Agritrop
Home

Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa

Laguerre Mickaël, Nlandu Mputu Madeleine, Brïys Benoît, Lopez Michel, Villeneuve Pierre, Dubreucq Eric. 2017. Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa. European Journal of Lipid Science and Technology, 119 (8):e1600302, 10 p.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Laguerre_et_al-2017-European_Journal_of_Lipid_Science_and_Technology.pdf

Télécharger (357kB) | Request a copy

Quartile : Q2, Sujet : FOOD SCIENCE & TECHNOLOGY / Quartile : Q3, Sujet : NUTRITION & DIETETICS

Abstract : Microbial lipases are of particular interest for biotechnological applications because of their high specificity and their ability to perform reactions at room temperature. Here are characterized extracellular and cell-bound crude lipase extracts from the yeasts Pseudozyma tsukubaensis CBS 422.96, Candida rugosa CBS 5213, and Geotrichum candidum NRRL Y-552. Enzyme preparations were optimally active at neutral pH and ambient temperature, and displayed different substrate specificities. Unlike P. tsukubaensis and C. rugosa extracts, crude lipases from G. candidum were unable to hydrolyze ethyl esters of saturated fatty acids (C8:0–C18:0). The activity of extracts from P. tsukubaensis was maximal for the octyl chain and then decreases as the acyl chain was lengthened, while cell-bound lipases from C. rugosa hydrolyzed any saturated fatty acid ethyl esters from C8:0 to C18:0. Preparations from C. rugosa and P. tsukubaensis displayed a sn-1,3-regioselectivity on triolein, while cell-bound lipases from G. candidum were non-regioselective. The extracellular crude lipases from G. candidum exhibited a small preference for the internal position both on triolein and on six edible oils, releasing a high proportion of DAG-1,3 (∼50%) compared to DAG-1,2(2,3). To the contrary, extracts from P. tsukubaensis and C. rugosa catalyzed the formation of almost 100% DAG-1,2(2,3) from oils. (Résumé d'auteur)

Classification Agris : Q02 - Food processing and preservation

Champ stratégique Cirad : Axe 3 (2014-2018) - Alimentation durable

Auteurs et affiliations

  • Laguerre Mickaël, Montpellier SupAgro (FRA)
  • Nlandu Mputu Madeleine, Ets. J Soufflet (FRA)
  • Brïys Benoît, Ets. J Soufflet (FRA)
  • Lopez Michel, Ets. J Soufflet (FRA)
  • Villeneuve Pierre, CIRAD-PERSYST-UMR IATE (FRA) ORCID: 0000-0003-1685-1494
  • Dubreucq Eric, Montpellier SupAgro (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/584194/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-01-25 ]