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Abstract 18 

The structure of pathogen populations is an important driver of epidemics affecting crops and 19 

natural plant communities. Comparing the composition of two pathogen populations 20 

consisting of assemblages of genotypes or phenotypes is a crucial, recurrent question 21 

encountered in many studies in plant disease epidemiology. Determining if there is a 22 

significant difference between two sets of proportions is also a generic question for numerous 23 

biological fields.  When samples are small and data are sparse, it is not straightforward to 24 

provide an accurate answer to this simple question because routine statistical tests may not be 25 

exactly calibrated.  26 

To tackle this issue, we built a computationally-intensive testing procedure, namely the 27 

Generalized Monte Carlo Plug-In test with Calibration (GMCPIC test), which is implemented 28 

in an R package available at http://dx.doi.org/10.5281/zenodo.53996. A simulation study was 29 

carried out to assess the performance of the proposed methodology and to make a comparison 30 

with standard statistical tests. This study allows us to give advice on how to apply the 31 

proposed method, depending on the sample sizes. The proposed methodology was then 32 

applied to real datasets and the results of the analyses were discussed from an epidemiological 33 

perspective. The applications to real data sets deal with three topics in plant pathology: the 34 

reproduction of Magnaporthe oryzae, the spatial structure of Pseudomonas syringae, and the 35 

temporal recurrence of Puccinia triticina. 36 
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 37 

 38 

Introduction 39 

The genetic structure of pathogen populations is an important driver of epidemics affecting 40 

crops (Garcia-Arenal et al. 2001; McDonald and Linde 2002) and natural plant communities 41 

(Burdon 1993; Gilbert 2002). The composition of a plant pathogen population can be defined 42 

as an array of genotypes or, when genotyping is not feasible, of the phenotypic expression of 43 

genotypes (Hull 2008). Determining whether the compositions of two populations of 44 

pathogens are different is a generic question that arises in many situations. The populations to 45 

be compared might have been sampled across various temporal scales (within a single 46 

epidemic season (Villareal and Lannou 2000) or across successive epidemic seasons (Tian et 47 

al. 2015)), geographical scales (from a single field to a country (Goyeau et al. 2012), a 48 

continent (Kolmer et al. 2012; Pule et al. 2013) or worldwide (Linde et al. 2002) ), and 49 

ecological niches (different host plants (Leroy et al., 2014) or ecosystem components 50 

(Vinatzer et al. 2014)). 51 

The recent theoretical and methodological advances for analyzing microbial population 52 

genetics (Xu 2010) have been successfully applied to several plant pathogens (Milgroom 53 

2015). Those methods rely on strong assumptions regarding the biology of the 54 

microorganisms, which are often violated for plant pathogens (Rozenfeld et al. 2007). First, 55 

sexual reproduction is a pre-requisite, while several pathogens do not show any signature of 56 

such a reproduction and exhibit clonal population structure; the sexual system is, moreover, a 57 

matter of speculation in many plant pathogens (Tollenaere and Laine 2013). Second, the 58 

markers used for population comparison should be under selective neutrality, which is clearly 59 

not the case when the markers are linked with virulence (Gérard et al. 2006). Therefore, there 60 

is an important need for a statistical method for comparison of populations that does not 61 

require any a priori knowledge about pathogen biology. 62 

Moreover, the sizes of populations of plant pathogenic microorganisms are usually orders of 63 

magnitude greater than the size of the samples that can be taken and characterized from these 64 

populations. Thus, relatively small samples that result in sparse data about population 65 

structure are more the rule than the exception. Besides, sample size is particularly small in the 66 

following specific but frequent situations: when collection and identification of samples are 67 

costly and time consuming, and when a simple pilot study is carried out to determine the 68 

relevancy of performing a larger study and to design it. The problem of inherently small 69 
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sample size is exacerbated by the genetic diversity of clonal microbial populations where 70 

there are usually only a few dominant variants and multiple variants of exponentially 71 

decreasing abundance (Arnaud-Haond et al. 2007). Thus, for clonal microorganisms, not only 72 

sample sizes are small, data are also sparse for non-dominant variants. Therefore, statistical 73 

tests adapted to small sample sizes and sparse data are needed. 74 

For comparing vectors of proportions, the Chi-squared test and the Fisher’s exact test (Agresti 75 

2007, chap. 2-3) are routinely used. However, both tests may not be exactly calibrated when 76 

sample sizes are small and data are sparse, even if the Monte Carlo versions of the tests (Hope 77 

1968; Manly 1997, chap. 12) are used because calculations are dependent on counts in the 78 

margins of the contingency table. A test is not calibrated if the actual risk of false rejection 79 

(i.e. type I error) is different from the significance level (e.g. 0.05) specified by the user 80 

(Sellke et al. 2001). Unconditional exact tests have been proposed to solve this issue for 2x2 81 

contingency tables (i.e. with 2 groups and 2 response types); see reviews by Mehrotra et al. 82 

(2003) and Lydersen et al. (2009). These tests rely on a maximization with respect to the 83 

probabilities of all the response types. For a 2x2 contingency table, there are 2 response types 84 

with probabilities � and 1-� under the null hypothesis and, therefore, the maximization is 85 

carried out with respect to a single parameter, namely �. This maximization approach adopted 86 

in unconditional exact tests prevents their application for larger contingency tables. Indeed, if 87 

we consider a design with 2 groups and � response types (like in our case studies), then the 88 

maximization must be done with respect to � − 1 probabilities, which is complicated as soon 89 

as � is large, given the limited information contained in a contingency table, especially when 90 

samples are small. 91 

The main objective of this article is to describe and evaluate an alternative calibrated 92 

statistical procedure to test the similarity of compositions of two populations of a pathogen 93 

based on small samples and sparse data (typically, several dozens of variants of the pathogen 94 

including a large number of non-dominant variants, and a few dozens of isolates), without any 95 

a priori biological knowledge. This procedure has a wide spectrum of applications since, from 96 

a generic point of view, it aims at testing the equality of two unknown vectors of probabilities 97 

�� and �� based on two multinomial draws performed with these probabilities.  98 

Thus, after demonstrating that standard statistical tests are not calibrated in the case of small 99 

samples and sparse data, we propose a new test based on a numerical calibration. Then, 100 

simulation studies comparing the performances of the standard tests and the proposed new 101 

one are provided. The comparisons are based on type I error and the power of the tests, when 102 
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the sample sizes and the frequencies of variants in the samples vary. Following the 103 

conclusions of the simulation study, the new test was applied to real datasets raising issues of 104 

theoretical and practical relevance in plant disease epidemiology, i.e. (i) the reproduction 105 

regime of a rice fungal pathogen, Magnaporthe oryzae, in Madagascar and China, (ii) the 106 

population diversity of a bacterial pathogen, Pseudomonas syringae, from alpine areas to 107 

crops in Southeastern France and (iii) the temporal recurrence of a wheat fungal pathogen, 108 

Puccinia triticina, in Southwestern France. 109 

The data sets and the computer code for applying the method are provided in the R package 110 

GMCPIC (Generalized Monte Carlo Plug-In test with Calibration) and available at 111 

http://dx.doi.org/10.5281/zenodo.53996. 112 

 113 

Material and methods 114 

Why routine tests might not necessarily be calibrated? 115 

Consider two vectors of counts, say �� and ��, independently drawn under multinomial 116 

distributions with unknown vectors of probabilities  �� and ��. With the aim of testing the 117 

equality �� = �� of the vectors of probabilities using �� and ��, the Chi-squared test and the 118 

Fisher’s exact tests are routinely applied. However, the sparseness of  �� and �� hampers the 119 

use of these tests, even when the p-value is computed using Monte Carlo simulations. To 120 

understand this statement, one can inspect the formula of the Chi-squared statistics 
 used in 121 

the Chi-squared test: 122 


 = ∑ ∑ ����������
�

�����
�
���

�
���  ,         (1) 123 

where � is the number of categories, ���  is the �-th component of ��, � ∈ �1, … , �  and 124 

! ∈ �1,2 , ��  is the size of sample ! (i.e. �� = ∑ ���� ), and #�� is the proportion of items from 125 

category � in both samples. Note that #�� 	is equal to the following weighted means: 126 

#�� = �%
�%&��

�̂�� + ��
�%&��

�̂�� ,         (2) 127 

where �̂�� and �̂�� are the proportions of items from category � in samples 1 and 2, 128 

respectively. 129 

When the contingency table, i.e. the matrix with columns �� and ��, is sparse, under the null 130 

hypothesis the estimates ��#�� are unbiased but relatively strongly varying estimates of the 131 

expectations )����� of  ��� , i.e. the ratios ��#��/)����� vary strongly. Therefore, when the 132 
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classical Chi-squared test is applied, the normal approximation of the distribution of ��#�� is 133 

crude and so is the Chi-squared approximation of the distribution of the statistic 
. Similarly, 134 

when the Monte Carlo version of the Chi-squared test is applied, the simulated counts 135 

replacing the observed counts ���  are obtained under the probabilities #��	 that are significantly 136 

different from the true probabilities under which the observed counts were generated.  137 

Consequently, the Monte Carlo approximation of the distribution of the statistic 
 is crude. 138 

Such a crude approximation of the distribution of 
 leads to a calculated p-value that does not 139 

exactly give the probability +,-(
 > 
012) of observing 
 at least as extreme as the observed 140 

value 
012 of 
 under the null hypothesis 45. If the difference between the calculated p-value 141 

and its theoretical counterpart +,-(
 > 
012) is not negligible, then the test is uncalibrated 142 

