Agritrop
Home

Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa

Leroux Louise, Baron Christian, Zoungrana Bernardin, Traore Seydou, Lo Seen Chong Danny, Bégué Agnès. 2016. Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (1) : pp. 347-362.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Lerouxetal_JSTARS_2016.pdf

Télécharger (3MB) | Request a copy

Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY / Quartile : Q2, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q2, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q2, Sujet : REMOTE SENSING

Abstract : For the semiarid Sahelian region, climate variability is one of the most important risks of food insecurity. Field experimentations as well as crop modeling are helpful tools for the monitoring and the understanding of yields at local scale. However, extrapolation of these methods at a regional scale remains a demanding task. Remote sensing observations appear as a good alternative or addition to existing crop monitoring systems. In this study, a new approach based on the combination of vegetation and thermal indices for rainfed cereal yield assessment in the Sahelian region was investigated. Empirical statistical models were developed between MODIS NDVI and LST variables and the crop model SARRA-H simulated aboveground biomass and harvest index in order to assess each component of the yield equation. The resulting model was successfully applied at the Niamey Square Degree (NSD) site scale with yield estimations close to the official agricultural statistics of Niger for a period of 11 years (2000–2011) ($r = 0.82,;text{p-value} < 0.05$). The combined NDVI and LST indices-based model was found to clearly outperform the model based on NDVI alone ($r = 0.59,;text{p-value} < 0.10$). In areas where access to ground measurements is difficult, a simple, robust, and timely satellite-based model combining vegetation and thermal indices from MODIS and calibrated using crop model outputs can be pertinent. In particular, such a model can provide an assessment of the year-to-year yield variability shortly after harvest for regions with agronomic and climate characteristics close to those of the NSD study area. (Résumé d'auteur)

Mots-clés géographiques Agrovoc : Niger, Sahel, Afrique occidentale

Classification Agris : F62 - Plant physiology - Growth and development
U10 - Mathematical and statistical methods

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Leroux Louise, CIRAD-PERSYST-UPR AIDA (FRA) ORCID: 0000-0002-7631-2399
  • Baron Christian, CIRAD-ES-UMR TETIS (FRA)
  • Zoungrana Bernardin, AGRHYMET (NER)
  • Traore Seydou, CIRAD-ES-UMR TETIS (FRA)
  • Lo Seen Chong Danny, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-7773-2109
  • Bégué Agnès, CIRAD-ES-UMR TETIS (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/579479/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-10-13 ]