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Industrial-scale processes currently developed make use of chemical catalysis processes that are 
highly efficient but require very complex product purification steps. Enzymatic catalysis through plant 
lipases as biocatalysts is an alternative which, in contrast to chemical catalysis processes, appeared 
simple to perform, and can be done at low investment cost. Although microbial lipases have been 
extensively studied, little research has been focused on the use of plant lipases namely plant latex 
lipases. The present article outlines the most advanced knowledge concerning plant latex 
characterization in order to show how plant latex can be a promising alternative to catalyze 
transesterification for biodiesel production. This paper provides an overview regarding the main 
aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and 
their industrial applications. 
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INTRODUCTION 
 
Interest in the production of biodiesel a clean renewable 
fuel is increasing worldwide due to the excessive 
increase of petroleum prices and the importance of taking 
environmental concerns into consideration (Mounguengui 
et al., 2013; Sadeghinezhad et al., 2013). Bio-fuel or 
biodiesel is usually identified as ester based fuels 
produced from animal fats or from vegetable oils by using 
an effective transesterification method. Biodiesel carries 
4.5  units   of   energy   against   each   unit  of  fossil  fuel 

(Pradhan et al., 2009). Besides this, biodiesel is safer, 
biodegradable and nontoxic in nature (Mc Carthy et al., 
2011). The mixtures obtained after transesterification are 
composed of fatty acid alkyl monoesters (Robles-Medina 
et al., 2009; Meher et al., 2006) and to be classified as 
“biodiesel”, it must achieve minimum purity and fulfil the 
specifications of international standards (Graboski et al., 
1998), the European standard EN14214 (FAME, 2003) 
and  the   American   standard   ASTM   6751-09  (ASTM, 
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2009). Fatty acid alkyl monoesters may be methyl or 
ethyl esters respectively if the alcohol used is methanol 
or ethanol. Conventional biodiesel production methods 
involve the use of acid or base chemical catalysts via 
homogenous or heterogeneous processes (Marchetti et 
al., 2007; Brunschwig et al., 2011). Downstream 
processing costs and environmental problems associated 
with biodiesel production and byproducts recovery have 
investigated many research teams to develop new 
alternative catalysis processes to replace the 
homogenous catalysis processes generally used in 
industries (Akoh et al., 2007). In contrast, enzymes 
(lipases) allow the production of specific alkyl esters, 
easy recovery of the glycerol, and transesterification of 
TAG with high free fatty acid content (Soumanou et al., 
2012). 

Lipases have become more and more prominent on the 
enzyme biotechnology scenario due to their versatility for 
hydrolysis and synthesis, their catalytic reactions often 
being chemo-selective, regio-selective or enantio-
selective. Lipases are used in many sectors such as the 
food, pharmaceutical, fine chemical, oil chemical, 
biodiesel and industrial detergent industries (Alonso et 
al., 2005). Lipases act, by definition, at the organic-
aqueous interface, catalyzing the hydrolysis of 
estercarboxylate bonds and releasing fatty acids and 
organic alcohols (Pereira et al., 2003; Leal et al., 2002; 
Kamimura et al., 1999; Merçon et al., 1997). However, as 
Pottevin showed for the first time in 1906, in water-
restricted environments, the reverse reaction 
(esterification) or even various transesterification 
reactions can occur (Castro et al., 2000). 

Lipases can be of animal (pancreatic, hepatic and 
gastric), microbial (bacterial, fungal and yeast) or 
vegetable origin, with variations in their catalytic 
properties (Mukherjee and Hills, 1994). To date, microbial 
lipases are the most studied. In fact around 58% of the 
publications of the whole of lipases are devoted to 
microbial lipases, plant lipases are around 42% of 
publications and only 11% of the publications are devoted 
to latex lipases (Google Scholar, 2014). Nevertheless, 
despite the extensive range of microbial lipases, the use 
of these enzymes on an industrial scale is still restricted 
due to high production costs, favoring the search for 
other sources of these enzymes (Parques and Macedo, 
2006). 

The modification of fats and oils by transesterification, 
for instance, can be performed by both chemical and 
enzymatic catalysis. The industrial transesterification 
process is currently performed by chemical means, using 
high temperatures and alkaline metals (KOH, NaOH, HCl, 
H3PO4, H2SO4… etc) as the reaction catalyst (Ribeiro et 
al., 2009; de Araújo et al., 2013). In the enzymatic 
process, lipases can be used as biocatalysts to promote 
the exchange of triacylglycerols, showing greater 
efficiency and leaving no residues (Xu, 2000). For 
example immobilized Candida antarctica lipase has  been 

 
 
 
 
used for ethyl esterification of docosahexanoic acid and 
later used to effect over 98.5% fatty acid methyl ester 
conversion (Fjerbaek et al., 2009). Latex lipases present 
certain advantages since they do not necessarily have to 
be purified in order to perform this and other processes 
(Cambon, 2008). However, several studies have 
indicated that such processes are very expensive due to 
the high cost of purification step (de Castro et al., 2004; 
Noor et al., 2003). Recently, latex lipases have been the 
focus of much attention as biocatalysts. In some cases, 
these enzymes present advantages over animal and 
microbial lipases due to some quite interesting features 
such as specificity, low cost, availability and ease of 
purification, representing a great alternative for potential 
commercial exploitation as industrial enzymes 
(Villeneuve, 2003). 

Although microbial lipases have been extensively 
studied (Kilcawley et al., 2002; Mendes et al., 2012), little 
research has been focused on the use of plant lipases in 
biodiesel production. However, the major drawback for 
plant lipases implementation at large scale is the low 
content of enzyme in the post-germination seeds. 
However, Caricaceae or Euphorbiceae overcome this 
disadvantage as their enzymes are available in large 
amounts stored in their latex (Paques and Macedo, 
2006). 

The aim of this review was to highlight the potential and 
current limitations to the use of plant latex lipases for low-
cost enzymatic catalysis alkyls esters production and 
therefore for a possible application for biodiesel 
production. 
 
 
LATEX SOURCES AND PLANT-BASED LATEX 
 
Latex is an aqueous emulsion or a milky fluid 
(Mounguengui et al., 2013) found in the vacuole of 
specialized secretory cells known as „„laticifers‟‟ (Fahn, 
1982). Some family plants known as laticifers are 
Apocynaceae, Asclepiadaceae, Euphorbiaceae, 
Moraceae and Sapotaceae (Moulin et al., 1994; Palocci 
et al., 2003; Giordani et al., 1991; Villeneuve et al., 2005; 
Dhuique-Mayer et al., 2001, 2003). The laticifers plants 
show intense metabolic activity, with the latex containing 
lipids, rubbers, resins, and sugars, as well as several 
proteins and many different enzymes (that is, 
peroxidases, proteases, esterases, and phosphatases) 
(Fiorillo et al., 2007; El Moussaoui et al., 2001; Lynn and 
Clevette-Radford, 1987). The laticifers plants also show 
secondary metabolic activity directed toward the 
production of defence-related molecules, which 
accumulate in appreciable amounts in the latex. Many 
toxic substances known to be stored in the latex (that is, 
alkaloids, sterols and terpenoids) have been shown to 
have a negative impact on insect feeding and 
phytophage fitness (El Moussaoui et al., 2001). The latex 
thus represents a chemical defence, and the physiological 



 
 
 
 
role of its constituents, including lipolytic enzymes, could 
be related to defence mechanisms (El Moussaoui et al., 
2001). 

