PSP5 2014
Facing Phosphorus Scarcity
Phosphorus in Soils and Plants
Challenges and opportunities on the use of biofertilizers: Examples from Senegal and Kenya

Aliou Faye 1, K. Ndung’u-Magiroi 2, J. Jefwac 3, Y. Dalpé 4, I. Ndoyee 5, M. Dioufa 5, Ma Diop 5, Didier Lesueur 6

1. ISRA-Centre National de Recherches Agronomiques BP 53, Bambey, Senegal
2. Kenyan Agricultural Research Institute (KARI); Kitale Research Centre
3. Tropical Soil Biology and Fertility; Institute of CIAT, UN Ave, ICRAF Nairobi, Kenya
4. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada. 960 Carling Ave Ottawa, K1A 0C6 Canada
5. UCAD, Faculté des Sciences et Techniques, Département de biologie végétale, BP 5005 Dakar, Sénégal
6. CIRAD, UMR Eco&Sols (CIRAD-IRD-INRA-SupAgro), Land Development Department, 2003/61 Paholyothin Road, Lardyao Chatuchak, Bangkok 10900 Thailand

Not only phosphorus (P) bioavailable in soil is very low but phosphate fertilizing efficiency is also low. Consequently, annual world P demand increases predicting phosphorus stock end in the coming 125 years. In addition to that, the high cost of chemical fertilizers obliges most Sub Sahara African smallholder farmers to do not use fertilizers which ultimately results in poor yields. In this paper, we present opportunities and challenges of using biofertilizers as sustainable way of alleviating soil P deficiency effects in Kenya and Senegal. In Kenya where soil P deficiency has been identified as the biggest challenge of crop productivity increases, we share results on the use of commercialized arbuscular mycorrhizal inoculants to replenish soil P. While in Senegal known having huge quantities of P rock deposit and important quantities of feed stock material that can be charred (biochar), we present results on the capacities of biochar to improve P availability for plant cultivated in sandy soil. Results from both countries show that current expectations on the use of biofertilizers are numerous and justified. However challenges on sustainable agriculture through the use of the called bio fertilizers especially mycorrhizal inoculants and biochar are still ahead.

Do nitrogen-fixing plants show higher root phosphatase activity on phosphorus-poor soils?

Guochen K. Png 1, Etienne Laliberté 1, Patrick E. Hayes 1, Hans Lambers 1, Benjamin L. Turner 1,2

1. School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
2. Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama

Symbiotic dinitrogen (N2) fixation in N2-fixing plants may enhance plant performance on N-poor soils, but may not be favoured on phosphorus- (P) poor soils, due to its high P costs. Yet surprisingly, N2-fixing species are abundant in ecosystems with N-rich soils such as lowland tropical rainforests, where P is likely to limit plant growth. A prominent hypothesis seeking to explain this paradox is that N2-fixing plants have a greater ability to acquire organic P through higher root phosphatase activity. However, evidence to support this hypothesis remains limited. We measured extracellular root phosphomonoesterase (PME) activity from 18 species of N2-fixing (including legumes and non-legume Allocasuarina spp.) and non-N2-fixing species along a soil age gradient in Western Australia that shows a ~40-fold decline in total soil [P] from the youngest to the oldest soils, leading to some of the most P-impooverished soils found in any terrestrial ecosystem. In support of the hypothesis, we found that N2-fixing legumes had higher PME activity than co-occurring non-legumes on all sites, and that the difference in PME activity between legumes and non-legumes increased with declining soil [P]. However, PME activities of N2-fixing Allocasuarina spp. (which form associations with Frankia) were consistently low across all soils, which do not support the hypothesis. We conclude that the high root phosphatase activity of legumes on P-poor soils is likely a phylogenetically conserved trait that is not necessarily linked to their N2-fixing ability.