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Agent-Based Modelling

Cohesion Direction Separation

Reynolds, C. W. (1987) Flocks, 
herds and schools: a 
distributed behavioral model. 
Computer Graphics, 21, 25-34.

� How inter-individual interactions
generate group or population emergent 
properties?
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Agent-Based Modelling

Huston, M., D. DeAngelis, and W. 
Post. (1988). New computer models
unify ecological theory. BioScience
38:682-691. 

� How individual variability
influence population 
dynamics and structure?
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Agent-Based Modelling

� How individual 
adaptations regulate 
populations?

• Trout behavior model:
• Use of shallow habitat when small; 

deep habitat when big
• Shift in habitat when predators, 

larger competitors are introduced
• Hierarchical feeding: big guys get 

the best spots
• Movement to margins during floods
• Use of slower, quieter habitat in high 

turbidity
• Use of lower velocities at lower 

temperatures Railsback, S. F. & Harvey, B. C. (2002) Analysis of 
habitat-selection rules using an individual-based 
model. Ecology, 83, 1817-1830.
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Agent-Based Modelling

� How individual genetics
allow populations to evolve in 
front of changes in 
environmental conditions?

• Salmon evolutionary model:

Piou, C. & Prévost, E. (2012) Ecological Modelling, 231, 37-52.
Piou, C. & Prévost, E. (2013) Global Change Biology, 19, 711-723.
Piou, C. et al. in press Journal of Applied Ecology
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Agent-Based Modelling
• 5 “branches” in ecology (DeAngelis & Mooij 2005):

• Variation & phenotypic plasticity
• Spatial interactions & movement
• Life history and ontogenesis 
• Cognitive behavior
• Genetic variability and evolution

• 3 main “reasons” to use the approach (Grimm & Railsback 2005):
• Individual variability
• Local interactions
• Adaptive “behaviors”

• Problems of “realism” and “reproducibility”
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Pattern-Oriented Modelling
• ABMs (and many other simulation models) were seen as 

too “theoretical” in the 1990s
• Their relation to real world system was often thin…
• ABMs used for management/real world advice purpose… 
� Need of “sufficiently good” representations
� Need to continue learning from “patterns”



Pattern-Oriented Modelling
• POM was elaborated for complex system models (CA, 

ABMs …) : 

Pattern or Emergent property = expression of underlying 
process 

• POM evolved into 3 branches 
(reviewed in Grimm et al. 2005, Science) :
1. Choose adapted model structure
2. Analyze processes behind the pattern � Strong Inference
3. Increment reliability of model & parameters � Inverse modelling
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Use multiple patterns

Model complexity

P
ay
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f

Medawar zone

Multiple patterns
Problem Data

Grimm et al. 2005

Payoff of a model = not only how useful 
for the problem, but also structural 
realism (reproduce nature).

Model complexity # nb of rules, 
parameters and state variables needed 
in the model.

Medawar zone = zone of model 
complexity when an increase in 
complexity of the model does not 
increase the payoff.
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E.g. of Strong inference from multiple 
patterns
• Trout behavior model:

Railsback, S. F. & Harvey, B. C. (2002) Ecology, 83, 1817-1830.

ABM POM IC POMIC CS ABC



E.g. of Inverse modelling from multiple 
patterns
• Salmon evolutionary model (16 time series):

ABM POM ABC IC POMIC CS
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Akaike’s Information Criterion
• Based on information theory (Akaike 1973)
• The best model is the one with smallest Kullback-Leibler

distance
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Akaike’s Information Criterion
• Kullback-Leibler distance

x
(variable considered)

f(x)
(probability of value in nature)

“TRUTH” density distribution

With underlying unknown 
probability density function 
(pdf)
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x
(variable to be predicted)

Akaike’s Information Criterion
• Kullback-Leibler distance

x
(variable considered)

g(x)
(probability of value with model)

?
Predicted density distribution

f(x)
(probability of value in nature)
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Akaike’s Information Criterion
• Kullback-Leibler distance
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Akaike’s Information Criterion

