Plant stages with biotic, indirect defences are more palatable and suffer less herbivory than their undefended counterparts

ANA L. LLANDRES1*, MIGUEL A. RODRÍGUEZ-GIRONÉS1 and RODOLFO DIRZO2

1Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento s/n, E-04120, La Cañada de San Urbano-Almería, Spain
2Department of Biology, Stanford University, Stanford, CA 94305, USA

Received 29 March 2010; revised 4 June 2010; accepted for publication 4 June 2010

Plants have evolved several anti-herbivory strategies, including direct defences, such as mechanical and chemical defences, and indirect or biotic defences, such as the recruitment of defending animals. We examined whether the investment plants make in direct defences differs between those which do and do not invest in biotic defences, by comparing standing herbivory and palatability of congeneric species with and without indirect defences at two ontogenetic stages: before and after the onset of indirect defences. We used Cordia alliodora and Croton suberosus as the species with indirect defences and Cordia elaeagnoides and Croton pseudoniveus as the species without indirect defences. We predicted that herbivores would prefer to eat species and stages with indirect defences to those without them. As predicted, we found that herbivores preferred species and ontogenetic stages with indirect defences in all cases. Overall, however, natural levels of herbivory were lower in species with indirect defences. We conclude that indirect defences offer effective protection against herbivores and posit that their recruitment allows plants to reduce investment in other defence mechanisms. Our results support the notion that plants trade-off between direct and indirect defensive strategies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 536–543.

INTRODUCTION

Plants protect themselves against herbivores with a diverse array of mechanisms, including direct and indirect defences. Direct defences are traits that decrease plant quality as food for herbivores, thereby reducing herbivore damage (Gowda et al., 2003; Rohde, Molis & Wahl, 2004). Indirect or biotic defences result from traits that attract animals, which in turn defend the plant from its herbivores (Janzen, 1966, 1969; Schemske, 1980; Domínguez, Dirzo & Bullock, 1989; Di Giusto et al., 2001; Cuautle & Rico-Gray, 2003; Del Val & Dirzo, 2004; Kost & Heil, 2005). Anti-herbivore defences often differ among ontogenetic stages within plant species and there are two primary hypotheses to explain patterns in this variation. The first explanation is concerned with resource allocation and proposes that young plants are unable to produce high levels of defences because they lack the resources to produce them (Herms & Mattson, 1992). The second explanation, the optimal-defence hypothesis, suggests that younger stages are more vulnerable to herbivore attacks and should therefore be better defended (Bryant et al., 1992). Combining these two explanations, Boege & Marquis (2005) predicted a decrease in the levels of defences from seedlings to the juvenile stage and an increase in defences from the juvenile to the mature stage. Some of the patterns predicted by Boege & Marquis (2005) have been supported by a meta-analysis of available studies, but the broader picture is more complex: the relationship between plant age and defence level differs between plant life
Mechanistic constraints such as resource limitation and physiological trade-offs influence ontogenetic variation in plant defences in many systems. For instance, certain secondary compounds are stored in specialized tissue that is not present in young seedlings, leading to an ontogenetic increase in the use of these defences when the tissues become available (Goralka & Langenheim, 1996; Goralka, Schumaker & Langenheim, 1996 – cited in Barton & Koricheva, 2010). Likewise, some indirect defences rely on tissues and/or structures that are not present in young seedlings. This led Boege & Marquis (2005) to predict that, unlike direct defences, these indirect defences will increase as plants grow from seedlings to juveniles.

Some plants, known as myrmecophytes (Webber et al., 2007), produce feeding rewards for ants (nectar or nutritious bodies). Frequently, myrmecophytes produce specialized structures called domatia, in which ants nest. Domatia may also, in some cases, provide food for the ants (Fiala & Maschwitz, 1992; Gaume, McKey & Terrin, 1998). In turn, ants protect host plants from herbivore attack (Janzen, 1966; Schupp, 1986; Madden & Young, 1992; Rocha & Bergallo, 1992; Fiala et al., 1994; Chamberlain & Holland, 2009; Rosumek et al., 2009). Other plants produce unc concealed nectar, in floral or extrafloral nectaries, to attract defending wasps (Domínguez et al., 1989; Cuaute & Rico-Gray, 2003). Wasps visit the plant to feed on the nectar and, whilst doing so, remove any herbivores that they encounter (Domínguez et al., 1989).