(definitions: a test is calibrated if the actual risk of false rejection, i.e. type I error, is equal to 143 

the significance level 6  specified by the user (Sellke et al. 2001); the significance level 6 is a 144 

threshold under which the p-value of the test is considered statistically significantly low and 145 

leads to the rejection of the null hypothesis). 146 

The same argument can be used for the Fisher’s exact test, where the counts observed in the 147 

margins of the contingency table are used to specify the distribution of the counts observed 148 

inside the contingency table, and for the Monte Carlo plug-in test detailed in Supplementary 149 

Text S1.  150 

For 2x2 contingency tables, unconditional exact tests have been proposed to solve the issue 151 

mentioned above (Mehrotra et al. 2003; Lydersen et al. 2009) and can be easily applied, for 152 

example, with the Exact and Barnard R packages. However, for larger tables such as those 153 

considered in this article, no routine test exists. 154 

 155 

Generalized Monte Carlo plug-in test with calibration (GMCPIC test) 156 

As seen above, with sparse data, the inadequacy of the Chi-squared test, the Fisher’s exact test 157 

and the Monte-Carlo plug-in test is due to a relatively strongly varying estimate  of the 158 

unknown vector of probabilities � of the multinomial distributions appearing in the null 159 

hypothesis (under the null hypothesis, ��~Multinomial(��, ��) , ��~Multinomial(��, ��) 160 

and � = �� = ��). For example, in the Chi-squared test, one uses the maximum likelihood 161 

estimate of � based on the two samples: 162 

p̂
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�̂ = �%
�%&��

�̂� + ��
�%&��

�̂� .         (3) 163 

The relatively strong variations of �̂ with small sample sizes lead to uncalibrated tests, that is 164 

to say tests whose significance levels are not satisfied in practice.  165 

Here, we propose a Monte Carlo test based on a statistic A(��, ��, B) depending on a 166 

generalized version �̂(B) of the estimates �̂ of �. The generalized estimate �̂(B) is a 167 

weighted mean of �̂� and �̂� that depends on a weight B belonging to the interval [0,1]: 168 

�̂(B) = B�̂� + (1 − B)�̂� ,         (4) 169 

and the weight B is selected such that the resulting test is calibrated at a fixed significance 170 

level 6. Without loss of generality, the statistic A(��, ��, B) is expected to be large if the null 171 

hypothesis is true and small otherwise. 172 

Suppose that the weight B has been selected, the generalized Monte Carlo plug-in test based 173 

on �� and �� is implemented as follows: 174 

- independently draw 2C
 
samples ��

(1) and ��
(1) (D ∈ �1, … , C ,	C large) under the 175 

multinomial distributions with sizes �� and ��, respectively, and with vector of 176 

probabilities �̂(B); 177 

- compute the p-value �EFG(��, ��, B) of the test as the proportion of statistics 178 

AH��
(1), ��

(1), BI less than or equal to A(��, ��, B): 179 

�EFG(��, ��, B) = �
J ∑ K LAH��

(1), ��
(1), BI ≤ A(��, ��, B)NJ

1��  ,   (5) 180 

where K�) = 1 if event ) occurs, zero otherwise. 181 

The selection of B (in other words the calibration of the test) is carried out as follows: 182 

- independently draw 2O
 
samples �P�

(Q) and �P�
(Q) (R ∈ �1,… ,O ,	O large) under the 183 

multinomial distributions with sizes �� and ��, respectively, and with vector of 184 

probabilities �̂ H �%
�%&��

I corresponding, under the null hypothesis, to the maximum 185 

likelihood estimate of  � based on the two samples; 186 

- minimize the following calibration criterion with respect to B depending on the fixed 187 

significance level 6: 188 

S6 − �
T ∑ K L�EFGH�P�

(Q), �P�
(Q), BI ≤ 6NT

Q�� S,     (6)  189 

and let BU  denote the minimizer of this criterion. 190 

The GMCPIC test can be applied with various statistics, especially the extension of the 191 

negative Chi-squared statistic: 192 
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A(��, ��, BU) = −∑ ∑ H�����V��(WU)I
�

��V��(WU)
�
���

�
��� ,       (7) 193 

and the extension of the statistic used in the plug-in test without calibration (see 194 

Supplementary Text S1): 195 

A(��, ��, BU) = R���; ��, �̂(BU)�.        (8) 196 

The GMCPIC test can be viewed as an intermediate between conditional and unconditional 197 

tests: (i) the test is still “conditional” because the vector of probabilities of response types 198 

under the null hypothesis is estimated by �̂(BU) defined as a weighted mean of the observed 199 

probability vectors  �̂� and �̂�, but (ii) the  estimate  �̂(BU) is obtained via a numerical 200 

maximization, like in unconditional tests. However, in contrast with unconditional exact tests, 201 

the maximization is made with respect to a single parameter, whatever the number of 202 

response types. This point makes the GMCPIC test applicable to high dimension vectors of 203 

counts �� and ��, but is also the reason why the GMCPIC test is only approximately 204 

calibrated. To improve the calibration, the estimate  �̂ of the vector of probabilities under the 205 

null hypothesis should be searched for in a larger space. However, there is a trade-off between 206 

calibration and computation time. This topic is evoked again in the Discussion.   207 

Remark: in the procedure described above, B is selected such as the test is calibrated or, in 208 

other words, such as the calculated p-value is, under the null hypothesis, lower than the 209 

significance level 6 with a probability 6 (this is the meaning of minimizing the criterion 210 

given by Equation (6)). Minimizing this criterion is not equivalent, in general, to maximizing 211 

the likelihood for the model “��~Multinomial(��, �), ��~Multinomial(��, �), �� ⊥ ��”, 212 

which leads to the maximum likelihood estimate �̂ = �%
�%&��

�̂� + ��
�%&��

�̂� of �. Thus, the 213 

minimizer BU  of Equation (6) is not in general equal to 
�%

�%&��
, as we will see in the simulation 214 

studies presented in this article. 215 

 216 

Simulation design for assessing type I errors 217 

We numerically assessed type I errors of the tests mentioned above by applying them to 218 

several types of data sets generated under the null hypothesis (equality of  �� and ��). This 219 

numerical study was carried out with varying sample sizes (�� = �� = 10, 100 or 1000) and 220 

varying numbers of categories (3 or 33; this is the dimension of  �� and ��) . For vectors with 221 

three categories, we used either homogeneous probabilities (1/3, 1/3, 1/3) or heterogeneous 222 
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probabilities (0.80, 0.19, 0.01). For vectors with 33 categories, we used heterogeneous 223 

probabilities (0.70, 0.10, 0.10, 0.10/30,..., 0.10/30). One thousand data sets were generated in 224 

each case. The performances of the tests were assessed by computing the type I error (i.e. the 225 

incorrect rejection rate of the true null hypothesis) at the tolerance threshold 0.05.  226 

The simulation series with 33 categories, heterogeneous probabilities and small sample sizes 227 

are supposed to mimic typical data sets that are handled when one compares the compositions 228 

of two populations of pathogens. However, the GMCPIC test performance has to be assessed 229 

in other settings to evaluate if it is a relevant alternative to standard tests when sample sizes 230 

are small, whatever the context in which the test is applied. The two simulation series with 231 

three categories were run in this aim. To complete these series, we provide a more generic 232 

simulation study where vectors of probabilities are randomly generated with varying means 233 

and variances (Supplementary Table S1).  234 

 235 

Simulation design for assessing the power of the tests 236 

The powers of the tests were numerically assessed by applying the tests to data sets generated 237 

under 12 different alternative hypotheses (inequality of �� and ��) and by computing, for each 238 

alternative, the rate of rejection of the null hypothesis (higher the rejection rate, larger the test 239 

power). In this study, we used vectors of counts with 33 categories and with varying sample 240 

sizes (�� = �� =10, 100 or 1000). In each simulation, ��was drawn with vector of 241 

probabilities �� =(0.70, 0.10, 0.10, 0.10/30,..., 0.10/30) and �� was drawn with �� equal to 242 

one of the four following vectors of probabilities: 243 

 Modification type 1: (0.70+δ, 0.10, 0.10, 0.10/30,..., 0.10/30)/(1+ δ), 244 

 Modification type 2: (0.70, 0.10+δ, 0.10, 0.10/30,..., 0.10/30)/(1+ δ), 245 

 Modification type 3: (0.70, 0.10, 0.10, 0.10/30+δ,..., 0.10/30)/(1+ δ), and 246 

 Modification type 4: (0.70-δ, 0.10, 0.10, 0.10/30+δ,..., 0.10/30), 247 

where the amplitude δ of the difference is equal to either 0.2, 0.4 or 0.6 (the higher δ, the 248 

larger the difference between the two vectors of probabilities; see Supplementary Fig. S1). 249 

