Agritrop
Home

Plant identification: man vs. machine. LifeCLEF 2014 plant identification challenge

Bonnet Pierre, Joly Alexis, Goeau Hervé, Champ Julien, Vignau Christel, Molino Jean-François, Barthélémy Daniel, Boujemaa Nozha. 2016. Plant identification: man vs. machine. LifeCLEF 2014 plant identification challenge. Multimedia Tools and Applications, 75 (3) : pp. 1647-1665.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
580350.pdf

Télécharger (3MB) | Request a copy

Quartile : Q2, Sujet : COMPUTER SCIENCE, THEORY & METHODS / Quartile : Q2, Sujet : COMPUTER SCIENCE, SOFTWARE ENGINEERING / Quartile : Q3, Sujet : ENGINEERING, ELECTRICAL & ELECTRONIC / Quartile : Q3, Sujet : COMPUTER SCIENCE, INFORMATION SYSTEMS

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie

Abstract : This paper reports a large-scale experiment aimed at evaluating how state-of-art computer vision systems perform in identifying plants compared to human expertise. A subset of the evaluation dataset used within LifeCLEF 2014 plant identification challenge was therefore shared with volunteers of diverse expertise, ranging from the leading experts of the targeted flora to inexperienced test subjects. In total, 16 human runs were collected and evaluated comparatively to the 27 machine-based runs of LifeCLEF challenge. One of the main outcomes of the experiment is that machines are still far from outperforming the best expert botanists at the image-based plant identification competition. On the other side, the best machine runs are competing with experienced botanists and clearly outperform beginners and inexperienced test subjects. This shows that the performances of automated plant identification systems are very promising and may open the door to a new generation of ecological surveillance systems. (Résumé d'auteur)

Mots-clés Agrovoc : Flore, Plante, Taxonomie, Identification, Banque de données, Photographie, Logiciel, Analyse de données, Méthode statistique

Classification Agris : F70 - Plant taxonomy and geography
U30 - Research methods
U10 - Computer science, mathematics and statistics
C30 - Documentation and information

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
  • Joly Alexis, INRIA (FRA)
  • Goeau Hervé, INRIA (FRA)
  • Champ Julien, INRIA (FRA)
  • Vignau Christel, Tela Botanica (FRA)
  • Molino Jean-François, IRD (FRA)
  • Barthélémy Daniel, CIRAD-DG-Saurs (FRA) ORCID: 0000-0003-3187-2517
  • Boujemaa Nozha, INRIA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/580350/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-01 ]