Agritrop
Home

The effects of variety and training system on vegetative growth of Mangifera indica (Mango) orchards in Far North Queensland

Ibell Paula, Normand Frédéric, Kolala Ramkrishna, Wright Carole, White Niel, Bally Ian. 2016. The effects of variety and training system on vegetative growth of Mangifera indica (Mango) orchards in Far North Queensland. In : XI Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems: Book of abstracts. Corelli Grappadelli Luca (ed.). ISHS, Bologna University. Bologne : ISHS, Résumé, p. 20. International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems. 11, Bologne, Italie, 28 August 2016/2 September 2016.

Paper with proceedings
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
ID581932abstract.pdf

Télécharger (1MB) | Request a copy
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
ID581932 diaporama.pdf

Télécharger (3MB) | Request a copy

Matériel d'accompagnement : 1 diaporama (20 vues)

Abstract : Sub-tropical and tropical horticultural tree crops are known to have issues of low productivity. Understanding how and why canopy structural growth habits impose productivity limitations, is critical to managing high yielding, regular bearing mango (Mangifera indica) orchards. To investigate the relationship between shoot architecture, flowering, and fruiting in mango in Far North Queensland, we measured spatial and temporal patterns of branching and flowering at the growth unit level, under several varieties and training systems to see how tree size (height, trunk diameter, canopy dimensions and volume) and vegetative and reproductive growth responds to canopy pruning and management. This paper will outline the architecture data collection technique used in this study and will summarise the first two years of vegetative growth response of three mango varieties (Keitt, Calypso™ and NMBP1243) planted at three densities (208 trees ha-1, 450 trees ha-1 and 1250 trees ha-1) and trained as conventional or single leader. The minimum level of assessment is at the growth unit level (growth flush), because mango shoots develop from preformed buds which form an uninterrupted “growth unit” before terminating and reshooting. New growth units are produced two or three times per season followed by a quiescent or dormant stage. At the break of this dormancy, terminal growth units produce a terminal flower. While tree growth is generally seasonal, flowering depends on other endogenous and environmental factors including terminal growth unit age, bud functional history and strength of inductive signals. As a result, growth stages of the growth units can be asynchronous, often resulting in spatial and temporal divergence between vegetative and reproductive growth at different locations in the canopy, at the end of a growing season. (Résumé d'auteur)

Mots-clés libres : Tree architecture, Mango, Vegetative and reproductive growth, Training systems

Classification Agris : F62 - Plant physiology - Growth and development
F50 - Plant structure
F63 - Plant physiology - Reproduction
U10 - Mathematical and statistical methods

Auteurs et affiliations

  • Ibell Paula
  • Normand Frédéric, CIRAD-PERSYST-UPR HortSys (REU)
  • Kolala Ramkrishna
  • Wright Carole
  • White Niel
  • Bally Ian

Source : Cirad-Agritrop (https://agritrop.cirad.fr/581932/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2019-10-01 ]