The first three modifications correspond to an increase of one of the categories (either the 250 

main category, a significant category or a rare category) and, as compensation, a decrease of 251 

all other categories. In the fourth modification, there is an increase of one of the rare 252 

categories affecting only the main category that becomes less dominant. One thousand data 253 
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sets were generated for each sample size value and each of the 12 alternative hypotheses (4 254 

forms of �� for 3 values of the amplitude δ). 255 

With the aim of assessing the performances of the tests for more diverse alternative 256 

hypotheses, Supplementary Table S1 provides a complementary assessment of the powers of 257 

the tests when vectors of probabilities are randomly generated with varying means and 258 

variances. 259 

 260 

Applications to real datasets 261 

In the following applications, vectors of counts �� or �� are compositions of pathogen 262 

populations (thereafter, PC stands for pathogen compositions). A PC is defined as a vector of 263 

frequencies of different variants of the pathogen found in a sample of isolates. Below, a 264 

variant designates either a multilocus genoptype (M. oryzae), a virulence phenotype (P. 265 

triticina), a haplotype, a clade or a phylogroup (P. syringae). For highly-diverse pathogens, 266 

the number of different variants that are considered may be large, and zeros in vector 267 

describing the pathogen composition may be frequent if the sample size is moderate. 268 

The following paragraphs present the data sets that are analyzed in this article. These data sets 269 

are provided in the GMCPIC R package. Additional details are provided in Supplementary 270 

Text S2. 271 

 272 

Magnaporthe oryzae  273 

Two data sets were collected in Madagascar and China for studying the reproduction regime 274 

of a rice fungal pathogen, Magnaporthe oryzae. In Madagascar, aerial organs of rice plants 275 

infected by M. oryzae were sampled on experimental upland rice plots from a single variety 276 

(Saleh et al. 2014), in February and April 2005.  In Yunnan (China), infected panicles were 277 

collected in the same place in August 2008 and September 2009. These samples correspond to 278 

populations CH1-2008 and CH1-2009, respectively, described by Saleh et al. (2012). Sample 279 

locations are shown in Supplementary Fig. S2. Field samples were purified by sub-culturing 280 

from single spores (the technique called “monosporing”) and the resulting strains were 281 

genotyped according to 13 microsatellite markers (Saleh et al. 2012). For each strain, the 282 

combination of data from all the markers defined the multilocus genotypes (MLG) and for 283 

each population, the number of strains per MLG was counted. The pathogen compositions 284 
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(summarized in Table 1; detailed in Fig. 1) therefore consist in frequencies of MLG in each 285 

population. 286 

This application was selected as a means to validate our procedure: we expect that the 287 

similarity of pathogen compositions will be rejected in China where partial sexuality is known 288 

to occur and the resulting recombination will lead to a change in the frequencies of the MLG. 289 

Alternatively, we expect that the hypothesis will not be rejected in Madagascar where 290 

reproduction is known to be strictly clonal and where no bottleneck has arisen between the 291 

two sampling dates. Indeed, the Madagascar populations are clonal in that the fungus 292 

multiplies by asexual spores only (Saleh et al. 2012, 2014). Under clonality, the frequencies 293 

of multilocus genotypes are expected to be stable in time. In contrast, the Chinese population 294 

is reproducing sexually. Evidence was provided by genotyping a population sampled for two 295 

consecutive years in the same place, supplemented with biological data and simulations 296 

(Saleh et al. 2012). Recombination occurring during sexual reproduction leads to re-297 

assortment of allelic associations, thus creating new multilocus genotypes. Frequencies of 298 

multilocus genotypes thus vary between two samples separated by at least one event of sexual 299 

reproduction.  300 

Pseudomonas syringae 301 

Genotypic data of P. syringae populations were collected from precipitation in two different 302 

but connected environments, namely the Southern French Alps, and the agricultural lands 303 

irrigated downstream by the Durance River (see map in Supplementary Fig. S2), to 304 

investigate the spatial diversity of P. syringae populations (Monteil et al. 2014). Both 305 

environments may be connected since members of P. syringae strains are able to disseminate 306 

through air and water fluxes (Monteil et al. 2014a,b). The pathogen compositions taken from 307 

the Alps and the pathogen compositions taken from the crops were considered at three 308 

different resolutions, namely haplotypes, clades and phylogroups (Berge et al. 2014). Our 309 

testing procedure was applied to pathogen compositions observed in both areas to determine 310 

whether the diversity of P. syringae considered at various resolutions significantly differs 311 

between markedly contrasted ecosystems: those dominated by agriculture in the Low Durance 312 

River (LDR) basin, downstream in the plains joining the Rhône River, and those dominated 313 

by forests and mown meadows in the mountains of the Upper Durance River (UDR) basin in 314 

the French Alps. The null hypothesis was that pathogen compositions in the LDR and UDR 315 

were the same due to mixing through air masses and water flow. 316 
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P. syringae samples were collected over 4 years in rainwater in 10 different sites of the LDR 317 

and UDR basins. Haplotypic strains were purified as described by Morris et al. (2008) and 318 

clustered in phylogroups and clades, using the sequence of the cts gene, as described by 319 

Morris et al. (2010). Two strains with a dissimilarity rate lower that 4.9% were assigned to the 320 

same phylogroup and were assigned to the same clade if their dissimilarity rate was lower 321 

than 2.0% (Berge et al. 2014). The pathogen compositions (summarized in Table 2; detailed 322 

in Fig. 2) therefore consisted of frequencies of haplotypes, clades and phylogroups in the 323 

upper and lower basins of the Durance. 324 

Puccinia triticina  325 

The temporal recurrence of Puccinia triticina was investigated by collecting leaves infected 326 

with P. triticina for seven consecutive years (2007-2013) from wheat fields located in South-327 

West France (see map in Supplementary Fig. S2). Every year, two sentinel plots (each of 328 

them grown with the same variety) were sampled three to four times on dates depending on 329 

disease development (Table 3). At each sampling date, a maximum of 30 diseased leaves 330 

were collected from each plot. Samples were also collected from wheat volunteers (i.e., self-331 

set wheat plants established as weeds from the previous growing season) once a year during 332 

the intercrop season, shortly before sowing the next wheat crop (Table 3), in plots previously 333 

grown with wheat in a radius of 10 km around the two aforementioned sentinel plots. A 334 

maximum of 10 infected volunteer leaves were collected from each surveyed plot, yielding 335 

one observed phenotypic composition per sampling date. 336 

Our testing procedure was applied to compositions observed at successive sampling dates to 337 

study (a) temporal disruptions and continuations in the genetic structure of the local pathogen 338 

population and, more specifically, (b) the role of wheat volunteers in the yearly recurrence of 339 

disease in wheat crops. The null hypothesis was that over-summering of the pathogen on 340 

volunteers led to local perpetuation of disease over the whole period of study; accordingly, a 341 

single, multi-year epidemic would have occurred rather than successive yearly epidemics re-342 

initiated every year. 343 

Field samples were purified and the virulence of strains was determined according to standard 344 

techniques (Goyeau et al. 2006). These virulence phenotypes (pathotypes) were determined 345 

by inoculating a susceptible control cultivar and a set of 18 wheat cultivars differing in the 346 

factors that determine their resistance to P. triticina. Infection types on the differentials were 347 

evaluated 10 days after inoculation to establish the virulence phenotype of each strain. The 348 
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pathogen compositions (summarized in Table 3; detailed in Fig. 3) therefore consisted of 349 

frequencies of virulence phenotypes at each sampling date.  350 

 351 

Results 352 

Simulation-based study: analysis of type I error and power 353 

Table 4 gives assessments of type I errors (i.e. the incorrect rejection of the true null 354 

hypothesis) in different settings. The Chi-squared test, the Fisher’s exact tests and their Monte 355 

Carlo versions have incorrect type I errors when frequencies of variants are heterogeneous 356 

and sample sizes are small: they tend to under-reject the null hypothesis (i.e. they are 357 

conservative). It has to be noted that the Monte Carlo Chi-squared test and the two Fishers 358 

tests lead to very close type I errors. The Monte Carlo plug-in test consistently over-rejects 359 

the null hypothesis in any settings and is definitely an incorrect test. The GMCPIC test based 360 

on Eq. (7) shows an incorrect type I error for the large pathogen compositions at small and 361 

moderate sample sizes (trend to under-rejection), whereas the GMCPIC test based on Eq. (8), 362 

which is a calibrated version of the Monte Carlo plug-in test, has correct type I errors in every 363 

settings. This difference in the two GMCPIC tests shows the importance of the choice of the 364 

statistics to be calibrated.  365 

Assessments of powers (i.e. the correct rejection of the false null hypothesis) for PCs with 33 366 

variants, with varying type of difference between the two PCs, and with varying amplitude δ 367 

of the difference, are compared (Fig. 4). First, it has to be noted that the Monte Carlo Chi-368 

squared test and both Fisher tests have similar powers in all settings (however, the Fisher’s 369 

exact test was not run for samples with size 1000 because of excessive computation time). 370 

Second, the GMCPIC test based on Eq. (8) (turquoise), which provided the most satisfactory 371 

results with respect to type I errors has, for small sample sizes, a slightly better performance 372 

in rejecting the false null hypothesis than the three previously mentioned tests, which are not 373 

calibrated at small sample sizes. For larger sample sizes, the power of the GMCPIC test based 374 

on Eq. (8) can be lower than the power of the Monte Carlo Chi-squared test and the two 375 

Fisher tests, especially when the modification affects the dominant or a significant variant.  376 

These results concerning the type I error and the power are corroborated by the results of the 377 

complementary simulation study provided in Supplementary Table S1, where the vectors of 378 

probabilities  �� and �� are randomly generated with varying means and variances.  379 
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Thus, in the applications, we apply the GMCPIC test based on Eq. (8), with  C=104 and 380 