The water insoluble fraction of latex shows lipase 
activity. It is now known that lipases contained in latex 
from some plants have catalytic properties and numerous 
industrial applications (Paques and Macedo, 2006). For 
instance, papaya (Carica papaya) latex has already been 
described in the modification of fats and oils (Villeneuve, 
2003; Foglia and Villeneuve, 1997a), in esterification and 
transesterification reactions (Caro et al., 2000), and more 
recently in the resolution of racemic mixtures (Cheng and 
Tsai, 2004). Studies carried out on C. papaya showed 
that its crude latex has a very strong activity on short-
chain triacylglycerol (TAG) and sn3 stereoselectivity in 
hydrolysis reactions of chiral TAG substrates (Villeneuve 
et al., 1995). These observations led to industrial use of 
this latex in particular applications, such as the synthesis 
of low-calorie triacylglycerols (Foglia and Villeneuve, 
1997a) or medium-chain TAG (Caro et al., 2004). These 
results have prompted interest in other latex plant 
extracts, in particular, the unripe fruit of the babaco plant 
(Vasconcellea X Heilbornii cv., ex Carica pentagona 
Heilbornii) (Kyndt et al., 2005), a member of the papaya 
family native to the subtropical mountains of Ecuador, 
which contains a latex similar to the one in C. papaya. In 
common with the latter, babaco has also been shown to 
exhibit biocatalytic activities in lipolysis and acyl transfer 
reactions (Dhuique-Mayer et al., 2001, 2003). Latex 
lipases from plants in the Euphorbiaceae (Moulin et al., 
1994; Palocci et al., 2003; Giordani et al., 1991; 
Villeneuve et al., 2005), Asclepiadaceae (Giordani et al., 
1991) or Caricaceae (Giordani et al., 1991; Dhuique-
Mayer et al., 2001, 2003) families have also been 
described as useful biocatalysts for several synthesis 
applications in the food, pharmaceutical and detergent 
industries. 
 
 
Chemical composition and molecular structure of 
plant-based latex 
 
Most plants from families like Euphorbiaceae (Giordani et 
al., 1991; Moulin et al., 1994; Palocci et al., 2003; 
Villeneuve et al., 2005), Asclepiadaceae (Giordani et al., 
1991), Brassicaceae (Hills et al., 1990), or Caricaceae 
(Giordani et al., 1991; Dhuique-Mayer et al., 2001, 2003) 
contain latex and have been described as useful 
biocatalysts for several applications. Here, a summary of 
chemical composition of some plant-based latex was 
performed. 
 
 
Caricaceae 
 
Within the Caricaceae family, C. papaya is a soft-
stemmed and unbranched tree able to grow up to 20 m in  
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height. As a native to the Central America, the papaya 
tree has successfully established in many ecological 
niches in tropical and subtropical climates (El Moussaoui 
et al., 2001). All aerial parts of the female and 
hermaphrodite plants, including unripe fruits, present 
laticifers (El Moussaoui et al., 2001) that create a dense 
network of articulated and anastomosing structures (Roth 
and Clausnitzer, 1972). Consequently, if incisions are 
made in those aerial parts, especially in the unripe fruits, 
an abrupt release of latex (the so-called C. papaya latex) 
is observed. This latex is a thixotropic fluid with a milky 
appearance, which contains around 15% of dry matter, 
85% water, and a great variety of hydrolytic enzymes, 
mainly proteases (El Moussaoui et al., 2001; Azarkan et 
al., 2003; Campillo-Alvarado and Tovar-Miranda, 2013). 
Furthermore, different protein compositions have been 
reported depending on the age or sex of the tree, as well 
as on the time of day in which the tapping is carried out 
(Luis Madrigal et al., 1980; Caro et al., 2000). The 
mixture of different enzymes present in the latex is 
supposed to play a defensive role in the plant (El 
Moussaoui et al., 2001).  

Babaco (C. pentagona Heilb.) is a tropical plant from a 
mountain climate, native to Ecuador, appreciated for its 
flavor. Babaco is a perennial shrub of the Caricaceae 
family. This natural hybrid grows between 1500 and 2500 
m in Ecuador. Annual yields are between 60 and 80 fruits 
per plant. It is a large seedless fruit, yellow when ripe. Its 
special aroma is described as having overtones of 
pineapple, lemon and papaya. When the fruit is green, it 
exudes latex which has proteolytic characteristics similar 
to the papaya latex. The fruit is directly consumed when it 
is fully ripe. It is also possible to produce juice 
concentrate, jam or dehydrated fruit. The extraction of 
proteolytic enzymes of the latex from green babaco could 
be a new industrial application for this fruit. Babaco has 
economical potential thanks to its sensorial properties, 
and as a source of proteolytic enzymes. 
 
 
Apocynaceae 
 
In addition to Apocynaceae family, Plumeria rubra is also 
studied. It‟s growing in tropical and sub-tropical regions of 
the world (Ye et al., 2009; Coppen and Cobb, 1983) and 
is grown for ornamental purposes (Perry and Metzger, 
1980). Plants of genus Plumeria, had their origin from 
Central America. Different species are now found widely 
distributed in the warmer regions of the world 
(Krishnamurthi, 1969) and reputed for their medicinal 
properties, e.g., antifouling (Coppen et al., 1983), 
anticancer (Fujimoto and Made, 1988), algicidal (Coppen, 
1983). The aqueous extract of P. rubra showed 
antimicrobial (Gupta et al., 2007) anti-inflammatory 
activities (Dubois and Rezzonico, 2007) and used for the 
treatment of respiratory ailments (Frei et al., 1998; Case 
et al., 2006).  Plumericin,  an iridoid isolated from P. rubra  
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is used as antimicrobial agent (Little and Johnstone, 
1951). 

The average composition of carbon, hydrogen and 
nitrogen (%) of P. rubra was respectively 44.89, 6.72 and 
1.26%. Indeed, some studies have reported that aw 

conditions the lipase structure and thus its enzymatic 
activity both in hydrolysis and in synthesis reactions 
(Cambon et al., 2006). 
 
 
Moraceae 
 
Ficus carica, (Moraceae family), is one of the earliest 
cultivated fruit trees and an important crop worldwide for 
both dry and fresh consumption. It is a native of the 
Mediterranean coast. In these countries, figs are an 
important constituent of the Mediterranean diet, which is 
considered to be one of the healthiest and is associated 
with longevity (Trichopoulou et al., 2006). Oliveira et al. 
(2009) compared F. carica leaves, pulps and peels. Data 
obtained indicate that chemical composition and 
bioactivity are dependent on the variety (Oliveira et al., 
2009). 3-O-Caffeoylquinic acid and quercetin 3-O-
glucoside were described for the first time, which adds to 
the knowledge of this species. Leaves may constitute an 
excellent dietary and economical source of bioactive 
compounds, namely, phenolic compounds. 

