also examined whether the MODIS-derived CUP can be inferred from other types of satellite-derived datasets, such as the daily record of freeze/thaw status across North America (SI Appendix, section 1.8). We found that the MODIS-derived CUP is strongly correlated with the photosynthetically active period estimated from the freeze/thaw status data at most latitudes (SI Appendix, Fig. S8). The freeze/thaw status data can only provide information where the soil actually freezes in winter, partially leading to the disagreement between the two datasets in tropical regions (SI Appendix, Fig. S8). Thus, Eq. 1 could be useful for estimating and predicting annual GPP if both CUP and GPP$_{\text{max}}$ can be inferred from biotic and abiotic drivers measured at a global scale, the topic of a substantial body of ongoing research (15, 51).

In summary, we found a simple proximate cause to explain variation in annual GPP (i.e., Eq. 1) over space and time, in response to a climate extreme, and during recovery after disturbance.

Fig. 3. The relationship between annual GPP and the product of CUP and GPP$_{\text{max}}$ (i.e., α) from FLUXNET and satellite-derived data. The relationship between annual GPP and CUP \times GPP$_{\text{max}}$ is shown across (A) all FLUXNET site-years and (B) all 0.1° × 0.1° land grids in North America. C shows spatial distributions of satellite-derived α, and D shows the relationship between α and the explanation of GPP$_{\text{max}}$ × CUP on temporal variability of annual GPP (R^2) (Fig. 1B) in North America. A, Inset and B, Inset show the relative frequency distribution of estimated α from all FLUXNET site-years and MODIS GPP data, respectively. The white bars are data from tropical and subtropical climate (including Mediterranean) zones and site-years with multiple GPP peaks, whereas the black bars are data from the rest of the site-years. C, Inset shows the latitudinal pattern of α with a 0.1° interval. CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; GRA, grassland; NF, needleleaf forest; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
The representation of interannual and spatial variations in GPP by the product of CUP and GPP$_{\text{max}}$ was strong in those ecosystems with α-values close to 0.62 but weaker toward the tropics or in seasonally water-limited regions, where α-values approached 1.0. The strong correlation of annual GPP with the product of CUP and GPP$_{\text{max}}$ in several different ecosystem types may be useful in detecting shifts in vegetation state and for monitoring short- and long-term response of GPP to extreme climate conditions and disturbances. Given that GPP$_{\text{max}}$ better explains GPP variability than CUP, future studies need to emphasize the regulatory mechanisms for the dynamics of ecosystem photosynthetic capacity in terrestrial ecosystems.

Materials and Methods

GPP estimates (positive GPP means CO$_2$ uptake) from 213 FLUXNET sites from the La Thuile Database (www.fluxdata.org/default.aspx) (SI Appendix, Table S1) and the MODIS aboard National Aeronautics and Space Administration Terra satellites (MOD17A2 GPP) were used in the analyses (SI Appendix, section S1.1). For FLUXNET sites, only those site-years with $>$300 daily estimates were chosen from the database. Because the MODIS GPP product was well-evaluated in North America (52), we only performed our analysis on MODIS GPP in this region from 2000 to 2010.

The determinations of CUP and GPP$_{\text{max}}$ were from the method introduced by Gu et al. (53, 54) (SI Appendix, section S1.2). The CUP, GPP$_{\text{max}}$ and the ratio between annual GPP and CUP \times GPP$_{\text{max}}$, i.e., α, were estimated for each selected FLUXNET site and each 0.1° x 0.1° land grid cell of the MODIS product by the following steps (SI Appendix, section S1.3). (i) We judged if the site-year or grid cell is evergreen or not by counting the number of days with larger daily GPP than a given value (a site or land grid cell was defined as evergreen if there were more than 360 d with daily GPP $>$ 1 g C m$^{-2}$ d$^{-1}$ within 1 y). (ii) The number of seasons in the nonevergreen site-years or land grid cells was determined by a model function (SI Appendix, section S1.3 and Eq. S6) suggested by the TIMESAT software (55). For those site-years and grid cells with one season, we fitted a five-parameter Weibull function to the temporal and spatial variations of annual GPP. The global daily record of landscape freeze/thaw data from January 1, 2000 to December 31, 2010 was analyzed for an additional indicator of CUP (SI Appendix, section S1.8). To further identify the relative contribution of GPP$_{\text{max}}$ and CUP to GPP variability, we first linearized Eq. 1 by replacing all variables with their logarithms (base 10) as

$$\log(GPP) = \log(\alpha) + \log(CUP) + \log(GPP_{\text{max}})$$

Then, we applied the partial correlation analysis to examine the relative contributions of CUP and GPP$_{\text{max}}$ to FLUXNET GPP variability among and within biomes.

ACKNOWLEDGMENTS. We thank the anonymous reviewers and Steven Running for their constructive comments and suggestions, and Lianhong Gu and Ying-Ping Wang for their help in data analyses. The eddy covariance database used in this study was the outcome of the La Thuile FLUXNET (a global network of micrometeorological tower sites) Workshop 2007, which was supported by the Office of Science, US Department of Energy for AmeriFlux, CarboEuropeIP, FAP-GTOS-TCO (Food and Agriculture Project - Global Terrestrial Observing System - Terrestrial Carbon Observations), iLEAPS (Intergated Land Ecosystem - Atmosphere Processes Study), NitroEurope, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval, and Environment Canada, and database development and technical support were from the Berkeley Water Center, the Lawrence Berkeley National Laboratory, and Microsoft Research eScience. The data were mainly acquired by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Programs DE-FG02-04ER63917 and DE-FG02-04ER63911), GHG-Europe (Greenhouse gas management in European land use systems), SOERE (Système d’Observation et d’Expérimentation sur le long terme pour la Recherche en Environnement) FORE-T (Fonctionnement des écosystèmes forestiers) Fluxnet-Canada Research Network and Canadian Carbon Program (supported by CFCAS (Canadian Foundation for Climate and Atmospheric Sciences), NSERC (Natural Sciences and Engineering Council of Canada), BIOCAP (Biosphere Implications of CO2 Policy in Canada), Environment Canada, and NRCan (Natural Resources Canada), GreenGrass, KoFlux, LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia), NECC (North Equatorial Countercurrent), OzFlux, TCOs-Siberia (Terrestrial Carbon Observation System Siberia), and USCCS (US-China Carbon Consortium). This work was financially supported by US Department of Energy, Terrestrial Ecosystem Sciences Grant DE SC0008270 and National Science Foundation Grants DEB 0743778, DEB 0840964, EPS 0919466, EF 1137293, and IIA-1301789.