O=103, the Monte Carlo Chi-square test and both Fisher tests. For M. oryzae and P. syringae, 381 

sample sizes are moderate (Tables 1 and 2) and we expect that the four tests will provide 382 

similar results. For P. triticina data, sample sizes that range from 5 to 30 are low (Table 3), 383 

and we expect eventual differences in test results.384 
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Reproduction of Magnaporthe oryzae  385 

For M. oryzae data, the tests were applied to a pair of PCs sampled in China in August 2008 386 

and September 2009 and to a pair of PCs sampled in Madagascar in February 2005 and April 387 

2005. 388 

The similarity of PCs separated in time is rejected for the Chinese population studied where 389 

sexual reproduction was demonstrated to have occurred between the two sampling dates. In 390 

contrast, the similarity of PCs separated in time and on different organs is not rejected for 391 

Madagascar data where reproduction is known to be strictly clonal and where no bottleneck is 392 

expected between the two sampling dates (Table 5). The GMCPIC test based on Eq. (8) and 393 

the three other tests provide the same results for such sample sizes and such PC structures. 394 

Spatial structure of Pseudomonas syringae populations 395 

For P. syringae data, the tests were applied to the samples collected in the UDR and LDR 396 

basins. Three resolutions of the samples were considered: variants were either phylogroups, 397 

clades or haplotypes. 398 

The four testing procedures reject the similarity of PCs sampled in UDR and LDR basins at 399 

the three resolutions under consideration (Table 5). Thus, precipitation in the Durance River 400 

basin deposits populations whose diversity is different according to the area (agricultural or 401 

alpine).  402 

Temporal recurrence of Puccinia triticina  403 

For P. triticina data, the tests were applied to each pair of consecutive samples collected only 404 

in fields sown with Galibier and to each pair of consecutive samples collected only in fields 405 

sown with Kalango. The tests were also applied to each pair of consecutive samples by 406 

merging data collected in fields sown with Galibier and Kalango and by discarding 407 

pathotypes that are not virulent for both Galibier and Kalango. 408 

Fig. 5 shows at which periods the temporal continuation in the genetic structure of the local P. 409 

triticina population (i.e. the null hypothesis) is rejected by the GMCPIC test based on Eq. (8), 410 

that is to say when there are disruptions in the pathogen composition (Supplementary Table 411 

S2, provides the corresponding p-values). The total continuation of the epidemic with 412 

constant composition over the study period (2007-2013) is rejected for both cultivars Galibier 413 

and Kalango. Indeed, for Galibier (resp. Kalango) 30% (resp. 25%) of the tests reject the null 414 

hypothesis at the 5% significance level. Disruptions are mostly simultaneous in Galibier and 415 

Kalango crops. In addition, the disruptions can occur during the intercrop season (when P. 416 
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triticina is thought to survive on volunteer wheat), but also during the crop season (when P. 417 

triticina is thought to re-infect the wheat crops).  418 

Supplementary Table S3, compares the results obtained with the GMCPIC test based on Eq. 419 

(8), the Monte Carlo Chi-square test and both Fisher tests. The GMCPIC test differs from the 420 

three other tests for nearly 10 comparisons of PC over 68 comparisons made in total. This 421 

relatively large difference between the tests is due, in this application, to the low sizes of the 422 

samples. Based on the simulation study presented above, the GMCPIC test is expected to 423 

provide, for this application, the more accurate results. 424 

 425 

Discussion 426 

Statistical issues 427 

We proposed an approximately calibrated procedure to test the equality of probability vectors 428 

�� and �� of multinomial draws when sample sizes are small and data are sparse. This issue is 429 

generic but is especially relevant for microorganisms that are pathogens of plants as 430 

mentioned in the introduction. Based on the simulation study, we give the following practical 431 

advice: 432 

- When sample size is small (i.e. a few dozens of isolates in the two samples), use the 433 

GMCPIC test based on Eq. (8) that is numerically calibrated and whose power is 434 

satisfactory; 435 

- Whatever the sample size, when the GMCPIC test based on Eq. (8) rejects the null 436 

hypothesis, the alternative hypothesis is true with the specified significance level;  437 

- Fixing the tuning parameters of the test at C=104 and O=103 lead to robust results in 438 

terms of test calibration in diverse situations but they can be increased to gain in 439 

robustness if computation time is not an issue (see Supplementary Text S4); 440 

- Simulation studies of type I error and powers can be carried out to determine which 441 

tests are calibrated for some given sample sizes and a given number of categories, and 442 

to determine which type and which amplitude of discrepancy between �� and �� can 443 

be detected; 444 

- When the type and the amplitude of discrepancies are fixed, the power analysis can 445 

help in determining what sample size is required to reject the null hypothesis at a 446 

given rate; 447 
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- In this article (including Supplementary Table S1, Supplementary Text S4, and 448 

Supplementary Figures S3 and S4), we considered sample sizes ranging from 10 to 449 

100 and numbers of categories ranging from 3 to 100. For cases out of these ranges, 450 

new simulation studies should be carried out to evaluate the usefulness of the 451 

GMCPIC test. 452 

In order to improve the performance of the GMCPIC test, further research should address the 453 

choice of the statistic to be calibrated. Cressie and Read (1984, 1989) studied the family of 454 

power divergence statistics for testing the fit of observed frequencies to expected frequencies. 455 

This family of statistics, including the chi-squared statistic, could be used to define other 456 

versions of the GMCPIC test, and study if one of these versions would be more efficient than 457 

the GMCPIC test based on the statistic given by Equation (8).  458 

Another possible improvement of the test concerns the generalized estimate �̂(B) of the 459 

probability vector � under the null hypothesis, which is in our procedure a convex 460 

combination of �̂� and �̂� (i.e. �̂(B) = B�̂� + (1 − B)�̂�, where the weight B is optimized 461 

over the interval [0,1] to obtain a calibrated test). To improve the approach, one could search 462 

for a generalized estimate (leading to a calibrated test) in a larger space. Allowing B to be 463 

larger than 1 or lower than 0 is a possibility but, in our computations, the optimal B was most 464 

of the time between 0.25 and 0.95; See Supplementary Text S4 and Supplementary Figures 465 

S3, S4 and S5. Therefore, testing values greater than 1 and lower than 0 for B will generally 466 

be a waste of computation time. Allowing �̂(B) to be outside the line joining �̂� and �̂� 467 

should lead to improve the test calibration, but this is not a simple issue when the number of 468 

categories (or variants) in the vectors of counts, is large (because of the curse of 469 

dimensionality). This is the main reason why unconditional exact tests have been developed 470 

for 2x2 contingency tables only. A complementary approach could be to not rely on a single 471 

(numerically optimal) value of the weight B (which might produce instability in the test 472 

results depending on the case study), but to integrate out the test statistic over B by taking 473 

into account a penalization depending on the calibration criterion given in Equation (6). Such 474 

an approach should be designed in such a way that additional computation cost is negligible.   475 

In the P. triticina case study, the GMCPIC test is applied several times for a temporal series 476 

of samples ��, ��, �Z, …. Thus, we tackle a multiple test situation, where the tests are 477 

dependent because each sample (except the first and last ones) is used in two tests (�� is used 478 

when �� and �� are compared and when  �� and �Z are compared). Thus, results for this case 479 

study must be carefully interpreted. In this application, we noticed that the null hypothesis is 480 
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rejected for 25-30% of the pairwise comparisons (instead of the expected rate 5% if the null 481 

hypothesis was true during all the study period and the dependence issue is neglected). 482 

Approximately the same percentage of rejections holds when the issue of test dependence is 483 

circumvented by comparing only �� and ��, �Z and �[, �\ and �] and so on. Therefore, in 484 

the P. triticina case study, the result of each test cannot be analysed separately (i.e. specific 485 

disruptions in the genetic structure of the local pathogen population cannot be pointed out), 486 

but we can draw a conclusion based on the results of all the tests (as we did in the result 487 

section): our analysis does suggest that the local P. triticina population experienced a 488 

statistically significant number of disruptions during the study period. 489 

 490 

Biological issues 491 

Reproduction of M. oryzae 492 

In most rice growing areas, as for example in Madagascar, rice blast is reproducing clonally 493 

(Saleh et al. 2012) by producing asexual spores. Epidemics probably start from infected seeds 494 

which produce spores that infect leaves and produce mycelium. After 5-7 days lesions appear, 495 

that will produce asexual spores under favourable conditions. Young plants are particularly 496 

susceptible and are heavily infected. With aging rice is acquiring a so called adult resistance 497 

making infection more difficult by the pathogen. During the emergence (heading) of the rice 498 

inflorescence (panicle), the last leaf (flag leaf) is highly susceptible to the blast pathogen and 499 

favours panicle infection. Since the physiology of the leaves and the panicle are very 500 

different, and because of inconsistent published results on pathotype composition, whether 501 

populations sampled on the two types or organs during the same epidemic are identical is 502 

controversial. The GMCPIC test developed in this study was applied on two populations 503 

sampled in Madagascar in the same field on leaves and panicles at the beginning and the end 504 

of the growing season respectively. The equality of PCs was not rejected, confirming that the 505 

reproduction is strictly clonal and that there was no bottleneck and demonstrating that the 506 

genetic composition of the population is not different between the two sampling stages. 507 

In Yunnan Province of China, the putative centre of origin of M. oryzae on rice (Saleh et al. 508 