F. carica latex is essentially constituted by saturated 
fatty acids (ca. 86.4% of total fatty acids), whilst dried and 
fresh fruits show predominantly polyunsaturated fatty 
acids (ca. 84 and 69% of total fatty acids, respectively) 
(Jeong and Lachance, 2001; Pande and Akoh, 2010). 
With respect to monounsaturated fatty acids, oleic acid is 
presented as the most abundant one in latex (Oliveira et 
al., 2010), which is in agreement with data found for F. 
carica fruit (Jeong and Lachance, 2001; Pande and Akoh, 
2010). Concerning polyunsaturated fatty acids, linoleic 
acid was the only compound identified (ca. 9.9% of total 
fatty acids) (Oliveira et al., 2010), which was already 
described in dried and fresh fig fruits (Jeong and 
Lachance, 2001; Pande and Akoh, 2010). Regarding 
protein composition in latex fluid, it is known that lattices 
of F. carica contain multiple forms of proteolytic enzymes 
(Liener and Friedenson, 1970). 
 
 
Euphorbiaceae 
 
Euphorbia characias L. (Euphorbiaceae) is one of the 
oldest known medicinal plants of the Western tradition. It 
is described in most ancient treatises of Greek and Latin 
medicine (Baumann, 1993), and was held in great 
esteem up to the development of modern medicine, 
which made obsolete its use as a powerful cathartic and 
emetic. E. characias is nowadays best known as a 
garden plant (Appendino et al., 2000). It is one of the 
most   widespread   ornamental   spurges,    and   several  

 
 
 
 
varieties have been developed, substantially expanding 
the habitat of this Mediterranean species (Turner, 1995). 
Two geographical varieties are known, the subsp. 
characias found in the western Mediterranean region, 
and the subsp. wulfenii, which grows in the Balkans, 
Greece, and Turkey (Turner, 1995). Both subspecies 
were found active in the mouse ear erythema assay 
(Evans and Kinghorn 1977). This and the use of the plant 
as a fish poison (Turner, 1995) suggest the presence of 
phorbol-type diterpenes. 
 
 
LATEX LIPASES 
 
Lipases, also known as triacylglycerol ester hydrolases 
(EC 3.1.1.3), are one of the most versatile biocatalyst 
with a remarkable ability to achieve a wide range of 
bioconversion reactions using a variety of substrates. 
Moreover, lipases possess the unique property of 
working at a lipid/water interface mainly in organic media 
(Gupta et al., 2003). In most instances, commercial 
lipases are generally produced from animals or 
microorganisms (Kilcawley et al., 2002, Mendes et al., 
2012). Nonetheless, most of plant lipases are relatively 
inexpensive due to their wide availability from natural 
sources. Plant lipases are mostly found in energy reserve 
tissues, for example, oilseeds. They act as biocatalysts 
which are attractive due to their high substrate specificity, 
low production cost and easy pharmacological 
acceptance due to their eukaryotic origin. Hence plant 
lipases represent better potential for commercial 
applications in organic synthesis, food, detergent and 
pharmacological industries (Seth et al., 2014). As a 
result, plant lipases are generally more accepted for food 
or medicinal applications. However, low expression, 
uneconomical fold purity and the plethora of difficulties 
related to their recombinant expression has been limiting 
their commercial applicability and posing challenges to 
many researchers (Seth et al., 2014). In addition, the 
major impediment for its implementation at large scale is 
the low content of enzyme in the post-germination seeds, 
bran portion of the grain and wheat gem. Noticeably, 
Caricaceae or Euphorbiceae overcome this disadvantage 
as their enzymes are available in large amounts stored in 
their latex (Villeneuve, 2003; Paques and Macedo, 2006). 
In this context, the lipolytic complex of enzymes present 
in C. papaya which, otherwise stated, are referred to as 
CPL when they are found in the crude latex without 
pretreatment or pCPL when they are in a crude lipase 
preparation, hold several advantages over their microbial 
and animal counterparts such as: (i) good stability to a 
wide range of pH, temperature, organic solvents and to 
the presence of other catalysts such as lysozyme, 
amylase, pectine esterase, thioglucosidase, phosphatase 
acide, invertase, catalase, peroxidase, lipoxydase,… 
(Abdelkafi et al., 2011); (ii) relatively inexpensive, e.g. the 
price  is  approximately  about  one   third   that   of  crude  



 
 
 
 
Candida rugosa lipase (CRL) (Gandhi et al., 2001; 
Campillo-Alvarado and Tovar-Miranda, 2013); (iii) can be 
considered “self-immobilized” enzymes since they are 
naturally bound to a non-water soluble matrix and thus, 
do not require further support and can be both recovered 
and reused (Abdelkafi et al., 2011); (iv) the active sites do 
not require interfacial activation prompted by detergents 
such as the pancreatic lipase (Mendes et al., 2012; 
Giordani et al., 1991); (v) the regio-, stereo-, typo- and 
substrate selectivities offer high versatility in diverse 
biochemical reactions; (vi) can be sustainably collected 
from the industrial papaya agro-waste of sick and unripe 
fruits (Mendes et al., 2012).  
 
 
ENZYMATIC (LIPASE) PROPERTIES OF SOME LATEX 
 
The optimum parameters that influence the lipolytic 
activity of some latex are summaries at Table 1. The 
lipolytic activities of babaco (Vasconcellea x Heilbornii 
cv.) and Plumeria latex were first measured using 
sunflower oil as substrate at pH 8 and at temperatures 
varying from 30 to 70°C by Cambon et al. (2006). 
Maximum activity was observed at 50°C for babaco (260 
IU/g). At 55 and 60°C, significant thermal deactivation 
was observed for babaco, with 49 and 56% losses of 
activity, respectively. Plumeria appeared to be less 
sensitive to thermal denaturation and was shown to 
express its maximum lipolytic activity at 55°C (1400 IU/g), 
(Table 1). The optimum pH for babaco latex was 7, 
whereas for Plumeria latex, two optimal pH values (4 and 
7) were observed. With regard to esterification and acyl 
transfer reactions, the influence of thermodynamic water 
activity on reaction yields was determined and correlated 
with water sorption and desorption isotherms. When 
babaco latex is used as a biocatalyst, optimal synthesis 
reaction yields are obtained when the enzymatic extract 
is stabilized at a water activity (aw) value of 0.38, which 
corresponds to a water content of 5.7%. This optimal 
level of hydration is located on the linear portion of the 
biocatalyst‟s sorption isotherm, where the water 
molecules exhibit high-energy interactions with the 
protein network (Cambon et al., 2006). In synthesis 
reactions (esterification, alcoholysis, and 
interesterification) biocatalyzed by Plumeria latex, 
correlation between best reaction yields and water 
activity cannot be done. Indeed, the sorption isotherm 
plot has an atypical shape, indicating that water might be 
trapped in the latex matrix and, consequently, that the 
water content of the biocatalyst is highly dependent on 
the hydration history of the latex (Cambon et al., 2006). 

