Agritrop
Home

Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus

Delteil Amandine, Gobbato Enrico, Cayrol Bastien, Estevan Joan, Michel-Romiti Corinne, Dievart Anne, Kroj Thomas, Morel Jean-Benoit. 2016. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biology, 16 (17), 10 p.

Journal article ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Preview
Published version - Anglais
Use under authorization by the author or CIRAD.
AOI - Delteil-Morel - BMC Plant Biology - 2016-16-1 .pdf

Télécharger (1MB) | Preview

Quartile : Q1, Sujet : PLANT SCIENCES

Abstract : Background Receptor-like kinases are well-known to play key roles in disease resistance. Among them, the Wall-associated kinases (WAKs) have been shown to be positive regulators of fungal disease resistance in several plant species. WAK genes are often transcriptionally regulated during infection but the pathways involved in this regulation are not known. In rice, the OsWAK gene family is significantly amplified compared to Arabidopsis. The possibility that several WAKs participate in different ways to basal defense has not been addressed. Moreover, the direct requirement of rice OSWAK genes in regulating defense has not been explored. Results Here we show using rice (Oryza sativa) loss-of-function mutants of four selected OsWAK genes, that individual OsWAKs are required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. While OsWAK14, OsWAK91 and OsWAK92 positively regulate quantitative resistance, OsWAK112d is a negative regulator of blast resistance. In addition, we show that the very early transcriptional regulation of the rice OsWAK genes is triggered by chitin and is partially under the control of the chitin receptor CEBiP. Finally, we show that OsWAK91 is required for H2O2 production and sufficient to enhance defense gene expression during infection. Conclusions We conclude that the rice OsWAK genes studied are part of basal defense response, potentially mediated by chitin from fungal cell walls. This work also shows that some OsWAKs, like OsWAK112d, may act as negative regulators of disease resistance. (Résumé d'auteur)

Mots-clés Agrovoc : Magnaporthe grisea, Oryza sativa, Résistance aux maladies, Résistance génétique, Expression des gènes, Mécanisme de défense cellulaire, Kinase, Chitine, Mutation, Mutant, Analyse quantitative, Interactions biologiques, Fonction physiologique, Immunité, Génie génétique, PCR, Transcription génique, Transfert de gène, Arabidopsis thaliana

Mots-clés géographiques Agrovoc : France

Classification Agris : H20 - Plant diseases
F30 - Plant genetics and breeding
F60 - Plant physiology and biochemistry

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Delteil Amandine, INRA (FRA)
  • Gobbato Enrico, INRA (FRA)
  • Cayrol Bastien, CIRAD-BIOS-UMR AGAP (FRA)
  • Estevan Joan, INRA (FRA)
  • Michel-Romiti Corinne, INRA (FRA)
  • Dievart Anne, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-9460-4638
  • Kroj Thomas, INRA (FRA)
  • Morel Jean-Benoit, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/579118/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-28 ]