2014), we previously demonstrated that sexual reproduction is taking place in at least one 509 

population (Saleh et al. 2012).  In this case, generalized recombination is expected to shuffle 510 

alleles at different loci and create new and unique multilocus genotypes. Here we confirmed 511 

that the PC in terms of multilocus genotypes was different. In both situations, the result of the 512 
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test matches the expectations. The M. oryzae case therefore clearly validates our procedure 513 

for comparing PCs. 514 

Spatial structure of P. syringae populations 515 

Pseudomonas syringae designates a complex of plant pathogenic bacteria associated with 516 

numerous past and present diseases across the world. Phylogroups and clades of the P. 517 

syringae complex are phenotypically diverse and no distinct ecology can be attributed to most 518 

of them (Berge et al. 2014). This diversity is found both on pathogen populations collected 519 

from cultivated plants, and from their saprophytic relatives collected in different 520 

environments of the water cycle, such as leaf litter, streams, snow or wild plants in alpine 521 

areas (Morris et al. 2013). All these habitats contribute to the evolution and emergence of new 522 

pathotypes by exerting selection pressures on determinants associated to pathogenicity. Aerial 523 

transport is a means of dissemination of these pathotypes and precipitation may lead to the 524 

deposition of these populations in new areas. Comparing genetic patterns of diversity in 525 

precipitation of two very contrasted habitats may provide clues about local adaptation and 526 

population mixing between these habitats.  527 

Genotyping of core genome genes highly conserved is a reliable approach to assess the 528 

diversity of P. syringae which is represented by 13 phylogroups and 26 clades (Berge et al. 529 

2014). Genotyping of the cts gene only is discriminatory enough to address P. syringae 530 

diversity at a satisfying resolution (Berge et al. 2014). However, its cost limits sequencing 531 

effort to a very few strains per sample. Therefore, contexts such as this one where there are 532 

data for only a few strains per sample are likely to be a frequent limiting factor when 533 

analyzing population structure based on gene sequences. We maximized the diversity of 534 

precipitation events sampled within ecosystems to better approximate the real population 535 

structure of emission sources in these ecosystems. Each comparison made at a specific 536 

resolution (haplotype, clade or phylogroup) gave access to a different level of diversity and all 537 

rejected the null hypothesis. Therefore, composition of populations in precipitation is 538 

different according to the area (UDR vs. LDR). Some phylogroups, clades or haplotypes are 539 

present in both areas (e.g., phylogroup 2), while others are absent from one or the other 540 

region. Importantly, the dominant groups (e.g. phylogroup 10) are different in each 541 

ecosystem. Overall, we formally demonstrated that each ecosystem is associated with 542 

different P. syringae populations. These results corroborate the hypothesis that (i) different 543 

land occupation and fragmentation of landscapes structure plant pathogens populations and 544 

(ii) groups within the P. syringae complex may effectively have different ecologies. 545 
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Implications for epidemiology are important because it suggests that dissemination of 546 

emerging or reemerging pathotypes may be fostered by land management. Furthermore, a 547 

previous study of the biogeography of P. syringae did not reveal differences in population 548 

structure for different geographic locations in spite of a high frequency of endemic haplotypes 549 

(Morris et al. 2012) suggesting the possible lack of sufficient statistical power of the 550 

population genetic analyses used in this previous study. 551 

Temporal recurrence of P. triticina 552 

Disruptions in pathogen compositions appeared to be more frequent within a cropping season 553 

(one third of the cases) than during the intercrop period (over four intercrop periods with data 554 

collected on volunteers, two disruptions were detected for only one of the cultivars, namely 555 

Galibier). Therefore, the intercrop period does not represent a major bottleneck for the 556 

population dynamic of the fungus. This is consistent with the generally admitted view that 557 

wheat volunteers serve as a “green bridge” allowing the survival of the fungus during the 558 

intercrop (Moschini and Perez 1999; Singh et al. 2004). Wheat volunteers represent the only 559 

hosts widely available to the fungus after harvest. The strong clonal structure of the local 560 

populations of the pathogen (Goyeau et al. 2007) indicates that sexual reproduction on an 561 

alternate host, would it be observed in the area of study, would be of little practical 562 

significance; the only wild grass the pathogen could infect, Ægilops ovata (Dupias 1952), has 563 

not been recently recorded in local botanical surveys (Tela Botanica network, Montpellier, 564 

France http://www.tela-botanica.org/bdtfx-nn-957).  565 

Disruptions in pathogen compositions during the cropping season were not expected, since 566 

the increase of disease during the season is generally believed to be caused by local 567 

multiplication of the pathogen. The huge sporulation capacity of the fungus and the swift 568 

progress of the epidemic are expected to provide demographic advantage to the local 569 

pathogen population. It is thus likely that populations wind-blown from neighbouring plots 570 

during the course of the epidemic modified the population structure in our observation plots. 571 

Moreover, infection by wind-dispersed spores of remote origin cannot be firmly excluded. In 572 

Europe, two proposed pathways for the spread of stem rust, caused by another rust fungus (P. 573 

graminis f.sp. tritici) are partially supported by empirical evidence; contrastively, there is no 574 

hint of a regular continental spread of wheat leaf rust, caused by P. triticina (Zadoks and 575 

Bouwman 1985).  576 

 577 
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Concluding remarks 578 

Today, emphasis is legitimately put by plant pathologists on accelerating exploitation of big 579 

data (Saunder, 2015). In contrast, some generic questions are intrinsically connected to small 580 

samples and sparse data sets. Comparing the genetic composition of small-sized populations 581 

of micro-organisms is such a classical but difficult issue. The GMCPIC test developed in this 582 

study provides a robust alternative to routine tests, which have well-known limits (or limits 583 

that should be known) when applied to small samples. We illustrated the power of the 584 

GMCPIC test on three case studies in plant disease epidemiology where we consider the big 585 

data approach as not manageable in practice. We expect the GMCPIC test to be used by the 586 

whole community of plant pathologists, and, hopefully by other biologists addressing the 587 

same kinds of issues, e.g. geneticists and ecologists. 588 
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Tables 701 

Table 1.  Number of Magnaporthe oryzae isolates and number of different variants in each sample. For M. 702 
oryzae sampled in China: 1st sample collected in August 2008; 2nd sample collected in September 2009. For M. 703 
oryzae sampled in Madagascar: 1st sample collected in February 2005; 2nd sample collected in April 2005.  704 

Statistic Data set 1st sample 2nd sample Pooled 

Number of isolates China 24 83 107 

Madagascar 17 40 57 

Number of different variants China 21 72 92 

Madagascar 10 12 18 

 705 

  706 
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Table 2.  Number of Pseudomonas syringae isolates and number of different variants in each sample. For P. 707 
syringae: 1st sample collected in UDR basin (alpine samples); 2nd sample collected in LDR basin (agriculture 708 
samples); variants are defined with respect to three different resolutions: phylogroups, clades and haplotypes. 709 

Statistic Resolution 1st sample 2nd sample Pooled 

Number of isolates All resolutions 100 110 210 

Number of different variants Phylogroups resolution 5 8 10 

Clade resolution 9 14 17 

Haplotype resolution 19 44 57 

 710 

  711 
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Table 3.  Number of Puccinia triticina isolates sampled on cvs. Galibier and Kalango at sampling dates during 712 
the cropping season (A, B, C, D) and on wheat volunteers in the intercrop season (V) in years 2007-2013, and 713 
numbers of different variants. 714 

Year 2007    2008    2009    2010    

Sampling # A B C Va A B C V A B C V A B C V 

Sampling date Feb. Apr. May  Apr. May May Oct. May May June Oct. May May June Oct. 

 22 04 14  01 05 26 28 05 25 10 27 04 26 15 26 

Number of isolates for which the pathotype was determined 

Galibier 24 11 24  0b 24 28 10 17 30 27 0b 11 29 30 5 

Kalango 19 17 22  28 18 30 10 13 28 29 0b 10 27 30 10 

Total 43 28 46  28 42 58 20 30 58 56 0b 21 56 60 15 

Number of different pathotypes         

Galibier 9 6 9  0 4 6 4 8 1 5 0 4 9 9 2 

Kalango 6 6 10  8 8 8 3 5 8 7 0 4 11 12 6 

Both 12 10 14  8 10 13 6 11 9 11 0 6 16 18 7 
 715 

Year 2011     2012    2013   Pooled 

Sampling # A B Cc V A B C D V A B C  

Sampling date Apr. May  Oct. Dec. Mar. Apr. May Nov. Mar. May June  

 21 27  26 29 29 25 24 6 24 17 13  

Number of isolates for which the pathotype was determined   

Galibier 23 29  10 21 0b 10 30 11 30 30 30 494 

Kalango 28 29  10 27 8 8 26 13 30 30 30 530 

Total 51 58  20 48 8 18 56 24 60 60 60 1024 

Number of different pathotypes         

Galibier 10 11  7 6 0 4 13 8 14 12 9 50 

Kalango 6 8  3 3 2 4 5 5 11 7 8 37 

Both 12 13  8 7 2 6 14 11 19 14 12 64 
a No sampling on volunteers. 716 
b No infected leaf was found. 717 
c No third sampling on cvs. Galibier and Kalango in 2011. 718 
 719 
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Table 4. Type I errors of the chi-squared test and its Monte Carlo version (with C=104 simulations), the Fisher’s exact test and its Monte Carlo version (with C=104 720 
simulations), the Monte Carlo plug-in test (with C=104 simulations), and the GMCPIC test using the statistic of Eq. (7) or the statistic of Eq. (8) and using C=104 and O=103 721 
simulations. Type I error was computed, for each type of pathogen composition and each sample size, as the proportion of rejections over 1000 repetitions. Between brackets: 722 
p-values of the test of equality of the type I errors to the value 0.05. For 33 variants and samples of size 1000, the Fisher’s exact test was not run because of excessive 723 
computation time. 724 

