Plant functional traits have globally consistent effects on competition

Kunstler Georges, Falster Daniel S., Coomes David A., Hui Francis, Kooyman Robert, Laughlin Daniel C., Poorter Lourens, Vanderwel Mark, Vieilledent Ghislain, Wright S. Joseph, Aiba Masahiro, Baraloto Christopher, Caspersen John, Cornelissen J. Hans C., Gourlet-Fleury Sylvie, Hanewinkel Marc, Hérault Bruno, Kattge Jens, Kurokawa Hiroko, Onoda Yusuke, Peñuelas Josep, Poorter Hendrik, Uriarte Maria, Richardson Sarah, Ruiz-Benito Paloma, Sun I-Fang, Ståhl Göran, Swenson Nathan G., Thompson Jill, Westerlund Bertil, Wirth Christian, Zavala Miguel A., Zeng Hongcheng, Zimmerman Jess K., Zimmermann Niklaus E., Westoby Mark. 2016. Plant functional traits have globally consistent effects on competition. Nature, 529 (7585) : pp. 204-207.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Kunstler et al. - 2015 - Plant functional traits have globally consistent effects on competition.pdf

Télécharger (1MB) | Request a copy


Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Economie-gestion; Psychologie-éthologie-ergonomie

Abstract : Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions1, 2, 3, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear4. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies5. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition. (Résumé d'auteur)

Mots-clés Agrovoc : forêt tropicale, Compétition végétale, Écosystème forestier, Composition botanique, Phénotype, Surface foliaire, Densité, Bois, Croissance, Dynamique des populations, Modèle mathématique, Mesure, Physiologie végétale, Espacement, Intéraction génotype environnement

Mots-clés géographiques Agrovoc : Monde

Mots-clés complémentaires : Surface terrière

Mots-clés libres : Competition, Tree, Coexistence, Functional traits

Classification Agris : K01 - Forestry - General aspects
F40 - Plant ecology
F62 - Plant physiology - Growth and development

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Kunstler Georges, IRSTEA (FRA)
  • Falster Daniel S., Macquarie University (AUS)
  • Coomes David A., University of Cambridge (GBR)
  • Hui Francis, ANU (AUS)
  • Kooyman Robert, Macquarie University (AUS)
  • Laughlin Daniel C., University of Waikato (NZL)
  • Poorter Lourens, Wageningen University (NLD)
  • Vanderwel Mark, University of Regina (CAN)
  • Vieilledent Ghislain, CIRAD-ES-UPR BSef (ITA) ORCID: 0000-0002-1685-4997
  • Wright S. Joseph, Smithsonian Tropical Research Institute (PAN)
  • Aiba Masahiro, Tohoku University (JPN)
  • Baraloto Christopher, Florida International University (USA)
  • Caspersen John, University of Toronto (CAN)
  • Cornelissen J. Hans C., Vrije Universiteit (NLD)
  • Gourlet-Fleury Sylvie, CIRAD-ES-UPR BSef (FRA) ORCID: 0000-0002-1136-4307
  • Hanewinkel Marc, Swiss Federal Research Institute (CHE)
  • Hérault Bruno, CIRAD-ES-UMR Ecofog (GUF) ORCID: 0000-0002-6950-7286
  • Kattge Jens, Max Planck Institut für Biogeochemie (DEU)
  • Kurokawa Hiroko, Tohoku University (JPN)
  • Onoda Yusuke, Kyoto University (JPN)
  • Peñuelas Josep, CSIC (ESP)
  • Poorter Hendrik, Centre de recherche de Jülich (DEU)
  • Uriarte Maria, Columbia University (USA)
  • Richardson Sarah, Landcare Research (NZL)
  • Ruiz-Benito Paloma, University of Stirling (GBR)
  • Sun I-Fang, University of Maryland (USA)
  • Ståhl Göran, Swedish University of Agricultural Sciences (SWE)
  • Swenson Nathan G., University of Maryland (USA)
  • Thompson Jill, Universidad de Puerto Rico (PRI)
  • Westerlund Bertil, Swedish University of Agricultural Sciences (SWE)
  • Wirth Christian, University of Leipzig (DEU)
  • Zavala Miguel A., Universidad de Alcalá (ESP)
  • Zeng Hongcheng, University of Toronto (CAN)
  • Zimmerman Jess K., Universidad de Puerto Rico (PRI)
  • Zimmermann Niklaus E., Swiss Federal Research Institute (CHE)
  • Westoby Mark, Macquarie University (AUS)

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-05-10 ]