Proceedings
10th International Rangeland Congress

Editors
Alan Iwaasa, H.A. (Bart) Lardner, Mike Schellenberg, Walter Willms and Kathy Larson

16-22 July 2016
Saskatoon, SK | TCU Place

http://2016canada.rangelandcongress.org
10th International Rangeland Congress
Organizing Committee Members

Congress Co-Chairs | Treasurer
Dr. Bruce Coulman, Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Duane McCartney, Lacombe Research Station, Agriculture and Agri-Food Canada, Retired, Lacombe, Alberta, Canada

Scientific Program Committee Chairs
Dr. Mike Schellenberg, Swift Current Research Station, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
Dr. Walter Willms, Lethbridge Research Station, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada

Editorial Committee Chairs
Dr. Alan Iwaasa, Swift Current Research Station, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
Dr. HA (Bart) Lardner, Western Beef Development Centre, Humboldt, Saskatchewan, Canada

Sponsorship Committee Chairs
Dr. Paul Jefferson, Western Beef Development Centre, Humboldt, Saskatchewan, Canada
Dr. James (Jim) O’Rourke, Chadron State College, Retired, Chadron, Nebraska, USA

Tour Committee Chairs
Sarah Sommerfeld, Saskatchewan Ministry of Agriculture, Outlook, Saskatchewan, Canada
Al Foster, Saskatchewan Ministry of Agriculture, Melfort, Saskatchewan, Canada

Local Arrangements Committee Chairs
Dr. John McKinnon, Department of Animal and Poutry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Dr. Greg Penner, Department of Animal and Poutry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Delegate Sponsorship Committee Chair
Bill Houston, Agriculture and Agri-Food Canada, Regina, Saskatchewan, Canada

Communications Chair
Kathy Larson, Western Beef Development Centre, Humboldt, Saskatchewan, Canada

Many colleagues were called upon to aid in various ways, we thank them all.
IRC SPONSORS AND SUPPORTERS

GOLD
Government of Canada
Saskatchewan Ministry of Agriculture
United States Department of Agriculture – Agriculture Research Service
United States Department of Agriculture – Forest Service
United States Department of Agriculture – Natural Resource Conservation Service
Institut national de la recherche agronomique (INRA) together with
Global Agenda for Sustainable Livestock (GASL), Livestock Global Alliance,
CIRAD, Agropolis Fondation and Food and Agriculture Organization (FAO)
Australian Center for International Agricultural Research (ACIAR)
United States Department of the Interior – Bureau of Land Management with
United States Geological Survey

SILVER
Dr. Reed Funk Rangeland Travel Fund at Utah State University

BRONZE
University of Saskatchewan, College of Agricultural and Bioresources
Western Beef Development Centre

SUPPORTERS
University of Saskatchewan
Chadron State College
Saskatchewan Forage Council
Australian Rangeland Society
Tourism Saskatoon
City of Saskatoon
Taking into Account Carbon Sequestration of Pasture in Carbon Balance of Cattle Ranching Systems Established after Deforestation in Amazonia

B. Dallaporta 1, J.L. Bochu 2, M. Vigne 1, B. Ouliac 3, L. Zoogones 3, P. Lecomte 1 and V. Blanfort 1,*

1 CIRAD, UMR 112 Tropical and Mediterranean Animal Production Systems, Campus international de Baillarguet, 34398 Montpellier, France.
2 SOLAGRO CS27608 - 75 voie du TOEC - 31076 Toulouse Cedex 3 France
3 Guyane Energie-Climat / 16 rue Victor Schoelcher – 97 300 Cayenne
* Corresponding author email: blanfort@cirad.fr

Key words: Deforestation, carbon (C) sequestration, C balance, livestock systems, GHG

Introduction

Livestock development in the Amazonian basin has fuelled a lively international debate in recent decades. According to the FAO, approximately 80% of deforested areas were converted into pastures resulting in rapid carbon (C) emissions (~ 733 tCO2 eq. ha⁻¹) (Blanfort et al., 2014). Thus, efforts to curb deforestation should continue to be a priority to preserve C stocks and forest biodiversity. In addition, this also needs to be accompanied by sustainable management of areas that were converted into pastures, including strategies for greenhouse gas (GHG) mitigation. Few references are available in tropical areas and there is still important work to be done to establish the baselines and strategies to support sustainable grazing activity in these regions. In French Amazonia, a regional research platform contributes to the Carbon Observatory (GEC) aiming to provide solutions to these problems. The first stage of research focuses specifically on how cattle ranching systems affect C stocks in pastures where *Brachiaria* spp. is the dominant implanted grasses following deforestation. The eddy covariance flux measurements and a chronosequence study in 2012-13 showed that pastures issued from deforestation two decades after their introduction stored in the soil between 6.4 and 19.4 ± 7.7 tCO2 eq. ha⁻¹ yr⁻¹ (Blanfort and al., 2014; Stahl and al., 2016). Considering these results, a second phase of research, presented in this article, consists of establishing C/GHG balance and efficiency of livestock systems of French Guiana.