Pathogen 
composition 

Sample size 2χ  test MC 2χ  test Fisher  test MC Fisher  test MC plug-in test GMCPIC test 
 with stat. of Eq. (7) 

GMCPIC test 
with stat. of Eq. (8) 

3 variants with 
homogeneous 
probabilities 

10 0.039 (0.128) 0.036 (0.050) 0.037 (0.069) 0.038 (0.095) 0.324 (<0.0001) 0.044 (0.425) 0.042 (0.276) 

100 0.052 (0.828) 0.052 (0.828) 0.051 (0.942) 0.050 (0.942) 0.246 (<0.0001) 0.055 (0.514) 0.050 (1.000) 

1000 0.058 (0.277) 0.056 (0.425) 0.055 (0.514) 0.056 (0.425) 0.232 (<0.0001) 0.053 (0.717) 0.056 (0.425) 

3 variants with 
heterogeneous 
probabilities 

10 0.008 (<0.0001) 0.008 (<0.0001) 0.008 (<0.0001) 0.008 (<0.0001) 0.248 (<0.0001) 0.046 (0.612) 0.045 (0.514) 

100 0.044 (0.425) 0.054 (0.612) 0.053 (0.717) 0.055 (0.514) 0.357 (<0.0001) 0.053 (0.717) 0.057 (0.346) 

1000 0.048 (0.828) 0.049 (0.942) 0.048 (0.828) 0.046 (0.612) 0.219 (<0.0001) 0.042 (0.277) 0.046 (0.612) 

33 variants with 
heterogeneous 
probabilities 

10 0.005 (<0.0001) 0.024 (0.0002) 0.022 (<0.0001) 0.022 (<0.0001) 0.803 (<0.0001) 0.023 (0.0001) 0.056 (0.425) 

100 0.006 (<0.0001) 0.051 (0.942) 0.052 (0.828) 0.054 (0.612) 1.000 (0.0000) 0.030 (0.005) 0.057 (0.346) 

1000 0.033 (0.017) 0.046 (0.612) NA 0.051 (0.942) 0.973 (<0.0001) 0.053 (0.717) 0.042 (0.277) 

 725 
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Table 5. P-values of the Monte Carlo Chi-squared test with C=104, the Fisher’s exact test, its Monte Carlo 726 
version with C=104, and the GMCPIC test with the statistic of Eq. (8), C=104 and O=103 simulations, applied to 727 
M. oryzae compositions sampled in China and Madagascar and to P. syringae compositions considered at three 728 
different resolutions, namely phylogroups, clades and haplotypes. 729 

Pathogen Data set MC ^� test Fisher test MC Fisher test GMCPIC test 
based on Eq. (8) 

M. oryzae China 0.01 <0.0001 0.01 0.01 

 Madagascar 0.26 0.34 0.33 0.29 

P. syringae Phylogroup resolution 0.0001 <0.0001 0.0001 <0.0001 

 Clade resolution <0.0001 <0.0001 0.0001 <0.0001 

 Haplotype resolution 0.0001 <0.0001 0.0001 <0.0001 

 730 

 731 

 732 

 733 
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Figure 1. Compositions of populations of Magnaporthe oryzae corresponding to samples collected in China 
(1st sample collected in August 2008; 2nd sample collected in September 2009) and Madagascar  (1st 

sample collected in February 2005; 2nd sample collected in April 2005). Each colored layer corresponds to a 
given variant; the height of each layer is proportional to the number of isolates from the corresponding 

variant.  
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Figure 2. Compositions of populations of Pseudomonas syringae corresponding to samples collected in Upper 
Durance River (UDR) basin and in Lower Durance River (LDR) basin considered at three different resolutions 
(phylogroups, clades and haplotypes). Each colored layer corresponds to a given variant; the height of each 

layer is proportional to the number of isolates from the corresponding variant.  
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Figure 3.  Compositions of populations of Puccinia triticina sampled across time in Galibier and Kalango crops 
in Southwestern France from 2007 to 2013. Letters A, B, C, D and V refer to different sampling dates on 

each year of the study period; see Table 3. Each colored layer corresponds to a given variant; the height of 
each layer is proportional to the number of isolates from the corresponding variant.  
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Figure 4. Variation in the powers of the tests with respect to the difference between the vectors of 
probabilities p1 and p2 (the difference between p1 and p2 depends on the modification type and the 

amplitude δ of the modification). Each panel corresponds to a specific sample size and a specific modification 
type. In each panel, the colored curves give the variation in the powers of the following tests: chi-squared 
test (black) and its Monte Carlo version with B=104 simulations (red), the Fisher’s exact test (pink) and its 
Monte Carlo version with B=104 simulations (yellow), the Monte Carlo plug-in test with B=104 simulations 
(green), the GMCPIC test using the statistic of Eq. (7) (blue) and the statistic of Eq. (8) (turquoise), with 

B=104 and M=103 simulations. The powers were assessed over 1000 repetitions for each modification type 

and each sample size. In all panels, p1=(0.70,0.10,0.10,0.10/30,...,0.10/30). In panels A, E, I (modification 
type 1): p2=(0.70+δ,0.10,0.10,0.10/30,...,0.10/30)/(1+ δ); in panels B, F, J (modification type 2): p2= 

(0.70,0.10+δ,0.10,0.10/30,...,0.10/30)/(1+ δ); in panels C, G, K (modification type 3): p2= 
(0.70,0.10,0.10,0.10/30+δ,...,0.10/30)/(1+ δ); and in panels D, H, L (modification type 4): p2= (0.70-

δ,0.10,0.10,0.10/30+δ,...,0.10/30), where the amplitude δ of difference takes four different values (see x-
axis). When δ=0, the pathogen compositions are drawn under the same vectors of probabilities, and the 
corresponding rejection rate is the type I error provided in Table 4. In each panel, the horizontal dashed 
grey line indicates the value 0.05 of the significance level, and the dotted envelopes give 95%-confidence 

envelopes of the powers (pointwise assessments based on the binomial variation around the estimated 
powers). For samples of size 1000 (bottom panels), the Fisher’s exact test was not run because of excessive 

computation time.  
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Figure 5. Results of the tests applied to Puccinia triticina data sampled over seven years (2007-2013) on 
Galibier and Kalango wheat cultivars. Arrows: equality of vectors of probabilities p1 and p2 not rejected; 
Triangles: equality rejected; Absence of symbol: missing data implying that no test has been carried out. 
The tests were separately applied to data collected over the Galibier cultivar and data collected over the 
Kalango cultivar. The tests were also applied to the merged data by taking into account the differences in 
the virulences (see Supplementary Text S3). Letters A, B, C, D and V refer to different sampling dates on 

each year of the study period; see Table 3.  
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Supporting Information, Text S1. Monte Carlo plug-in test. 

When the pathogen compositions have an asymmetric relationship, e.g. 

 

was obtained by sampling in a 

population already sampled in the past, the sample in the past being , an asymmetric alternative to the Chi-

squared test can be applied, namely a Monte Carlo plug-in test. In this test, 

 

samples  ( , 

 large) are drawn under the multinomial distribution with size  and with vector of probabilities 

, where  is the vector of variant proportions in sample 1. Then, the probabilities 

 

and  ( ) are computed where  is the 

probability that a vector drawn under a multinomial distribution with size  and probabilities  is equal to 

. Finally, the proportion of multinomial probabilities  ( ) less than or equal 

to  is the p-value of the test. If data are sparse,  is, under the null hypothesis an unbiased but 

relatively strongly varying estimate of  and  and, consequently, the Monte Carlo approximation of the 

distribution of the statistic  is crude. 

The failure of the Monte Carlo plug-in test was illustrated with the same simulation scheme than the one 

proposed to assess the performance of the Chi-squared test with sparse data (for the plug-in test, we used 

 samples). 

 

 

2N
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Supporting Information, Text S2. Details about the analyzed datasets. 

 

Magnaporthe oryzae. The dataset from Madagascar was collected in Andranomanelatra and is part of a pluri-

annual population survey and was published in Saleh et al. (2014). The dataset from China was collected in 

Youle (Yunnan Province) and was published in Saleh et al. (2012). Fungal strains were obtained by monospore 

isolation from diseased samples as described by Silué and Nottéghem (1990) and stored as described by Valent 

et al. (1986).  

 

Pseudomonas syringae. The Durance River valley is located in Southern France and drains the water collected 

over 14,250 km2. The valley is composed of three areas characterized by a different hydrology, altitude, land 

occupation and climate; the upper part (UDR) in the French Alps, the middle part (MDR) and the lower part 

(LDR) downstream in the plains joining the Rhône River. The Durance River 302 km long essentially drains the 

flowing snowmelt from the mountains Alps in the UDR basin and the precipitation runoff along the valley in the 

smaller extend. The Durance River supplies the LDR area downstream where agricultural activity is intense and 

highly dependant of irrigation channels and water tables charged with alpine water sources. In this area, crops 

are mostly represented by arboriculture and horticulture surrounded by patches of deciduous plants, while lands 

in the UDR are mostly characterized by patches of open meadows and forests of Larches, Mountain and Arolla 

pines. 