In all known cases, plants that rely on these mutu alistic relationships do not begin their lives with the necessary indirect defences to acquire or maintain them. Instead, they must do so during their ontogeny (Del Val & Dirzo, 2003). The absence of indirect defences during the early stages of plant growth has led to the suggestion that young (uncolonized) plants may be more reliant upon direct defences than older (colonized) ones (Collantes, Gianoli & Niemeyer, 1997; Heil & McKey, 2003).

Studies investigating the anti- herbivore defences of uncolonized myrmecophytes have varied widely in their support of the hypothesis that uncol onized young plants rely more upon direct defences than colonized ones. Nomura, Itoika & Murase (2001) showed that, in captivity, generalist herbivores ate more and survived better on leaves clipped from plants after the initiation of symbiosis with ants than from plants before the initiation of this symbiosis in three Macaranga tree species. In contrast, Trager & Bruna (2006) showed that the specialist beetle Cop tocycla leprosa fed equally on leaves from 1- and 5-year-old individuals of Cordia alliodora during laboratory trials (see also Del Val & Dirzo, 2003).

Furthermore, when comparing investment in direct defences between congeneric species with and without indirect defences, different studies have reached different conclusions. While some studies found significant differences in the amount of direct defences used by congeneric species with and without indirect defences (e.g. Rehr, Feeny & Janzen, 1973; Heil, Stahelin & McKey, 2000; Eck et al., 2001), others have found no such differences (Steward & Keeler, 1988; Heil et al., 2002; Rudgers, Strauss & Wendel, 2004). Clearly, the lack of congruence among studies highlights a need for studies that comprehensively control for several confounding factors.

Given the discordant results of past studies, we wanted to examine if two indicators of plant investment in direct defences, herbivory and palatability (see Del Val & Dirzo, 2003), differ between plants with and without indirect defences. For this purpose, we compared the standing herbivory and palatability of two congeneric species with and without indirect defences at two ontogenetic stages: before and after the onset of indirect defences. We predicted that herbivores would prefer to feed on species and stages with indirect or biotic defences.

MATERIAL AND METHODS

Study site

We conducted this study at the Chamela Biological Station, within the Chamela–Cuixmala Biosphere Reserve (19°30′N, 105°03′W, Jalisco, Mexico), where the predominant vegetation is seasonally dry tropical forest. The area is characterized by its extreme seasonality. Average annual temperature is 25 °C and average annual precipitation is 750 mm, with a marked dry season from November to June (Bullock, 1986; Stoner, 2005).

The study was conducted during the rainy season of 2006 and field observations were carried out during the beginning of August, approximately 1 month after main leaf expansion occurred (Boege, 2004).

Study species

Cordia alliodora and *Cordia elaeagnoides* (Boraginaceae) are widespread in the Neotropical Region. *Cordia alliodora* presents traits of a myrmecophyte and it is defended by ants (Tillberg, 2004; R. Dirzo, 2009; R. Dirzo, 2007).
Cordia elaeagnoides does not have any apparent indirect defences. The domatia of C. alliodora are naturally hollow swellings produced at most branch nodes (Trager & Bruna, 2006). These nodes may be inhabited by different ant species in different parts of the plant’s range (Tillberg, 2004), but Azteca species are the most common ant partners of C. alliodora throughout the plant’s geographical range (Longino, 1996). In the case of C. alliodora at Chamela, the age at which the mutualistic interaction with Azteca ants begins differs among individuals, but ant colonization can be readily assessed by direct inspection. The approximate minimum size at which C. alliodora individuals recruit defenders is 65 cm overall height (R. Dirzo, pers. observ.).

Of the two selected Euphorbiaceae, Croton suberosus has indirect defences whereas Croton pseudoniveus does not (R. Dirzo, unpubl. data). Croton suberosus is distributed on the lowlands of Jalisco, Michoacán, Guerrero and Oaxaca, on the Pacific coast of Mexico. The floral nectar of C. suberosus attracts wasps which prey on herbivores (Domínguez et al., 1989). Although larvae of Hypercombe sp. (Lepidoptera: Arctiidae) readily consume leaves of C. suberosus in laboratory test trials, larvae experimentally placed on leaves of C. suberosus plants in the field are readily killed and removed by wasps (Domínguez et al., 1989).

We sampled an area of forest approximately 1.5 km². Sampled plants were interspersed with plants from other species. For the purpose of this experiment, we used the following operational definitions of young (uncolonized) and old (colonized) individuals. In Croton suberosus (a shrub), we selected plants less than 30 cm tall for the young group and plants taller than 60 cm for the old group. Old Croton suberosus plants ranged between 0.6 and 3 m and they all had flowers. For the other three (tree) species, we selected plants less than 50 cm for the young group and plants taller than 1.5 m for the old group. Above this threshold, we estimated the herbivory of the smallest individuals we found. To avoid the risk that some very young plants of Cordia alliodora might have been colonized by ants, we verified that none of the young plants selected for this study had developed such an association. None of the young individuals of Croton suberosus had flowers at the time of sampling, whereas flowers were present on all old sampled individuals of this species.