Materials and Methods

Data were collected on 8 cattle farms from the French Livestock Institute network representing 3 typical stages of development of Guiana’s livestock: 2 small land owners (SLO), 3 developing farms (DF) and 3 large land owners (LLO). Direct and indirect GHG emissions from farm scale (CO2, N2O and CH4) were calculated in 2013 using the ACCT method (a tool for energy and emissions analysis in farms based on different international standards and protocols, AgriClimate Change project, 2013). According to specific studies led in Guiana (Stahl and al., 2016), C sequestration from grassland in 2013 is considered as null for recent pastures, and of 6.4 tCO2 eq. ha⁻¹ yrs⁻¹ for those of more than 24 years old. The GHG emissions resulting from the past conversion from forest to grassland (C stock variations on the aerial and underground compartments) are estimated using a tier 2 IPCC method (Fig 1). Livestock systems of Guiana are compared to i) an extensive ranch in central Africa based on traditional use of natural *Hyparrhenia* spp. savanna and *Brachiaria* spp. improved grasslands (Lecomte, 2015), ii) Brasil Amazonian cattle extensive farm (Clerc et al., 2012), iii) temperate grazing system.

Results and Discussion

GHG emissions from the livestock systems studied, varied in response to their degree of development. The GHG emissions of smallholders and developing farms (DF & SLO: 2.8±0.8 tCO2 eq. ha⁻¹) are close to the references of the Congo ranch on *Bracharia* spp. (2.3±0.5 tCO2 eq. ha⁻¹). However, the developed
farms have greater emission rates (LLO: 5.1±1.0 tCO\(_2\)eq. ha\(^{-1}\)) close to systems in the French temperate area (5.6 tCO\(_2\)eq. ha\(^{-1}\)). Thus, the dynamic of development over time of farms (DF > LLO) seems to lead to an increase of GHG emissions per hectare, due to the rise in the stocking rate and inputs (fertilizers, oil consumptions etc…). Nevertheless, these stable systems (LLO) are characterised by a yearly C sequestration of older grasslands (i.e. >24 years old) that compensates on average for up to 80% of the GHG farm’s emissions in 2013. GHG emissions linked to deforestation are mainly due to variations of C stocks of the aerial compartment (CO\(_2\), N\(_2\)O, CH\(_4\) emissions from the forest biomass combustion) (Fig. 1). The underground C stock variations are more important in deep soil than in the surface layers on farms where deforestation is most recent (RF). In stable farms (LLO), deforestation goes back more than 20 years and the conversion of forest into grassland induces an increase of C contained in the deep ground.

Figure 1. C emissions / sequestrations of 8 livestock systems in French Amazonia: C stock variations after deforestation (i) in the aboveground compartment (aboveground_\text{C-var}), ii) in the underground compartment for the first 20 cm (underground_\text{20cm}) and iii) on 1m of depth (underground_\text{100cm}).

Conclusions and Implications

In Amazonia, the current challenge is to manage the deforested areas to maintain the productivity of livestock systems alongside their capacity to mitigate GHG. This study offers to combine different methodological approaches incorporated in the diagnosis GHG tool of pasture systems. This tool allows to take into account the yearly direct and indirect emissions of livestock systems, grassland C sequestration, and the yearly GHG impact of deforestation. An increased effort in sampling, and a focus allowing to assess the impact of practices, would be necessary to confirm these tendencies, and will be the object of further studies. From a broader point of view, this study contributes to the emergence of references in the Amazonian basin, for a more sustainable management of deforested lands. This study also highlights the importance of considering deep soil layers in grassland’s C balance establishment (according to Stahl and al., 2016), in comparison to the current IPCC method based by default on the first 30cm.

Acknowledgements

This study was co-funded by CIRAD, Guyane Energie Climat, European regional development fund (ERDF 2007-013) and Animal Change project (FP7 KKBE 2010-4).
References

Lecomte, P., Duclos, A., Juanes, X., and al. 2015. Climate Smart livestock development in natural and improved savannas of an extensive ranch in central Africa (RDC). In: Climate-Smart Agriculture Conference; Building tomorrow’s research agenda and bridging the science-policy gap (Mar. 16-18, 2015), Montpellier, France. (p. 136-136).