Agritrop
Home

Dynamique évolutive de Ralstonia solanacearum en réponse aux pressions de sélection de l'aubergine résistante : approche populationnelle, de génétique évolutive et fonctionnelle de la durabilité de la résistance

Guinard Jérémy. 2015. Dynamique évolutive de Ralstonia solanacearum en réponse aux pressions de sélection de l'aubergine résistante : approche populationnelle, de génétique évolutive et fonctionnelle de la durabilité de la résistance. Saint-Denis : Université de la Réunion, 415 p. Thèse de doctorat : Sciences. Génétique des populations, phytopathologie, bactériologie, épidémiologie moléculaire : Université de la Réunion

Thesis
[img] Published version - Français
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Guinard thèse.pdf

Télécharger (15MB) | Request a copy

Encadrement : Poussier, Stéphane ; Wicker, Emmanuel

Abstract : Ralstonia solanacearum, une béta-proteobactérie d'origine tellurique, est l'une des phytobactérioses les plus nuisibles au niveau mondial. Cette bactérie est capable d'infecter plus de 250 espèces différentes dont certaines présentent un intérêt économique majeur (tomate, pomme de terre, tabac). R. solanacearum est divisée en 4 phylotypes distincts présentant des origines géographiques différentes : I (asiatique), IIA et IIB (américain), III (africain), IV (indonésien). Parmi ces phylotypes, le phylotype I est en expansion démographique, hautement recombinogène, réparti mondialement et possède une large gamme d'hôtes. Il possède donc un fort potentiel évolutif (sensu McDonald et Linde, 2002). Afin de contrôler cette bactérie, la lutte génétique reste la méthode la plus prometteuse : elle consiste à déployer des cultivars possédant différents sources de résistance (i.e., des gènes de résistance). La variété d'aubergine AG91-25 (E6) possède un gène majeur de résistance (ERs1) lui permettant de contrôler certaines souches de R. solanacearum de phylotype I. Cependant, la gestion de cette résistance requiert d'étudier au préalable sa durabilité afin d'en éviter le contournement. Cette durabilité peut être estimée en étudiant le potentiel évolutif d'un agent pathogène face à cette source de résistance, ainsi qu'en décryptant les mécanismes moléculaires de l'interaction entre l'hôte (gène R) et le pathogène (effecteur de types trois). Afin d'étudier la dynamique évolutive de R. solanacearum sous une pression de sélection exercée par la variété résistante E6, nous avons mis en place un essai d'évolution expérimentale au champ. Cet essai est composé de trois couples de microparcelles d'aubergines résistantes E6 et d'aubergines sensibles E8, implantées deux fois par an, pendant trois ans (soit 5 cycles). Un schéma MLVA ("Multi-Locus VNTR Analysis") composé de 8 loci minisatellites a été développé afin de caractériser les souches extraites de ces cycles de cultures. Ces VNTR sont spécifiques aux souches de R. solanacearum de phylotype I, hautement polymorphes et discriminants à toutes les échelles : mondiale, régionale et locale. Nos résultats démontrent une absence de contournement de la résistance d'E6 par les populations parcellaires de R. solanacearum, confirmant le caractère durable de cette résistance. Cette variété aurait fortement réduit les populations bactériennes du sol, ne leur permettant plus d'infecter l'hôte résistant. Parallèlement, 100% des plants d'E8 sont morts à partir du cycle 2. La maladie au sein des microparcelles semble progresser selon une dynamique de "plante-à-plante". Une baisse de la diversité génétique a aussi été observée au cours des cycles de culture répétés d'E8, associée à l'augmentation en fréquence de deux haplotypes. Cependant, aucune structuration génétique claire n'a été observée à l'échelle de la parcelle entière ou de la microparcelle. En revanche, les données d'isolement par la distance semblent indiquer qu'une structure spatiale semble être en cours d'établissement. L'ensemble de nos résultats suggère une structure épidémique clonale de nos populations parcellaires. Nous nous sommes aussi intéressés à l'implication de 10 ET3 dans l'interaction R. solanacearum vs aubergine résistante (E6). La distribution des 10 ET3 candidats est variable au sein d'une collection de souches phylogénétiquement diverses (91 souches) : ripAJ et ripE1 sont les ET3 les plus partagés alors que ripP1 et ripP2 sont les moins fréquemment. Certains ET3 présentent peu (ripAJ ) voire pas ( ripE1 et ripP2 ) de polymorphisme de taille, alors que d'autres (ripAU) sont extrêmement polymorphes. Cependant la composition en effecteurs d'une souche ne semble pas être corrélée à un phénotype sur aubergine E6. Nous avons identifié le gène d'effecteur ripAX2 comme ayant une fonction d'avirulence sur aubergine résistante E6. Sa reconnaissance par E6 semble s'opérer au niveau de la zone hypocotylaire. Cependant, la variabilité de cet effecteur ainsi que son environnement génomique ne semblent pas être associés à la virulence des souches de R. solanacearum sur E6. (Résumé d'auteur)