• AIC proposition:

� Model selection dependent on fit and parsimony

• Assumptions:
• The n is large enough 
• Mean expected likelihood as estimator of K-L distance
• Maximum likelihood ~ mean expected likelihood

( ) kLAIC k 2log2 +−= θ

ABM POM IC POMIC CS ABC



• Proposition of Spiegelhalter et al. (2002 Journal of the Royal 
Statistical Society B, 64, 583-639) for Bayesian models :

• Prerequisite:
• Convergence of a MCMC gives posterior distribution
• Identification of likelihood function for parameters

• DIC was demonstrated as generalization of AIC

Model selection in Bayesian statistics

( ) ( )( )θθ LD log2−=

( ) ( ) ( ) pDDDDDIC +=−⋅= θθθ2

Mean deviance on posterior distribution

( ) ( ) pDDD =− θθ

Deviance of model with estimates of 
parameters from posterior distribution

Complexity of model

Deviance
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POMIC proposition
• Pseudo-likelihood� pseudo-deviance
• Posterior distribution estimation: 

Metropolis without likelihood (~ABC)
• Complexity: Adapting DIC proposition

Piou, C., Berger, U. & Grimm, V. (2009) 
Proposing an information criterion for 
individual-based models developed in a 
pattern-oriented modelling framework. 
Ecological Modelling, 220, 1957-1967.
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Pseudo-likelihood
• For (most) ABMs we do not have likelihood functions of 

the parameters
• The likelihood of a parameter set given the data = 

Goodness of fit indicator
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Pseudo-likelihood
• For (most) ABMs we do not have likelihood functions of 

the parameters
• One way to bypass this is approximating a likelihood-type 

function

x
(sampled variable)

b(x)
(probability in sample)

=b(x|(θ*+Z))with Z included in θ

x
(predicted variable)

g(x|θ)
(probability in 
model) ?
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Pseudo-likelihood
• An estimate of likelihood:

-Mesure of x in model
-Adjust estimation of density on 
range of real x
-« reading » of pseudo-likelihood
of real x from this adjusted density

x1 x2

g(x1|θ)

( ) ( )( ) |
n

∏=
i

ixgdataL θθ



Pseudo-likelihood
• An estimate of Deviance:

-Mesure of x in model
-Adjust estimation of density on 
range of real x
-« reading » of pseudo-likelihood
of real x from this adjusted density

x1 x2

g(x1|θ)
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Metropolis without likelihood

• Metropolis – Thanks Marjoram et al. (2003, PNAS)
• Idea 1: estimator of likelihood ratios

• Idea 2: production of data D’ and reject parameters if  D’ ≠ D 
(±error)
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Metropolis without likelihood

• Metropolis + POMDEV:

• Idea 1: estimator of likelihood ratios

• Idea 2: production of data D’ and reject parameters if  D’ ≠ D 
(±error)
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POMIC

( ) =DP θ =POMDEV

( ) 1 L

1l
∑

=

= lPOMDEV
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POMDEV θ

( ) θ̂POMDEVPOMDEVpD −=

( ) pDPOMDEVPOMDEVPOMDEVPOMIC +=−⋅=  ˆ2 θ

( )θ̂POMDEV
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POMIC    ~    ABC

ABM POM ABC IC POMIC CS

Hartig, F., Calabrese, 
J. M., Reineking, B., 
Wiegand, T. & Huth, A. 
(2011) Statistical 
inference for 
stochastic simulation 
models - theory and 
application. Ecology 
Letters, 14, 816-827.



Case study
• Inferring on innate locust behavior with individual based 

models and an information criteria 
Piou C. & Maeno K.