P. syringae samples were collected in rainwater at 10 different sites of LDR and UDR areas from 2007 to 2011. 

After sampling with sterile containers, samples were stored in a cooler for transportation and processed within 

the following day as described in Morris et al. (2008); a volume of water was concentrated by filtration. 

Processed samples were dilution-plated on KBC medium as described in Morris et al. (2008). After three days of 

incubation at room temperature, at least 30 strains per sample were purified on KB medium and test for absence 

of cytochrome c oxidase, fluorescence and arginine to determine the population size and between 10 and 15 

strains were put in collection at –80°C (V/V 50% glycerol) for further genotypic characterization. 

The P. syringae species complex is composed of several phylogroups (Berge et al., 2014). Morris et al. (2010) 

showed that phylogeny based on cts gene was reflecting that of the classification based on DNA-DNA 

hybridization studies. Within phylogroups, strains can be clustered in several clades. As described in Berge et al. 

(2014), two strains with a dissimilarity rate lower that 4.9% belong to the same phylogroups while they belong to 

the same clade if they are less than 2.0% dissimilar.  The sequence of the cts gene of each strain was thus 

amplified as described previously from a pure suspension adjusted to 2 × 10
8
 cells ml

–1 
with the primers 

described by Sarkar and Guttman (2004). PCR reactions were performed with a Qiagen Multiplex kit (Qiagen, 

Courtaboeuf, France) and their products were checked by electrophoresis in 2% agarose gels before sequencing.  

 

Puccinia  triticina. Wheat leaf rust was surveyed for seven consecutive years (2007-2013) in the region of 

Lomagne, southwestern France (Departements of Gers and Tarn-et-Garonne), a main regional area of winter 

wheat production; the usual crop rotation here is wheat-sunflower-wheat. The investigated zone (c. 350 km
2
), 

centred on the Ancoupet farm (43° 57’N 0° 46’E, 116 m above sea level), is hilly (75 to 210 m above sea level).  

The landscape, without significant urbanized areas but small villages and isolated farms, is made of a mosaic of 

plots, often elongated rectangles, in average of 3 to 15 ha in area. 

Every year, two “sentinel plots” (25 m x 50 m) of wheat cv. Galibier and Kalango, respectively, were delimited 

within bigger commercial plots located close to the Ancoupet farm (< 1 km). Cv. Galibier (registered in 1992 by 

Momont, Mons-en-Pévèle, France) has been the most grown cultivar in the investigated zone for, at least, the 

last decade. Cv. Kalango (registered in 2002 by Florimond Desprez, Cappelle-en-Pévèle, France) started to be 

grown in the investigated zone at the beginning of the experiment; however, the cultivar, not suited to the local 

conditions, was progressively dropped by farmers, so that in 2011 there was commercial plot left of this cultivar; 

it was kept in the experimental design, however, for the sake of continuity.  Official rating (Geves / Arvalis-

Institut du Végétal) for resistance to leaf rust is 2 for Galibier (very susceptible) and 3 for Kalango (susceptible). 

The two plots were submitted to the same cropping practices as the neighborhood, except they were left 

unsprayed with fungicides. 

Wheat leaf rust was sampled in the two plots three to five times per year. During the cropping season, sampling 

dates depended on disease development. Thirty sampling points were marked with a stick according to a 5-m 

mesh regular grid (three lines of ten points each). At each sampling date and at each sampling point, a leaf 

bearing at least one sporulating lesion was excised and placed in an individual paper bag. At the first sampling 

date, minute lesions were checked when necessary using a glass lens to confirm they were actually caused by 

rust infection. During the intercrop season, wheat volunteers were surveyed short before sowing of the next 
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wheat crop. When volunteers with leaf rust lesions were present, a maximum of ten infected leaves were 

collected. 

Field samples were processed according to standard techniques described in Goyeau et al., (2006, 2007) and 

Goyeau & Lannou (2011). In brief, a single-uredinium isolate was produced from each of the collected leaf. 

Pathotypes were determined by inoculating a differential set of wheat cultivars comprising 17 Thatcher 

differential lines with resistance genes to leaf rust Lr1, Lr2a, Lr2b, Lr2c, Lr3a, Lr3bg, Lr3ka, Lr10, Lr13, Lr14a, 

Lr15, Lr16, Lr17, Lr20, Lr23, Lr26, Lr37, the Australian cultivar Harrier carrying Lr17b, and the susceptible 

control Morocco. Infection types on the differentials were read 10 days after inoculation according to Stakman et 

al. (1962). An octal pathotype code (Gilmour, 1973) was assigned to each isolate. 

 

Supplementary references: 

Gilmour, J. 1973. Octal notation for designating physiologic races of plant pathogens. Nature 242. 

Sarkar S. F., Guttman D. S. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal 

endemic plant pathogen. Appl Env Microbiol 70: 1999–2012. 

Stakman E. C., Stewart D. M., Loegering W. Q. 1962. Identification of physiologic races of Puccinia graminis 

var. tritici. U.S.  Agric Res Serv E617:1–53. 
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Supporting Information, Text S3. Incorporation of known binary virulences into the test 

In some situations the underlying composition is filtered before being revealed by sampling. For 

instance, the two samples that are compared may have been obtained from two different host cultivars 

which have, each one, hampered the development of different variants. Another instance corresponds 

to the situation where each sample is formed by aggregating several samples obtained from several 

host cultivars with different resistances.  

Such filtering induced by the cultivar has to be included in the analysis otherwise a significant 

difference between samples would be falsely detected (type I error). When the virulence of the 

variants (or the resistance of the cultivar) are known and binary, it is possible to include them in the 

test by considering the variants that are virulent for all the hosts. We provide a demonstration below. 

Suppose that there are two groups of variants, say  and , where variants of group  are virulent for 

two different cultivars, denoted by and , and variants of group  are not virulent for at least one of 

the cultivars. The two cultivars are assumed to be affected by the same inoculum composition 

described by the vector of probabilities . Let and  be the 

two pathogen compositions sampled from the two cultivars.  and  are 

independently drawn from multinomial distributions with vectors of probabilities proportional to 

 and , respectively, where * is the component-wise multiplication and  

and  are the vectors of binary virulences of variants from group  over cultivars  and , 

respectively. Then, given  and , the sub-compositions  and  are independently drawn 

from multinomial distributions with the same vector of probabilities proportional to . Therefore,  

 and  can be compared with our test, or can be aggregated by a component-wise sum (i.e. 

) to form one of the pathogen compositions that are compared with our test. 

 

A B A

x y B

( ),
A B

π π π= ( ),
A B

X X X= ( ),
A B

Y Y Y=

( ),
A B

X X X= ( ),
A B

Y Y Y=

( ), *A B xvπ π ( ), *A B yvπ π xv

yv B x y
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1 

 

Supporting Information, Text S4. Study of the selection of the weight �. 

The weight �, which appears in the estimate �̂��� = ��̂� + �1 − ���̂� of  � used in the GMCPIC test, was 

selected by minimizing the criterion provided by Equation (6) in the main text. This supporting information 

gives the distribution of the selected value �  of  � in different simulation settings and shows that �  does not 

coincide in general with 
��

�����
 appearing in the maximum likelihood estimate �̂ =

��

�����
�̂� +

��

�����
�̂� of �. 

Here, but also in all the computations that are presented in the article, � was optimized by (i) computing the 

criterion provided by Equation (6) for all values of � from 0.01 to 0.99 with a constant increment of 0.01 and (ii) 

selecting the value among these values leading to the minimum criterion value. In general, with  �=104 and 

�=10
3
, the criterion is a rather smooth function of the weight �; Hence, the minimization is rather stable with 

the simple minimization technique that was used. Our choice of �=104 and �=10
3
 was governed by a trade-off 

between calibration accuracy and computation time. Obviously, the larger � and �, the more accurate the 

calibration. Based on our experience acquired from simulation studies, the values �=104 and �=10
3
 lead to 

robust results in diverse situations with respect to the number of categories and the sample sizes. Thus, our 

advice is to use these values and, when only a few tests are made and computation time is not an issue, to 

increase the values of � and � to improve the test robustness. 

We applied the GMCPIC test with the statistic of Eq. (8), �=104 and �=10
3
, to simulation settings similar to 

those presented in Supporting Table S1, except that we varied the number of categories (i.e. the dimension of �� 

and ��). Samples �� and �� were drawn from multinomial distributions with 3, 33 or 100 categories, varying 

sizes (�� and �� equal to either 10, 30 or 100), and randomly generated vectors of probabilities �� and ��. For 

simulations with 3 categories, vectors �� and �� were obtained as follows: (i) the segment [0,1] was partitioned 

into 3 sub-segments by generating two variables �� and �� independently and uniformly distributed in [0,1] 

(suppose 0 ≤ �� ≤ �� ≤ 1); (ii) then, we set �� = ���, �� − ��, 1 − ���; (iii) finally, for the assessment of type 

I errors, we set �� = ��, and for the assessment of powers, we set �� = �����, ���� − ����, 1 − ����� where 

���� = min	{��, ��} and ���� = max	{��, ��}, �� = min	{1,max{��′, 0}}, �� = min	{1,max{��′, 0}}, 

��
$~�&'()*���, +�, ��

$~�&'()*���, +�, and +~��,-&'(�[0.1,0.5]�. �� and �� were generated in the same 

way for simulations with 33 and 100 categories except that �� = ���, �� − ��,
�23�

4�
, … ,

�23�

4�
�  and �� =

�����, ���� − ����,
�26���

4�
, … ,

�26���

4�
� in the former case, and �� = ���, �� − ��,

�23�

78
, … ,

�23�

78
� and �� =

�����, ���� − ����,
�26���

78
, … ,

�26���

78
� in the latter case. 