Using tributyrin as substrate, a high level of lipase 
activity reaching 2,000±185 U/g of CPL was measured 
using a 10% w/v dispersion of CPL powder in deionized 
water (Table 1). The lipolytic activity of C. papaya latex 
on the short chain triglyceride tributyrin was described 
several   years   ago   (Giordani  et  al.,  1991).  However, 
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tributyrin is partly soluble in water and some esterases 
which are active on this substrate did not show any 
activity on a true lipase substrate such as olive oil. It was 
observed in a more recent study, however, that CPL 
could hydrolyze the long chain triglycerides present in 
test meals and could therefore be considered as a source 
of true lipase activity (Abdelkafi et al., 2009). It was 
confirmed here (Table 1) that CPL is active on olive oil 
(256±8 U/g) as well as on trioctanoin (983±29 U/g). CPL 
is much more active on short and medium chain TAGs 
than on long chain TAGs, as occurs with most lipases 
(Ngando et al., 2006). It is worth noting here that the 
specific activity of CPL on olive oil was similar to that 
detected in the dry mesocarp of oil palm fruit (250±14 
U/g) (Ngando et al., 2006). CPL was also found to 
hydrolyze phosphatidylcholine with a specific activity of 
65±3 U/g, but showed no activity on cholesterol oleate. 
Several TAG lipases have been found to show a dual 
TAG lipase/ phospholipase A1 activity (Simons et al., 
1998; Thirstrup et al., 1994) but only if a pure CPL 
enzyme is obtained it will be possible to determine 
whether the phospholipase and lipase activities 
measured with crude CPL are due to the same enzyme. 

A aw affect the reaction rate, enantioselectivity and 
equilibrium of C. papaya lipolytic enzymes, as was 
reported in the resolution of different (R,S)-2- 
methylalkanoic acids; CPL showed a maximum initial rate 
for the (S)-enantiomers (VS) at low water activity (aw = 
0.03), whereas the maximum E (enantiomeric ratio, 
defined as the ratio of initial rates, VS/VR or VR/VS) was 
achieved by increasing aw to 0.33, further separating VR 
from VS, although with the penalty of triggering hydrolysis 
instead of esterification (Chang and Ho, 2011). One of 
the most advantageous characteristics of the lipolytic 
enzymes of C. papaya is their ability to work efficiently 
under a broad range of pH and temperature. The good 
thermostability of the enzymes is attributed to the lipase 
immobilization in the non-soluble matrix of the latex (Ng 
and Tsai, 2005). When olive oil was used as the 
substrate, CPL activity was found to be optimum at pH 
levels ranging between 9 and 9.5 (Abdelkafi et al., 2001), 
and the kinetics of fatty acid release were linear for at 
least 5 min when the pH value was equal to or below 9. 
At pH values above 9, the kinetics were linear for only 1 
to 2 min. These data suggest that CPL is less stable at 
high pH levels. Optimum conditions for assaying CPL 
activity on olive oil were therefore set at pH 9. No 
significant activity could be detected at pH 6 or less 
(Table 1). The optimum pH range for CPL activity is 
similar to that determined in the case of other plant 
lipases from palm oil fruit (Ngando et al., 2006) and 
babaco (Cambon et al., 2008). When tributyrin and 
trioctanoin were used as substrates, the maximum 
activity of CPL was recorded at pH 8 and 9, respectively. 

As can be expected, temperature plays a major role in 
the reaction kinetics; an increase could facilitate the 
diffusion  coefficients  of  substrates migrating to enzyme-  
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Table 1. Optimum parameters that influence reaction kinetics of enzymatic properties of some latex and their specificity. 
 

Family Plants 

Optimum parameters 
MA3 

(IU/g) 
Yield4 

(%) 
Alcohols 

substrates 

Type of 
coordination-
site location 

Reaction 
medium 

Specificity 
Specific 
activitya 

(IU/g) 
Lipids substrates References T1 

(°C) 
pH aw 

WC2 

(%) 

Caricaceae 
C. 
pentagona 
(Babaco) 

45 
to 
50 

7 
0.38 or 
< 0.5 

5.7 
260 to 
275 

14 Butanol NA Solvent-free Sn-1,3 109 e 
Sunflower oil or 
pure monolein or 
diolein 

Cambon et al., 2006; 
Chen et al., 2005; 
Cambon, 2008 

Apocynaceae P. rubra 55 
4 

and 
7 

0.44 NA 1400 
25 to 
32 

Butanol NA Solvent-free sn-3 7400 e 
Sunflower oil or 
pure monolein or 
diolein 

Cambon et al., 2006; 
Cambon et al., 2008 

Caricaceae C. papaya 50 
4 

and 
10 

< 0.11 2 814±38 75 Methanol Surface Solvent-free Sn-1,3/ sn-3 

256±8 d Olive oilb Chang and Ho, 2011; 
Campillo-Alvarado and 
Ricardo Tovar-
Miranda, 2013; 
Abdelkafi et al., 2011; 
Villeneuve et al., 1995; 
Foglia and Villeneuve, 
1997; Villeneuve et al., 
1997a; Gonzalo 
Campillo-Alvarado and 
Ricardo Tovar-
Miranda, 2013; 
Cambon et al., 2008 

983±29 d Trioctanoinb 

2,00±185 d Tributyrinb 

65±3 d Phosphatidylcolinec 

0 Cholesterol oleate 

Euphorbiaceae E. characias 
37 
or 
50 

5 
and 
8 

NA NA 

2909±29 

78 Methanol NA 

Mechanically 
stirred 
medium of 
water and oil 

sn-3 

1589±40 Triacetin 

Paloccia et al., 2003; 
Caro et al., 2000; 
Giordani et al., 1991 

6739±10 3379±2 Tributyrin 

13369±10 5459±13 Tricaprilin 

4869±39 3159±5 Linseed oil 

9259±25 7359±3 Sunflower seed oil 

Euphorbiaceae E. wulfenii NA 
5 

and 
8 

NA NA 

2299±11 

80 NA NA NA NA 

209±1 Triacetin 

Palocci et al., 2003 

7199±1 1379±8 Tributyrin 

10079±10 1809±13 Tricaprilin 

3919±21 879±2 Linseed oil 

4439±40 2509±2 Sunflower seed oil 
 
1
 temperatures; 

2
 water content; 

3
 Maximum activity; 

4
 % of FFAs released after 1 h; NA: Not available; SA: Specific activity; 

a
: Values are means ± SD (n=3); b = Assays with triacylglycerols were 

performed at 37°C in 2.5 mM Tris-HCl buffer, 150 mM NaCl and at pH 9; c = Assays with phospholipids were performed at 37°C in 7.5 mM CaCl2, 13.3 mM NaTDC and at pH 8; 
d
: U/g; 

e
: IU/mg of 

lipases. 
 
 
 

active sites, thus enhancing the reaction rate 
(Varma et al., 2008). This was observed in the 
increment of the activity of several reactions 
carried out above room temperature (Tecelão et 
al., 2012; Lee and  Foglia,  2000).  A  temperature 

screening of the lipolytic activity on olive oil 
showed its peak at 50°C, although above 37°C 
the residual activity of pCPL started to decrease 
after 1 or 2 min, suggesting that the activity 
improvement at high temperatures is accompanied 

by a loss in its stability (Abdelkafi et al., 2011). On 
the other hand, pCPL was found stable at pH‟s 
from 4 to 10, preserving the 75% of its activity 
after 24 h of incubation at pH 10, whereas short 
inactivation  times were observed out of this range



 
 
 
 
(Abdelkafi et al., 2011). It is worth noting that only a few 
microbial lipases, such as that of Thermomyces 
lanuginosus (Humicola lanuginosa) (Boel and Huge-
Jensen, 1998) have shown similar levels of resistance so 
far in a large pH range up to pH 10. Concerning lipase 
activity, the majority of reactions are often carried out in 
nearly neutral to alkaline pH (Tecelão et al., 2012; Caro 
et al., 2004; Lee and Foglia, 2000). For example, the CPL 
mediated hydrolysis in olive oil found its optimum at pH 
levels between 9 and 9.5 (Abdelkafi et al., 2011), while 
the SA in the hydrolysis of TAGs present in human diet 
was better at pH 6 (Abdelkafi et al., 2009). These two pH 
values account for the observations of (Paques and 
Macedo, 2006) who by an ammonium sulfate 
pretreatment enabled the enzyme to work efficiently at 
pH 6. Alternatively, delipidation with acetone provided an 
improvement in the lipase activity profile at pH levels 
close to 9.5 (Paques and Macedo, 2006). 
 