Preference experiment

We chose caterpillars of Hypercombe sp. for the experimental work because this species is a generalist feeder, which feeds regularly on all four plant study species (Domínguez et al., 1989). We collected caterpillars from the field each morning and used them for preference trials the same day. We kept caterpillars in plastic containers, covered with mosquito netting for ventilation, with wet cotton wool for moisture and a mixture of native plants, not including the study species, to feed on. Six hours before the onset of the experiment, we replaced the plant material in the containers with lettuce (Lactuca sativa L.) to minimize the effect of previous diet. After 2 h, we removed the lettuce and starved caterpillars for 4 h. This procedure standardized caterpillar hunger (see Dirzo, 1980).

We determined each caterpillar’s preference of two plants, each plant from a different group. We used only mature leaves (i.e. in positions 3–4 of the phylotaxis) for the trials. We cut out two 4-cm² pieces from the mature leaves of each plant and placed the four squares along the wall of a plastic container, equally spaced. We arranged the leaf pieces so that the two squares from the same plant were across from each other. We placed one caterpillar in the centre of the container and removed it after 5 h of feeding. At the end of each trial, we photographed the remaining leaf material beside a 5-cm scale bar and determined the area consumed by the caterpillar using IMAGE J (Rasband, 2003). This procedure was used for two experiments. In the first one, we tested whether caterpillars preferred to eat species with indirect defences to species without them; the second tested whether caterpillars preferred the defended (old) ontogenetic stage to the undefended (young) one.

To test whether caterpillars preferred to eat species with indirect defences to species without them, we presented caterpillars with leaf material from two individuals from the same genus (Cordia or Croton) and ontogenetic stage (young or old) but of different species (one with, the other without indirect defences). We calculated caterpillar preference by estimating the difference in leaf area consumed between species with and without indirect defences. We replicated the trials 15 times for each species pair to assess interspecific differences in direct defences. Preference for the species with indirect defences was analysed with a full factorial ANOVA with genus and ontogenetic stage as fixed factors. Because the variance of the residuals differed between groups, we rank transformed our dependent variable to fulfil the assumptions of the ANOVA model. This transformation is correct and powerful for 2 × 2 factorial designs like the one used for this experiment (Thomson, 1991).

To test whether caterpillars preferred the defended (old) ontogenetic stage to the undefended (young) one, we presented caterpillars with leaf material from two individuals belonging to the same species, but in different ontogenetic stages (one young individual,
one old individual). We calculated the preference of caterpillars for old individuals as the area of leaf material consumed of the old individual minus the amount consumed of the young individual. We conducted 15 replicates for each choice test comparing young and old plants within each of the four species. Preference for old individuals was analysed with a full factorial ANOVA, with genus and presence of indirect defences as fixed factors.

FIELD OBSERVATIONS

To test if caterpillar preference explains herbivory in natural conditions, we conducted field observations of herbivory. We measured herbarvy level and plant size (height, trunk diameter and number of leaves) of 15 individuals of each study species. In order to estimate the degree of herbivory in individual plants, we visually categorized damage using the method described in Dirzo & Domínguez (1995). We first determined a level of damage as a percentage for each leaf and then assigned leaves to different categories 0, 0–20, 20–40, 40–60, 60–80, 80–100 and 100. These seven categories were given a label of \(i \) = 0 to \(i \) = 6 and the expected percentage of leaf consumed \(c_i \) for each category was the midpoint of its range. We denoted the number of leaves in category \(i \) as \(n_i \), and the number of leaves sampled as \(N \). With these conventions, the percentage of leaf material consumed for an entire plant can be approximated by \(H = \sum(n_i c_i)/N \). We calculated \(H \) on the basis of all the leaves in a plant except for large trees, where we measured the herbivory of the leaves on three branches chosen at random.

We tested for effects of ontogenetic class (young or old), genus (Cordia or Croton) and indirect defences (presence or absence) and their interactions on our measure of herbivory with a full factorial ANOVA. Initially, we analysed the data including height, trunk diameter and number of leaves as covariates, but we removed them from the analysis because they did not have any significant effect on our measure of herbivory. Because the residuals of the model were not normally distributed, we used Monte Carlo simulations to calculate empirical \(P \)-values for this analysis (Davison & Hinkley, 2006). We ran a total of 1999 Monte Carlo simulations using the statistical package R, version 2.8.1 (R Development Core Team, 2008).