Solitarious

ABM POM IC POMIC CS ABC



Gregarization

Density
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Niger 1987

Niger 1988
Mauritanie 1988

Gregarious
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Innate gregarious behavior?
• Ellis (1956) found a random distribution of hatchlings in cages

• Simpson et al. (Islam et al. 1994, Bouaïchi et al. 1995, 
Simpson et al. 1999…) � individual measurements �
difference of behavior among solitarious and gregarious 
hatchlings 
(but mixing activity and attractivity and 
isolating individuals at hatching time)

• Guershon & Ayali (2012) � group measurements � behaving 
identically: grouping together on sticks 
(but discarded egg pods producing few individuals, first 2h after 
hatching and wrong statistical method)
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Innate gregarious behavior?
• Group measure to keep interactions
• But problem of mixing of processes/behaviors (level of 

activity, aggregation, food search, resting…)
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Laboratory experiments
• 17 experiments: 

• 11 from grouped mothers 
• 6 from isolated mothers 

• 30 eggs positioned on  a wet petri-dish ~24h before 
hatching time in a center of an arena

• Photo recording every 15min during at least 7h (up to 
16h) after first hatching
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Laboratory experiments
• Photo analysis: 

• Count of individuals per stick
• Count of individuals on other parts of the arena

�NND (on sticks) 
�Activity (change of nb per sticks)
�Proportions of individuals on sticks



ABM analysis
• Model description

• Objective: Simulate our experiments
• Entities & state variables:

• Scales: 101 time steps (time step = 15min), 16 sticks, 
N eggs = hatched eggs in experiments

Eggs ready to hatch
(Time to hatch, position)

Hatchling locust
(position, age)

Sticks 
(attractiveness, number of locusts 

= n)

O
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E
R

V
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W
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ABM analysis
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• Model description
– Process overview:



ABM analysis
O

V
E

R
V

IE
W

• Model description
– Parameters: a, b, d, f, pC

(to be adjusted with MCMC per experiment)
– Forced dynamics: hatching time of eggs (as

in experiments)

d=0

d=50
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ABM analysis
• Searching for behavior explaining the lab results

• 3 model versions : 
• ModelO � d=f=0 pC=? a=? b=?
• ModelA � d=? f=0 pC=? a=? b=?
• ModelB � d=? f=? pC=? a=? b=?
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ABM analysis
• Searching for behavior explaining the lab results

• 3 model versions : 
• ModelO � d=f=0 pC=? a=? b=?
• ModelA � d=? f=0 pC=? a=? b=?
• ModelB � d=? f=? pC=? a=? b=?

• With each model and for each experiment (17) 
parameterization and posterior  creation with MCMC 
(following Piou et al. 2009)

• POMIC measure to infer on likely behavior that lead to the 3 
temporal patterns of: 
• Mean NND through time
• Proportion of individuals on sticks through time
• Activity through time
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d

pC

0.27

ModelA for experiment 16 …

0.83

b

a

d

pC

b

a

f

ModelB for experiment 8 …

0.8



ABM analysis
Gregarious Solitarious

Experiments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best Model O O B O A O B B A O O O O O O A A

Second Model B A O A B B O O O A B A B A A B O

Third Model A B A B O A A A B B A B A B B O B

of best 
model

- - 2.5 - 14 - 2 9 7 - - - - - - 57 37

∆POMIC 1st-2nd 1 1 1.6 32 2 .2 .0 4 0 4 12 .8 .9 14 .6 5 1

∆POMIC 1st-3rd 1 4 4 42 4 .6 .2 6 3 13 13 2 1.5 26 1 59 5

Gregarious innate behavior sometimes significantly happening
…but from both treatments…

d̂
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Conclusions of case study
• Innate gregarious behavior might exist in Desert Locust

• Small n of lab experiments…
• ABM integration of different processes

• POMIC approach applicable to behavioral analyses
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POMIC & ABC
• Potential in behavioral ecology to infer on complex 

systems dynamics
• Problem of chain convergence for complex models �

trade-off of  case complexity and inference possibility…
• Other techniques of ABC could be applied 

(summary statistics, regression…)

• Study of group behavior of hopper bands to come…
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THANK YOU!
БЛАГОДАРЯ !