 
STRUCTURE AND MECHANISM OF THE LIPOLYTIC 
ENZYMES OF PLANT LATEX LIPASES  
 
Experimental studies have been carried out in order to 
analyze the ability of lipases to hydrolyse vegetable oils 
and phosphatides under different conditions (Hara et al., 
1997; Mustranta et al., 1995). Marked differences were 
observed in lipase hydrolytic activity in terms of source, 
degree of purity, state (free or immobilized), substrate, 
and reaction medium (solvent-free or biphasic). 

A recent screening on latexes of C. papaya made it 
possible to count non-proteic molecular species such as 
saturated and unsaturated fatty acids, tocopherols, the 
tocotrienols, alcohols triterpenic, sterols and the possible 
presence of polyisoprene chains covalently bonded to 
phospholipid molecules forming a polymeric matrix 
(Barouh et al., 2010). The proteins quoted above bound 
once, confers a colloidal stability on latex, which makes 
the purification of the lipolytic enzymes present in the 
latex hard to achieve with common separation techniques 
(Azarkan et al., 2003; Dhouib et al., 2011). According to 
the literature, only three proteins with lipolytic properties 
present in the latex of C. papaya have been 
characterized through the aid of the recent sequencing of 
the C. papaya genome (Ming et al., 2008; Campillo-
Alvarado and Tovar-Miranda, 2013), although without 
being purified to homogeneity. Among them GDSL-motif 
carboxylester hydrolase (CpEst) whose activity was 
found responsible for the hydrolysis of tributyrin and vinyl 
esters tested during the analysis. Besides, CpEst did not 
show a considerable specific activity (SA) towards long 
chain and medium chain TAGs, in contrast to the whole 
latex activity, acting as an esterase rather than a true 
lipase, which strongly suggested that total lipolytic activity 
in the crude latex could not be attributed to one enzyme 
(Abdelkafi et al., 2009). Another protein extracted from C. 
papaya is CpLip1  that  is  also  likely  to  code  for the  C.  
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papaya protein. CpLip1 was identified as a member of 
the castor bean acid lipase structural family and showed 
SA towards both short and long TAGs (Dhouib et al., 
2011). Results from the literature showed that both 
CpLip1 and CpEst share a catalytic triad which is similar 
to that of serine proteases (Pleiss et al., 1998; Brady et 
al., 1990) - a nucleophilic serine (Ser) residue activated 
by a hydrogen bond in relay with histidine (His) and 
aspartate (Asp) in addition to a relatively hydrophilic 
oxyanion hole that forms hydrogen bonds to the 
tetrahedral intermediate. However, the active site varies 
in the amino acids location in the protein (Dodson and 
Wlodawer, 1998). A major difference between the two 
enzymes lies on the sequence that forms a “lid” of 
surface loop that surrounds the catalytic Ser that needs 
to undergo a conformational change before accessing the 
whole active domain (Dhouib et al., 2011). On the other 
hand, the putative structure model of CpEst suggested 
that the catalytic triad is exposed at the surface of the 
molecule without a “lid” domain and a binding site for long 
chain fatty acids (Abdelkafi et al., 2009). 

C. papaya lipase (CPL) represents an emerging and 
versatile biocatalyst (Domínguez de María et al., 2006). 
This fact is confirmed from the high number of 
applications described in recent years (Foglia and 
Villeneuve, 1997a; Mangos et al., 1999; Campillo-
Alvarado and Tovar-Miranda, 2013). Its availability as a 
“natural immobilized” catalyst, combined with a 
competitive price, makes CPL a promising catalyst in the 
biotransformations field. In fact, a study of the selectivity 
of different fatty acid ethyl esters in the CPL-catalysed 
interesterification of tripalmitin has been reported (Gandhi 
and Mukherjee, 2000a, b). Interestingly, the use of fatty 
acid ethyl esters as acyl donors led to a higher CPL 
selectivity towards the medium-/long-chain derivatives, as 
well as sn-1 selection. These results seem to be at odds 
with the other works developed with free fatty acids. A 
reactant-dependent positional specificity of lipases has 
been suggested for the explanation (Gandhi and 
Mukherjee, 2000a, b). Finally, the enzymatic 
transesterification of tricaprylin with various lauric acid 
derivatives as acyl donors gave good yields in terms of 
transesterified triacylglycerols. Vinyl laurate as the best 
acyl donor (Villeneuve et al., 1997b) presumably resulted 
from the irreversibility of that reaction, derived from the 
formation of vinyl alcohol which rapidly tautomerises to 
acetaldehyde, thus shifting the enzymatic reaction toward 
the products formation (Weber et al., 1997). Currently, 
applications regarding fats and oils modification, 
esterification in organic media, and asymmetric resolution 
of several chiral acids, as well as non-natural α-amino 
acids, have been also reported (Mukherjee and Kiewitt, 
1996; Borgdorf and Warwel, 1999; Gandhi and 
Mukherjee, 2000a; Villeneuve et al., 2005). 

Like C. papaya lipase a study on the catalytic 
properties of frangipani (P. rubra) latex lipase revealed 
that this  latter  lipase has a high capacity to catalyze fatty  
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acid esterification in solvent-free medium in less than an 
hour, with over 90% yield (Cambon et al., 2006). Due to 
this capacity, this lipase could be used in a two-step 
biodiesel production process (hydrolysis and 
esterification) in association with a second lipase, such 
as that extracted from Jatropha curcas, that is highly 
active in TAG hydrolysis. Sousaa et al. (2010) recently 
showed that lipase from germinated J. curcas seeds 
could be used for TAG hydrolysis in a hydroesterification 
process, with 98% yields achieved after 2 h of reaction, 
without specificity with respect to the fat source used. 
Moreover, the catalytic activity of the lipase in crude 
babaco (C. pentagona) latex has been studied in 
transesterification and esterification reactions (Cambon et 
al., 2009; Dhuique-Mayer et al., 2003). Cambon et al. 
(2009) showed that babaco lipase has catalytic activity 
during alcoholysis of sunflower seed oil with highly 
excessive amounts of various primary alcohols in a 
solvent-free system. Despite its sensitivity to short-chain 
alcohols such as methanol, the stepwise addition method 
curbs the inhibitory effect of methanol and enables 
transesterification yields of around 70% at 30°C after 15 
h (Shimada et al., 1999; Shimada et al., 2002). 

