

Melanaphis sacchari (Zehnter)

pest of sorghum (feeding damages) and sugarcane (virus vection, ScYLV)

mostly anholocyclic, with known holocycle in Mexico (Peña-Martínez et al. 2016), India (David & Sandhu 1976), China (Zhang & Zhong 1983)

considered by Blackman & Eastop (1990)
as a species complex = M. sacchari (Zehnter) and M. sorghi (Theobald)

Genetic diversity worldwide, 2002-2009

- O 1333 specimens
- O 57 samples, 42 localities, 15 countries
- O two main host plants
- O 10 SSR loci
- O 658 bp sequence of the mitochondrial COI gene

S. bicolor

Saccharum sp.

S. bicolor subsp. verticilliflorum

S. halepense

P. glaucum

Clonal diversity and COI sequence variation

- O 36 Multi Locus Genotypes (MLG)
- O Low clonal richness

$$O R_{MLG} = 0.36$$

- O No sexual reproduction
 - O Genepop: $P_{sex} < 0.01$
- O 5 Multilocus Lineages (MLL)
- O very low COI variation

Geographic distribution of clonal lineages

Genetic diversity on Réunion, 2009-2010

- O 855 specimens
- O 31 samples
- O two host plants
- O 10 SSR loci

- O 13 MLG, all belonging to MLL-C
 - O 8 new ones
- O Low clonal richness
 - O RMLG = 0.40
 - O Identical to the worldwide value

Distribution of MLGs on Réunion

Host plant specialisation of the three most common MLGs

Field prevalence

sugarcane

sorghum

Artificial transfert experiments

Exploration of the genotypic diversity of SCA resistance in sugarcane germplasm

- O Field trial, 3 years
- O 181 sugarcane cultivars
- O Alpha-lattice design
- O Between plots susceptible spreader cv.
- O % infested leaves
 - O 20 leaves / plot
 - O Each 14 days (7 12 counts / year)

Exploration of the genotypic diversity of SCA resistance in sugarcane germplasm

- O Significant genotypic diversity
 - O 22 resistant cv.
 - O 20 susceptible cv.
- O Good fiability of the indexation method
 - $O H^2 = 0.75$
- O Spatial heterogeneity of infestations controlled by the alpha lattice
 - O No spatial correlation of model residuals
- Resistance to SCA reduced ScYLV incidence
 - O 51% vs. 98%

Genome wide association study

Searching for QTL for aphid resistance

O Method

- O 181 cultivars / field phenotyping
- O 3.327 molecular markers (AFLP, DArT, SSR)
- O GLM and MLM controling spurious effects of genetic structure or family relatedness among cultivars

O Result

- O Several QTLs detected for traits of interest (yield components, resistance to diseases)
- O But zero QTL identified for aphid resistance

Resistance to SCA in the sugarcane cv. R575

O R365 (resistant) vs. MQ76/53 (susceptible)

Field comparison

Potted plantlet infestation

antixenosis on potted plantlets

antibiosis on excised leaves

O r_m on *M. sacchari*

O R365 = 0.058

O MQ76/53 = 0.206

O r_m on *Rhopalosiphum* maidis

OR365 = -0.094

O MQ76/53 = 0.140

Analysis of feeding behavior with Electrical penetration graph (EPG)

Comparison of feeding behavior

Perspectives

- O To resolve the taxonomic ambiguity between *sacchari* and *sorghi*
 - O morphometry
 - O sequencing other genes (ITS, EF1-alpha, COII...)
- O To analyse the evolution of the genetic diversity in the current outbreaks on sorghum in US, Central America and Caribbean
 - O host shift or invasion?