RESULTS

PREFERENCE EXPERIMENT

Caterpillars showed a clear preference for species with indirect defences. Regardless of the genus and ontogenetic stage, caterpillars consumed 4.98 ± 2.39 cm² (mean ± SE) more leaf material from species with indirect, biotic defences than from species without them \((F_{1,56} = 267.07; P < 0.01) \). There was a significant effect of the age class–genus interaction on the preference for species with indirect defences \((F_{1,56} = 7.17, P < 0.01) \): the preference for young Cordia alliodora over young C. elaegnoides was smaller than for the other groups (Fig. 1).

Overall, there was a marginally significant effect of within-species ontogenetic stage on the amount of leaf material the caterpillars consumed \((F_{1,56} = 4.28; P = 0.04) \), but there was a significant interaction between ontogenetic stage and plant defensive strategy \((F_{1,56} = 15.58; P < 0.01) \): Caterpillars preferred leaves from older individuals of plant species without indirect defences (Fig. 2). Neither genus \((F_{1,56} = 0.32; P = 0.57) \) nor its interaction with presence of indirect defences \((F_{1,56} = 0.69; P = 0.41) \) had an effect on the preference for old individuals.

FIELD OBSERVATIONS

Only the presence or absence of indirect defences had a statistically significant effect on natural levels of herbivory (Table 1): species with indirect defences experienced less herbivory in the field than species without indirect defences \((F_{1,0} = 0.03) \). None of the other factors, or their interactions, had significant effects, with the exception of the interaction between presence or absence of indirect defences and ontogenetic stage that was also significant \((P = 0.04) \). Although, overall, plants with indirect defences suffered less herbivory than plants without indirect defences, the difference was marked mainly in old plants and it was much less so in young plants (Fig. 3).
DISCUSSION

Our results are consistent with the assumption that defensive traits are costly. Because plants have a finite amount of resources, they face a trade-off between investing in different defensive strategies (Janzen, 1966; Heil et al., 1999, 2000; Nomura, Itioka & Itino, 2000; Eck et al., 2001). This is not a new idea, but it remains controversial. Agrawal (2006) pointed out two major difficulties when comparing defensive strategies between species with and without indirect defences. First, some studies have failed to take into account phylogenetic relationships when comparing between species with and without indirect defences. Second, many studies have concentrated on only searching for univariate trade-offs. For instance, Heil et al. (2000) compared chitinase activity between leaves of a myrmecophytic species and three other non-myrmecophytic species (see also Rehr et al., 1973; Eck et al., 2001). These studies implicitly assumed that the focal chemical (or the family of chemicals) constitutes a defence in itself. However, plants relying on direct defences to discourage herbivore attacks mount complex defensive systems combining different defensive traits. Even if there is a trade-off between investing in indirect or direct defences, there is no reason to expect a negative correlation between investment in indirect defences and any one particular component of the direct defence strategy.

In one of the most comprehensive studies on trade-offs between investing in indirect and direct defences, Heil et al. (2002) found no clear evidence that plants with indirect defences invest less in chemical defences. However, their results were inconclusive.

Table 1. Results of ANOVA testing the effect of ontogenetic stage (colonized vs. uncolonized), genus (Cordia vs. Croton) and indirect defences (present vs. absent) on the herbivory index

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>1</td>
<td>0.003</td>
<td>0.956</td>
</tr>
<tr>
<td>Indirect defences</td>
<td>1</td>
<td>4.840</td>
<td>0.026</td>
</tr>
<tr>
<td>Stage class</td>
<td>1</td>
<td>0.044</td>
<td>0.830</td>
</tr>
<tr>
<td>Genus × indirect defences</td>
<td>1</td>
<td>0.532</td>
<td>0.478</td>
</tr>
<tr>
<td>Genus × stage class</td>
<td>1</td>
<td>0.887</td>
<td>0.363</td>
</tr>
<tr>
<td>Indirect defences × stage class</td>
<td>1</td>
<td>3.851</td>
<td>0.038</td>
</tr>
<tr>
<td>Genus × indirect defences × stage class</td>
<td>1</td>
<td>1.398</td>
<td>0.243</td>
</tr>
<tr>
<td>Error</td>
<td>112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Preference (mean ± 95% CI) for the adult stage in the comparison adult vs. young stage for species with and without indirect defences and for the two genera (Croton and Cordia). The dashed line indicates indifference between the two ontogenetic stages. Positive values indicate a preference for old individuals and negative values a preference for young individuals.