Preliminary screening on Euphorbia species latex 
showed high lipolytic activity in E. wulfenii. For both E. 
characias and E. wulfenii latex it was find high lipolytic 
activity toward medium and long acylic chain 
triglycerides, but no hydrolytic activity on monoesters and 
phospholipids was detected (Palocci et al., 2003). 
Moreover, no synthetic activity was pointed out using as 
substrates natural and endogenous terpenols (Palocci et 
al., 2003). The presence of esterase activity in latex of 
two Euphorbia species (E. pulcherrima and E. lathirys) 
was also described (Warnaar, 1987) suggesting that, in 
vivo, this activity could be involved in the hydrolysis 
reaction of triterpenol esters and the subsequent storage 
of free triterpenols inside the lipidic particles of latex. 
However, Palocci et al. (2003) demonstrated that such 
enzymes cannot be related to the terpenic metabolism. In 
fact the enzymes responsible for lipolytic activity in the 
latex of E. characias and wulfenii described in the work of 
Palocci et al. (2003) are not able to hydrolyse monoester 
or to synthesise terpenol esters starting from natural and 
endogenous terpenols. Moreover, in agreement with 
Warnaar‟s hypothesis (Warnaar, 1987), the relative 
terpenol ratio was constant during the biological cycle 
and the esterified terpenol fraction was present in 
negligible quantities for both species studied. On this 
basis lipolytic activity recovered in latex seems to be due 
to „„true lipases‟‟ (Huang Anthony, 1984) acting on 
triglycerides probably present in latex (Hasma and 
Subramanian, 1986). 
 
 

PLANT LATEX LIPASES PURIFICATION 
 

Lipases have been purified from various plant parts (Seth 
et al., 2014). Many plant parts such as leaves of  Triticum  

 
 
 
 
L. species (Kharazian et al., 2009), whole plant parts of 
Ricinus communis (Shahwar et al., 2010), oat bran, etc., 
are rich in phenolic content. This makes the purification 
step laborious and the yield is also very low when seed, 
leaf or latex is used for direct extraction. Plant seeds also 
contain high amount of lipids which is another associated 
major problem in plant lipase purification as such lipids 
interfere in SDS–PAGE. The consequence is a smeared 
discontinuous gel. Therefore, delipidation step becomes 
compulsory for extracting plant lipase prior to any other 
purification steps. This adds to the production cost and 
time-consuming. 

As reported by Seth et al. (2014) a few exception most 
of the purification involves chromatography techniques. It 
is also visible that the yield is very low. Ben-Hamida and 
Mazliak (1985) reported that some of the traditional 
procedures such as clarification, precipitation, 
ultrafiltration, differential and density gradient 
centrifugations results in a low final yield of purified plant 
lipase. Alternatively, ion exchange and gel filtration 
chromatography used for purification of plant lipases 
results in good yield. Moreover, Lazreg-Aref et al. (2012) 
are recently purified lipase to homogeneity from F. carica 
L. latex of the Zidi variety from Moraceae family using 
silica gel chromatography (Table 2). 
 
 

BIODIESEL PRODUCTION 
 

The frequent and future scarcity of fossil fuels, combined 
with concerns over the consequences of dependency on 
this type of energy source, in terms of changes in the 
Earth's climate, has forced the world to find alternatives 
that are less harmful to the environment (de Araújo et al., 
2013). Renewable energy sources, especially vegetable 
fuel, have appeared as an important alternative (Santana 
et al., 2010). 

Biodiesel is made from renewable biological sources 
and it does not produce sulfur oxide and may reduce soot 
discharge by one third that of existing petroleum-based 
products (Ranganathan et al., 2008). Biodiesel in 
industrial applications may be produced by chemical-
catalyzed or enzyme-catalyzed methods. The biodiesel 
produced by chemical catalyst has several drawbacks 
such as difficulty in removal of acid or base catalysts from 
product, high energy requirements, difficulties in the 
recovery of the catalyst and potential pollution to the 
environment (Winayanuwattikun et al., 2011; Tan et al., 
2010). Enzyme-catalyzed biodiesel production has 
received more attention because of its advantages, such 
as low energy consumption, mild operating conditions, 
nontoxicity, and environment friendly processes, as 
compared with the chemical-catalyzed method (Dwiarti et 
al., 2010; Lee et al., 2011). However, the enzyme-
catalyzed method is not favored for industrial use 
because the high cost and low stability of lipases limit its 
potential application (Chen and Wu, 2003; Soumanou 
and Bornscheuer, 2003).  
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Table 2. Purification strategies for plant latex lipases. 
 

Family Plant sources Purification steps Fold increase/ yield References 

Euphorbiaceae E. characias  Acetone/H2O and silica column NA Palocci et al., 2003; Padiglia et al., 1998 

Euphorbiaceae E. Wulfenii Acetone/H2O and silica column NA Palocci et al., 2003; Padiglia et al., 1998 

Moraceae Ficus carica L. Silica gel chromatography 8.5-fold/68.5% Lazreg-Aref et al., 2012 

Caricaceae Carica papaya Extraction in aqueous two-phase system NA Nitsawang et al., 2006 

Caricaceae Babaco or Carica pentagona (Vasconcellea x Heilbornii Cv.) Extraction in aqueous two-phase system 15-fold/ NA Chen et al., 2005 

Apocynaceae Plumeria rubra Hexane/Steric exclusion chromatography NA Cambon, 2008 
 

NA: Not available. Fold increase is the ratio of specific activity of the final purified product to the initial specific activity; and yield is the ratio of initial enzyme titer to the final titer obtained after the 
purification process. 

 
 
 
Catalytic conversion techniques for 
transesterification 
 
Alkalis used for transesterification of oil include 
NaOH, KOH, carbonates, and alkoxides such as 
sodium methoxide, sodium ethoxide, sodium 
propoxide, and sodium butoxide. Alkali-catalyzed 
transesterification proceeds approximately 4000 
times faster than that catalyzed by the same 
amount of an acidic catalyst (Formo, 1954; de 
Araújo et al., 2013), and is thus most often used 
commercially. Potassium hydroxide (KOH) and 
sodium hydroxide (NaOH) are high sensitive to 
the purity of the reaction being affected by the 
water and free fatty acids contents (Marchetti et 
al., 2007). The presence of water may cause the 
ester saponification under alkaline conditions. 
Thus, the glycerides and alcohol must be 
substantially anhydrous because water causes a 
partial reaction change to saponification, which 
produces soap (Wright et al., 1944). Moreover, 
the free fatty acids can also react with the alkaline 
catalyst producing soaps and water. The 
saponification does not only use up the catalyst, 
but also causes the formation of emulsions which 
impair the biodiesel separation, recuperation and 
purification.  Therefore,  dehydrated  vegetable  oil 

with free fatty acids content lower than 1%, 
anhydrous catalysts and anhydrous alcohol are 
essential for the commercial feasibility of alkaline 
catalyst systems (Enweremadu and Mbarawa, 
2009). Ma et al. (1998) suggested that the free 
fatty acid content of the refined oil should be as 
low as possible, below 0.5%, and Feuge and 
Grose (1949) also stressed the importance of oils 
being dry and free of free fatty acids. Freedman et 
al. (1984) reported that ester yields were 
significantly reduced if the reactants did not meet 
these requirements; sodium hydroxide or sodium 
metboxide reacted with moisture and carbon 
dioxide in the air, diminishing their effectiveness. 

Studies report that acid catalysts are insensitive 
to the acidity value and are better than alkaline 
catalysts for vegetable oils with acidity value 
higher than 1% (Freedman et al., 1984).  