Type I errors and powers were computed, for each number of categories and each pair of sample sizes ���, ���, 

as the proportion of rejections over 400 repetitions. In these simulations, we considered cases with different 

sample sizes �� and ��. Results are shown in Supporting Figure S3 and are consistent with observations made on 

the other simulation studies presented in the article.  

The distributions of the optimal weight �  are shown in Supporting Figure S4 for each pair of sample sizes. We 

can see that the distribution of � does depend on the pair of sample sizes, but does not significantly depend on 

whether the null hypothesis is true or not (simulations made for computing type I errors and powers led to 

similar distributions of �). We also clearly see that �  does not coincide in general with the weight 
��

�����
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2 

 

appearing in the maximum likelihood estimate �̂ =
��

�����
�̂� +

��

�����
�̂� of �. The weight �  is generally larger 

than 
��

�����
. 
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Supporting Information, Table S1. Complementary simulation study. Type I errors and powers of the Monte Carlo Chi-squared test with �=10
4
, the Fisher’s exact test, 

its Monte Carlo version with �=104, and the GMCPIC test with the statistic of Eq. (8), �=104 and �=103. Here, Type I errors and powers were computed for samples �� and 

�� drawn from multinomial distributions with 3 categories, varying sizes (from 10 to 100), and randomly generated vectors of probabilities �� and ��. Vectors �� and �� were 

obtained as follows: (i) the segment [0,1] was partitioned into 3 sub-segments by generating two variables �� and ��  independently and uniformly distributed in [0,1] 

(suppose 0 ≤ �� ≤ �� ≤ 1); (ii) then, we set �� = (��, �� − ��, 1 − ��); (iii) finally, for the assessment of type I errors, we set �� = ��, and for the assessment of powers, 

we set �� = (�(�), �(�) − �(�), 1 − �(�))  where �(�) = min	{��, ��}  and �(�) = max	{��, ��} , �� = min	{1, max{��′, 0}} , �� = min	{1, max{��′, 0}} , ��
�~����� (��, !) , 

��
�~����� (��, !), and !~�"#$���([0.1,0.5]). Type I errors and powers were computed, for each sample size and each test, as the proportion of rejections over 2000 

repetitions. Between brackets: p-value of the test of equality of the type I error to the value 0.05 (1
st
 part of the table), or 95%-confidence interval of the power (2

nd
 part of the 

table).  

Criterion Sample size MC 2
χ  test Fisher  test MC Fisher  test GMCPIC test 

with stat. of Eq. (8) 

Type I error 10 0.026 (<0.0001) 0.026 (<0.0001) 0.026 (<0.0001) 0.050 (0.96) 

20 0.039 (0.021) 0.039 (0.027) 0.039 (0.027) 0.050 (0.96) 

 30 0.039 (0.021) 0.038 (0.011) 0.039 (0.021) 0.047 (0.50) 

 50 0.041 (0.073) 0.044 (0.20) 0.044 (0.24) 0.048 (0.64) 

 100 0.042 (0.090) 0.040 (0.045) 0.041 (0.058) 0.048 (0.64) 

Power 10 0.23 (0.21,0.26) 0.23 (0.21,0.25) 0.23 (0.21,0.25) 0.27 (0.24,0.29) 

20 0.45 (0.42,0.47) 0.45 (0.42,0.47) 0.44 (0.41,0.47) 0.43 (0.41,0.46) 

30 0.59 (0.56,0.61) 0.59 (0.56,0.61) 0.58 (0.56,0.61) 0.58 (0.55,0.60) 

 50 0.69 (0.66,0.71) 0.69 (0.66,0.71) 0.69 (0.66,0.71) 0.68 (0.66,0.71) 

 100 0.85 (0.82,0.87) 0.85 (0.82,0.87) 0.85 (0.82,0.87) 0.83 (0.81,0.85) 
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Supporting Information, Table S2.  P-values obtained for the test calibrated at 0.05 and the multinomial density criterion. Letters A, B, C, D and V, in the row “Link 

tested”, refer to different sampling dates on each year of the study period; see Table 3. 

 

Year 2007   2008    2009   2010    2011   2012     2013  

Link tested A-B B-C C-A A-B B-C C-V V-A A-B B-C C-A A-B B-C C-V V-A A-B B-V V-A A-B B-C C-D D-V V-A A-B B-C 

                         

p-values                   

Galibier .071 .002 NA NA .242 .242 .135 .573 .020 .058 .220 .331 .011 .011 .405 .429 .149 NA NA .016 .187 .030 .208 .275 

Kalango .048 .010 .207 .106 .285 .371 .189 .283 .037 .052 .167 .120 .092 .177 .031 .118 .180 .207 .011 .005 .266 .330 .301 .059 

Galibier+Kalango .102 .001 .012 .001 .236 .384 .196 .745 .026 .082 .206 .151 .003 .023 .528 .141 .062 .515 .059 .003 .300 .104 .574 .524 
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Supporting Information, Table S3. Pairwise comparison of the outcomes of the Monte Carlo Chi-squared test 

with �=104, the Fisher’s exact test, its Monte Carlo version with �=104, and the GMCPIC test with the statistic 

of Eq. (8), �=104 and �=103, applied to Puccinia triticina data sets. The table below gives, for each pair of 

testing procedures, the number of times that the two procedures leads to inconsistent p-values, i.e. one p-value 

lower than or equal to the significance level 0.05 and the other p-value larger than 0.05. These numbers were 

computed by using the results of the tests applied to each pair of consecutive samples collected from the Galibier 

field only, from the Kalango field only, and from both the Galibier and Kalango fields (by discarding pathotypes 

that are not virulent for both Galibier and Kalango). There are 68 such pairs of consecutive samples. Thus, for 

instance, the Fisher test and the GMCPIC test lead to different conclusions in 10 cases over 68. 

 Fisher test MC Fisher 

test 

GMCPIC test 

based on Eq. (8) 

MC �� test 3 4 9 

Fisher test  1 10 

MC Fisher test   9 
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Supporting Information, Fig. S1. Vectors of probabilities used in the power analysis. The vector 

(0.70,0.10,0.10,0.10/30,...,0.10/30)  is drawn in black in each panel. Values of  

(0.70+δ,0.10,0.10,0.10/30,...,0.10/30)/(1+ δ), (0.70,0.10+δ,0.10,0.10/30,...,0.10/30)/(1+ δ), 

(0.70,0.10,0.10,0.10/30+δ,...,0.10/30)/(1+ δ), and (0.70-δ,0.10,0.10,0.10/30+δ,...,0.10/30) are drawn in panels A, 

B, C and D, respectively, with δ=0.2 (red), 0.4 (green) and 0.6 (blue). 
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Supporting Information, Fig. S2. Locations of the sampling sites of Magnaporthe oryzae in Andranomanelatra 

(Madagascar; circle on the top panel) and in Youle (Yunnan Province of China; bullet on the top panel). 

Locations of the sampling sites of Pseudomonas syringae in the Upper Durance River basin (Southern Alps, 

France; large bullet on the bottom panel) and in Lower Durance River basin (at the junction of the Durance 

River and the Rhône River, France; small bullet on the bottom panel). Location of the sampling site of Puccinia 

triticina in Southwestern France (circle on the bottom panel). These maps were prepared with the R software 

(version 3.3.0, https://cran.r-project.org/). 
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Supporting Information, Fig. S3. Type I errors and powers of the GMCPIC test with the statistic of Eq. (8), 

�=10
4 
and �=10

3
, applied to the simulation settings described in Supporting Text S4. In these simulation 

settings, the sample size �� and �� were equal to 10, 30 or 100 and could be different, and the number of 

categories was equal to 3, 33 or 100. Each rejection rate was computed from 400 repetitions. 
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Supporting Information, Fig. S4. Distribution of the optimal weight ��  obtained in the application of the 

GMCPIC test with the statistic of Eq. (8), �=10
4 
and �=10

3
, to the simulation settings described in Supporting 

Text S4. In these simulation settings, the sample size �� and �� were equal to 10, 30 or 100 and could be 

different, and the number of categories was equal to 3, 33 or 100. The grey histograms correspond to the 

distribution of ��  when the two samples �� and �� were drawn with the same vectors of probabilities (	� 
 	�; 

these simulations were used to compute test powers in Supporting Figure S3), whereas the black histograms 

correspond to the distribution of ��  when the two samples �� and �� were drawn with different vectors of 

probabilities (	� � 	�; these simulations were used to compute type I errors in Supporting Figure S3). Each 

histogram merges the distribution of ��  obtained from simulations with 3, 33 and 100 categories and was 

therefore obtained from 400�3=1200 repetitions. In each panel, the vertical line gives the value of the weight 
�

���
 appearing in the maximum likelihood estimate 	̂ 
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���
	̂� �
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Supporting Information, Fig. S5. Distribution of the optimal weight ��  obtained in the application of the 

GMCPIC test with the statistic of Eq. (8), �=10
4 

and �=10
3
, to the P. triticina data set. This distribution was 

obtained by grouping the optimal weights ��  obtained from the application of the test to data from the Galibier 

field only, the Kalango field only and the Galibier and Kalango fields merged together. 
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