Figure 3. Mean herbivory indices of species with and without indirect defences divided by stage classes within the genera (A) Cordia and (B) Croton. Bars denote standard errors.

(A) Genus Cordia

- Species with indirect defences
- Species without indirect defences

(B) Genus Croton

- Mean herbivory index

because of the use of an artificial diet, which lacked physical defences, was rich in proteins and had concentrations of chemical defences much lower than those found in the actual leaves. This is critical because the effect of toxin concentration in the diet on consumption and growth is non-linear (Yu, 1987; Wadleigh & Yu, 1988; Johnson, 1999) and depends on the protein-to-carbohydrate ratio of the food (Simpson & Raubenheimer, 2001).

The results of our within-species comparisons (Fig. 2) are consistent with the requirement for plants to trade-off between investing in indirect and direct defences. Plants lacking indirect defences did not show a significant difference in their palatability as they matured, but for species with indirect defences caterpillars preferred plants that had already acquired the indirect defences. That individuals lose or reduce their direct defences during the adult stages is an indication that these defences are costly. This pattern fits the prediction of Boege & Marquis (2005), which states that there should be an increase in defence from the juvenile to the mature stage, and it highlights the importance of mechanistic constraints influencing ontogenetic variation in plant defences (Barton & Koricheva, 2010).

As in the present study, some previous studies have found that, in plant species with indirect defences as adults, investment in direct defences decreases when indirect defences become available (Nomura et al., 2001). This is not, however, a universal result. In some cases, the inconsistency in results can be explained on the basis of methodological differences, such as differences in the criteria defining the ontogenetic stages or use of specialist herbivores (Trager & Bruna, 2006), but inconsistencies between experimental results cannot always be explained purely on methodological grounds (e.g. Del Val & Dirzo, 2003). It is therefore important to note that there is no single general pattern in the ontogeny of plant defence (Barton & Koricheva, 2010) and that there is as yet no theory that adequately explains the variety of changes in plant defensive strategy deployed through ontogeny (Boege & Marquis, 2005; Barton & Koricheva, 2010).

Despite the caterpillar’s preference for species with indirect defences, standing herbivory in the field was higher in plants without indirect defences than with indirect defences. This pattern was particularly clear among old plants (Fig. 3). There are two likely explanations for this pattern. Firstly, the low herbivory level of potentially preferred plants (those with indirect defences) could be a result of generalist herbivores being forced to feed on their less preferred food sources because of the high predation risk (in Croton suberosus) or caterpillar attack and subsequent falling to the ground (in Cordia alliodora) in their preferred food sources (Lima & Dill, 1990). Secondly, the direct defences of plant species without indirect defences may repel generalist herbivores in the field, and the high herbivory we observed could attest to the presence of specialised herbivores well equipped to deal with direct plant defences. Either way, plants with indirect defences proved to be better protected against herbivores than plants without them (see also Dyer et al., 2004).

Finally, we suggest that trade-offs between alternative defensive traits must be one of the basic assumptions in any attempt to explain the evolution of defence strategies. That these trade-offs exist is testament to the fact that not all plant species rely on indirect defences to remove herbivores. If, in accordance with the results of our field observations, plants with indirect defences suffer less herbivory than plants without them, why, then, do many plant species not use indirect defences? We posit two possible explanations. First, that phylogenetic inertia prevents some plant species from evolving indirect defences or, second, that indirect defences are costly, so that the cost of recruiting herbivore predators balances the benefit obtained from them. Given the broad taxonomic distribution of indirect defences, it seems unlikely that phylogenetic constraints prevent other plants from adopting this defence strategy. It seems reasonable to suggest that the presence or absence of indirect defences can be explained with a cost-benefit framework. Clearly, this is an aspect that warrants further research. We conclude that indirect defences are an effective defence against herbivores and that their recruitment allows plants to reduce investment in other defence mechanisms, supporting the notion of plants trading-off between defensive strategies.

ACKNOWLEDGEMENTS

Thanks to Irene López for help with the fieldwork and to Oriol Verdeny for statistical help. Financial support to A.L.L. came from a research grant of the British Ecological Society (SEPG, reference no. 755–877). Elizabeth Pringle and Kate Umbers read a previous draft and made valuable comments. The Chamela Tropical Research Station provided logistical support to undertake field and laboratory work. Thanks to two anonymous reviewers for their helpful comments on an earlier version of this paper.

REFERENCES