Acids used for transesterification include 
sulfuric, phosphoric, hydrochloric, and organic 
sulfonic acids. Although transesterification by acid 
catalysis is much slower than that by alkali 
catalysis (Freedman et al., 1984; Ma and Hanna 
1999; Srivastava and Prasad, 2000), acid-
catalyzed transesterification is more suitable for 
glycerides that have relatively high free fatty acid 
contents  and  more water (Freedman et al., 1984; 

Aksoy et al., 1988). Aksoy et al. (1988) reported 
that it was necessary to perform transesterification 
under an acidic condition when the oil component 
was a low grade material such as sulphur olive oil. 
In general, the ethyl esters of monounsaturated or 
short-chain fatty acids with 2% sulfuric acid should 
make good alternative fuels (Klopfenstein and 
Walker, 1983). The transesterification by acid 
catalysis starts by mixing the oil directly with 
acidified alcohol, in a way that separation and 
transesterification can occur in a single step, 
being alcohol the esterification solvent and 
reagent (Cervero et al., 2008). 

Researches on biodiesel have focused on the 
use of solid acid catalysts known as 
heterogeneous catalysts. Sulfonic resins, such as 
Nafion NR50, sulfated zirconia and tungstated 
zirconia may catalyze transesterification reactions 
as effectively as sulfuric acid (de Araújo et al., 
2013). Studies report that the solid acid catalyst 
ideal to the transesterification of used cooking oil 
is expected to have features such as 
interconnected system of large pores, moderate 
and high concentrations of strong acids sites and 
hydrophobic surface (Lotero et al., 2005). 

The advantages of using solid acids catalysts 
are  insensitivity to acidity value; esterification and 
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transesterification may be carried out simultaneously; the 
catalyst is easy to be recovered; water washing biodiesel 
is unnecessary; generally high performance in esters; 
much lower catalyst requirements per tons of biodiesel 
produced than in other processes; and catalysts may be 
used for a longer period of time and are environmentally 
friendly. However, these systems operate under high 
temperature and pressure. 

Although chemical transesterification using an alkali-
catalysis process gives high conversion levels of 
triglycerides to their corresponding methyl esters in short 
reaction times, the reaction has several drawbacks: it is 
energy intensive, recovery of glycerol is difficult, the 
acidic or alkaline catalyst has to be removed from the 
product, alkaline wastewater requires treatment, and free 
fatty acids and water interfere with the reaction (Table 4). 

Lipases are also able to effectively catalyze the 
transesteritication of triglycerides in either aqueous or 
nonaqueous systems, and as shown in Table 4, 
enzymatic tranesterification methods can overcome the 
problems mentioned above. In particular, it should be 
noted that the by-product, glycerol, can be easily 
recovered without any complex process, and also that 
free fatty acids contained in waste oils and fats can be 
completely converted to methyl esters. On the other 
hand, in general the production cost of a lipase catalyst is 
significantly greater than that of an alkaline one (Wu et 
al., 1999). 

Moreover, the following advantages for the use of 
lipases can be mentioned (Marchetti et al., 2007). 
 

i) Possibility of regeneration and reuse of immobilized 
waste, as it can be left in the reactor if reactivity is kept 
low. 
ii) Higher enzyme thermal stability due to its inactive state. 
iii) Easier separation from the product. 
 

Some disadvantages include, 
 

i) Loss of some initial activity due to the volume of oil 
molecule. 
ii) Number of support enzymes is not uniform. 
iii) Biocatalysts are more expensive than natural enzymes. 
 
 

Non-catalytic conversion techniques for 
transesterification 
 

To overcome delays in the initial reaction time caused by 
the low solubility of alcohol in the triglyceride phase the 
non-catalytic options are designed. A common approach 
consists in the use of a solvent soluble in methanol and 
oil. The result is a fast reaction, on the order of 5 to 10 
min with no catalyst residues, in any phase. One of these 
cosolvents is the tetrahydrofuran, chosen, partially, due 
to its boiling point near that of methanol and the need of a 
very low operational temperature, around 301°C.  

A   second   approach   was   developed  by  Saka  and  

 
 
 
 
Kusdiana (Saka and Kusdiana, 2001) who made a 
fundamental study of biodiesel production in supercritical 
methanol. They demonstrated that preheating to a 
temperature of 350°C and treatment for 240 s in 
supercritical methanol was sufficient to convert rapeseed 
oil to methyl esters. Moreover, while the methyl esters 
produced were basically the same as those obtained in 
the conventional method with a basic catalyst, the methyl 
ester yield of the supercritical methanol method was 
higher. Kinetic analyses of the reactions in subcritical and 
supercritical methanol revealed that the rate of rapeseed 
oil conversion to methyl esters increased dramatically in 
the supercritical state. A reaction temperature of 350°C 
and a molar ratio of methanol to rapeseed oil of 42 to 1 
were considered to be the best conditions (Kusdiana and 
Saka, 2001). Some advantages of its application are 
(Balat and Balat, 2008): 
 
i) Glycerides and free fatty acids react with equivalent 
rates. 
ii) The homogeneous phase eliminates diffusive problems. 
iii) The process tolerates great percentages of water in 
the catalytic process of the feedstock requiring periodical 
removal of water or an intermediary phase to prevent 
catalyst deactivation. 
iv) The catalyst removal phase is eliminated. 
v) If a high methanol/oil ratio is used, the total oil 
conversion can be achieved in few minutes. 
 
Despite all the above mentioned advantages, the 
supercritical methanol method has serious disadvantages, 
such as: 
 
i) The process operates at extremely high pressures (25 
to 40 MPa); 
ii) The high temperatures (350 to 4001°C) result 
proportionally in high heating and cooling costs; 
iii) High methanol: oil ratios (generally established at 
42:1) involve high costs for the evaporation of the 
unreacted methanol. 
 
 
POTENTIAL LATEX FOR BIODIESEL IN BENIN 
 
Since last few years many laticifers plants have been 
identified all over the world and in Benin. These plants 
are distributed on all extent of the Benin territory. They 
often belong to the family of Apocynaceae, 
Asclepiadaceae, Euphorbiaceae or Moraceae (Table 3). 
Hence, focus needs to be shifted to lipases plants 
available in Benin and the details of such potential lipase 
plant are shown in Table 3. The listed species are used 
at various ends. They constitute a food, medicinal source 
as well that of wood for the populations (Table 3). The 
vegetable near total of the species of cover of Benin is 
used in traditional medicine by the local populations to 
fight against diseases (Agbahungba et al., 2001). Various  
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Table 3. Potential plant latex lipases in Benin. 
 

Family 
Botanical 
name 

Common name Distribution 
Latex 
color 

Measured parameters Use 
Part 
used 

References 

Apocynaceae 

Alstonia 
congensis 

Afatin 
Sèmè – 
Dangbo 

White 

Extraction of proteins; Acute toxicity test; Subacute test; 
Search for polyphenols by the reaction to ferric chloride; 
Search for alkaloids ; Search for flavonoïdes by the reaction 
to the cyanidine; Search for tanins (tanins cathechic by the 
reagent of STIASNY; tanins gallic); Search for substances 
quinoniques free and combined by the reaction of 
BORNTRAEGER; Search for polyterpenes and stéroïdes by 
the reaction of Libermann-buchard; Search for saponosides; 
Description of the macromolecules (Search for proteins by 
the method of LOWRY; Search for polysaccharides) 

Treatment of diabetes, interior of 
plywood, lathed panel, packing-
box factory, matches, light boats, 
moulding, piece of furniture 
running or elements, interior 
wood finishing, pencils 

Bark, leaf 
Ogbonnia et al., 2008; 
Fofana, 2004 

Holarrhena 
floribunda 

lètin wiwi ou 
akoyixè ou 
lengbagbé. 