Résumé (autre langue) : Ralstonia Solanacearum is a soilborn beta-proteobacterium responsible of bacterial wilt on Solanaceaous crops. This bacterium is considered as one of the most harmful plant disease worldwide. This bacterium possesses the ability to infect more than 250 different species, including crops with major economic importance (tomato, potato, tobacco, eucalyptus...). R. solanacearum is divided into four phylotypes originated from different areas: I (Asian), IIA and IIB (American), III (African), IV (Indonesian). Among these phylotype, phylotype I is currently in demographic expansion, is highly recombinogenic and has a wide hosts range. Thus, altogether, these characteristics demonstrated that this phylotype has a high evolutionary potential (sensu McDonald and Linde, 2002). In order to control this bacterium, genetic plant resistance seems to be the most promising method. This method consists in using cultivars with different source of resistance such as resistance genes and/or resistant QTLs. The AG91-25 (E6), an eggplant cultivar possessing a major resistance gene (ERs1), is capable to control some of phylotype I strains of R. solanacearum. However, in order to optimize the management of this resistance and to avoid its fast breakdown, we need to deeply investigate the durability of this resistant gene. Durability can be estimated by studying the evolutionary potential of our pathogen faced to E6 source of resistance and by understanding the molecular mechanisms underlying the interaction between the host (R gene) and its pathogene (Type III Effector – T3E). In order to study R. solanacearum evolutionary dynamics under selective pressure from E6 resistant cultivar, we set up an experimental evolution trial in the field. This trial consisted of three couples of resistant (E6) and susceptible eggplants (E8) microplots, implanted twice a year during three years, hence consisting of 5 cycles. A Multi-Locus VNTR Analysis (MLVA) scheme, consisting of 8 minisatellite loci, was developed in order to characterize the strains extracted from these crop cycles. These VNTRs were specific to R. solanacearum phylotype I strains, they were highly polymorphic and discriminatory at different scale: globally, regionally and locally. Our results showed no breakdown of E6 resistance by R. solanacearum populations, which confirms that this resistance is durable. It seemed that this cultivar reduced the soil bacterial population, preventing bacterial population to infest the resistant host. At the same time, 100% of the E8 plants have died, starting at cycle 2. Bacterial wilt seemed to spread with a "plant-to-plant" dynamics within each microplot. Genetic diversity reduction was also observed during the successive cycle of susceptible eggplant, associated with the increase of frequency of two main haplotypes. However, we failed to identify a clear genetic structuration, neither at the plot scale nor at the microplot scale. Nevertheless, isolation-by-distance data seemed to show that a spatial structure is currently establishing. Altogether, our results suggested that our plot populations appeared to have a clonal epidemic structure. We also looked into 10 T3Es' involvement in the interaction between R. solanacearum and the resistant eggplant (E6). Their distribution was completely different within a collection of phylogenetically diverse strains (91 strains): ripAJ and ripE1 are the most shared T3Es whereas ripP1 and ripP2 were the less common T3E whithin our collection of strains. Some T3Es showed few (ripAJ) or no length polymorphism at all (ripE1 and ripP2) whereas some other (ripAU) are extremely polymorphic. Nevertheless, the T3E effector repertoire did not seemed to be correlated to a specific phenotype on E6 eggplant. Yet, we identified the effector gene ripAX2 as having avirulence function on E6 resistant eggplant. Its recognition by E6 seemed to occur in the hypocotyle region rather than in the mesophyll, highlighting a possible organ-specificity of the interaction between ERs1 and ripAX2. However, this effector variability and its genomic environment did not seem to be associated with the R. solanacearum strains virulence on E6. (Résumé d'auteur)

Mots-clés Agrovoc : Ralstonia solanacearum, Solanum melongena, Résistance génétique, Durabilité, Épidémiologie, Génétique, Gène, Effecteur moléculaire, Évolution, Expérimentation au champ, Flétrissement, Pouvoir pathogène, Avirulence, Interactions biologiques, Dynamique des populations

Mots-clés géographiques Agrovoc : Réunion

Mots-clés complémentaires : Structure génétique

Mots-clés libres : Ralstonia solanacearum, Flétrissement bactérien, Épidémiologie moléculaire, Structure, Génétique, Effecteur de type III, Répertoire de gènes, MLVA

Classification Agris : H20 - Plant diseases
F30 - Plant genetics and breeding

Axe stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Guinard Jérémy, CIRAD-BIOS-UMR PVBMT (REU)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/580302/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2019-10-03 ]