Calavi – 
Bohicon 

White 

Toxicity study; Crude protein, fat, crude fiber and total ash 
contents in the dried leaves were determined using the 
methods described by Association of Official Analytical 
Chemists (AOAC, 1990). Carbohydrate (nitrogen free 
extract) was determined by difference; that is, the sum of the 
crude protein, fat, crude fibre and total ash deducted from 
100. 

Phytochemical analysis (Mayer, Dragendoff, Wagner and 
picric reagents were used to test for Alkaloid. Frothing test 
for saponin, ferric chloride test for tannin while Salkowski test 
for cardiac glycosides) 

DPPH radical assay; Lipid peroxidation and thiobarbituric 
acid reactions; Hydroxyl radical scavenging assay; Nitric 
oxide radical inhibition activity; Determination of total 
antioxidant capacity; Determination of total phenol; Reducing 
power 

Veterinary healers, antioxidant, 
anti-dysenteric, diuretic and 
febrifuge, intestinal parasitoses, 
the ascite and sterility 

Bark, 
leaves 
and roots 

Tamboura et al., 2005; 
Badmus et al., 2010 ; 
Medecine douce - 
Medecine africaine, 
2014 

Rauvolfia 
vomitoria 

lètin, klanklan tin. 
Calavi – 
Bohicon 

White 
Acute oral toxicity test; Phytochemical test; Phytochemical 
screening 

Anticonvulsant, insomnia, 
depression and madness. 

Leafs 
and roots 

Amole et al., 2009 ; 
Medecine douce - 
Medecine africaine, 
2014 

Saba 
comorensis 

NA Bassila White NA 
Food, traditional medicine, 
oedema generalized 

Fruit and 
Leafs 

Olivier et al., 2012 

Thevetia 
peruviana 

Tantohu (Fon) ; 
Olomiojo (Yoruba 
et Nagot) ; Batonè 
(Bariba), 

Calavi White NA 
Medicinal plant, laxative, emetic, 
look after the intermittent fevers 

Bark, 
Leafs 

Arbonnier, 2002, 
Schmelzer and Gurib-
Fakim, 2006 

Euphorbiaceae 
Anthostema 
aubryanum 

NA Sakété White 
Diversity of the woody settlement of a dense forest in sub-
wet zone; Cartography and floristic characterization of the 
marshy forest 

Latex = poison; strong vermifuge 
activity counters the larvae of 
Haemonchus contortus in vitro; 

Latex; 
bark; 
stem 

Hecketsweiler, 1991; 
Nkeoua and 
Boundzanga, 1999; 
Adjakpa et al., 2011 

 
Euphorbia 
heterophylla 

NA Calavi White 
Chromatography (The crude methanolic and aqueous 
extracts were subjected to phytochemical screening); Anti-
inflammatory activity 

Medicinal use; treatment of 
constipation, bronchitis and 
asthma 

Leaves; 
fruits; 
flowers 

Falodun et al., 2004; 
Falodun et al., 2003; 
Falodun et al., 2006 
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Table 3. Contd. 
 

 
Milicia 
excelsa 

Iroko/Lokotin 
Calavi – 
Bohicon 

White NA 

Exterior wood finishing: Parquet floor Shipbuilding 
(bordered and bridge);Cabinet work (piece of 
furniture of luxury); Interior wood finishing: Distinct 
plating; Skirting; Light frame 

 CIRAD, 2011 

Sapotaceae 
Vitellania 
poradoxa 

NA Dan White NA Food, medicinal and cosmetic 
Fruits, 
bark 

Medecine douce - 
Medecine africaine 2014 

 
Manilkara 
multinervis 

NA Natitingou White NA 
Piles in the construction of the houses on pile, 
Clothes industry of the frame of the houses and 
the attics 

Wood 
Medecine douce - 
Medecine africaine 2014; 
Agbahungba et al., 1998 

 
 
 

Table 4. Comparison between alkali-catalysis and lipase-catalysis methods for biodiesel fuel production (Fukuda et al., 2001; Mounguengui et al., 2013). 
 

Composition Alkali-catalysis process Lipase-catalysis process 

Reaction temperature  60-70°C 30-40°C 

Free fatty acids in raw materials  Saponified products Methyl esters 

Water in raw materials  Interference with the reaction No influence 

Yield of methyl esters  Normal Higher 

Recovery of glycerol  Difficult Easy 

Purification of methyl esters  Repeated washing None 

Production cost of catalyst  Cheap Relatively expensive 
 
 
 

bodies of the plants are used for this purpose to 
know: sheets, fruits, flowers, barks and roots 
(Azonkponon, 2001). 92.86% of the species are 
used as wood energy. With the exception of the 
species taboos which vary according to the 
various ethnos groups, all the species of trees are 
used as and charcoal firewood. 39.29% are used 
as edible plants (Houngnon, 1981; Sokpon and 
Lejoly, 1996), 35.21% like work wood, 17.87% as 
service wood (return in this category all wood 
which are used in the clothes industry of the frame 
of the houses and the attics) and 3.57% in local 
arts and crafts (Dossou et al., 2012). 
 
 

Conclusion 
 

Plants   produce   a   diverse   range   of  bioactive 

molecules, making them rich source of different 
types of bio-catalyst. It is the case of lipases 
which are now widely used in various industry 
sectors such as in detergency applications, fatty 
wastes treatments, pharmaceutical syntheses or 
oils and fats modifications. 

The lipolytic enzymes of laticifers plants have 
demonstrated to be versatile biocatalysts with the 
ability to discriminate a wide number of substrates 
from various applications. In addition, this lipase 
aggregate holds important advantages over other 
microbial, animal and plant lipases being its 
sustainable availability from agro-waste, its “self- 
immobilized” nature which conferring the ability to 
work under a broad range of environments and its 
easy pretreatments being the most remarkable 
features. Notwithstanding the  enormous  potential 

of the lipases present in laticifers plants, the lack 
of experimentation carried out at the industrial 
scale prevents its implementation in various 
bioprocesses, such as the production of high 
value lipids with improved properties, the 
manufacture of medical articles and biodiesel 
engineering. 

Till date, a very large majority of lipases that are 
used in these processes are obtained from 
microbial sources. Comparatively, the use of plant 
lipases is much less developed. However, plant 
enzymes can be also envisaged as biocatalysts 
for lipids bioconversions. Especially, high activities 
in hydrolysis and synthesis reactions have been 
found in some laticifer plants like C. papaya and 
E. characias. Concerning the former, favourable 
applications  in  the synthesis of low-calorie TAGs,



 
 
 
 
medium chain TAGs or for the production of conjugated 
linoleic acids enriched TAGs were reported. Among the 
Caricaceae family, it was shown recently that the unripe 
fruit of the babaco plant (Vasconcellea x heilbornii; ex. C. 
pentagona), native to the subtropical mountains of 
Equator, contains a latex similar to that in C. papaya. 
This latex also displays a strong lipolytic activity which 
was characterized in terms of biocatalytic activity and 
selectivity. 
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