Citrus juices vs concentrates obtained by innovative membrane technology: Bioaccessibility of pro-vitamin A carotenoids

L. Gence1, A. Servent1, P. Poucheret2, A. Hiol3 and C. Dhuique-Mayer1

1Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Qualisud, TA-B 95/16, 34398 Montpellier Cedex 5, France
2Laboratoire de Pharmacologie et Physiopathologie expérimentale, Faculté de Pharmacie, Université Montpellier II, UMR Qualisud, F-34093 Montpellier, France
3Ecole Supérieure d’Ingenieur Océan Indien (ESIROI), CS 92003, 97744 Saint-Denis Cedex 9, Université de La Réunion, UMR Qualisud, France

Citrus juices and fruits, highly consumed worldwide, represent a significant dietary source of pro-vitamin A carotenoids such as β-cryptoxanthin which could contribute with vitamins and polyphenols to the beneficial health effects of Citrus fruits. In order to promote a Citrus clementina concentrate specially enriched in β-cryptoxanthin and obtained by a cross-flow microfiltration [1], the aim of the present work was to assess carotenoid bioaccessibility from Clementine juices versus their concentrates. Pro-vitamin A carotenoids from commercial and fresh juices and their respective concentrates were analyzed by HPLC and their bioaccessibility was investigated using an in vitro digestion model. The main carotenoid β-cryptoxanthin present in both juices and concentrates was concentrated approximately 8-fold (from 43.3 to 55.2 mg/kg). A medium content of β-carotene was recovered but was also concentrated 6 to 9-fold (from 6.6 to 9.5 mg/kg) compared to the initial carotenoid profile of commercial and fresh juices. Bioaccessibility of pro-vitamin A carotenoids was greater from commercial juice and its concentrate than from fresh juice and its concentrate (18.9 vs 14.9 % for commercial; 6.3 vs 2.5 % for fresh). Dietary soluble fiber contents such as pectins and percentages of pulp were inversely associated with carotenoid bioaccessibility and were higher in the fresh products (J2, C2) compared to the commercial products (J1, C1) (Figure 1). Furthermore, pectin contents of the concentrates were correlated to higher micelle size. Thus, thermal treatment of pulp matrix during industrial juice production seemed to have a major role to enhance carotenoid bioaccessibility. We suggest that pectin could impair carotenoid micellarization by leading to an increase in micelle size observed for both concentrates.

Keywords: Citrus concentrate; β-cryptoxanthin; Bioaccessibility; Pectins; Cross-flow microfiltration

Combined effects of ozone solutions and sodium bicarbonate on geosmin and 2-methylisoborneol contents in tilapia (Oreochromis niloticus) fillets during storage time

Jittrepoth Nitipong*, Rojsuntornkitti Kamonwan and Kongbangkerd Teeraporn
Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
* Corresponding author : E-mail: nitipongj@nu.ac.th

A non – desirable geosmin flavor in processed fishery products has affected customer, acceptance in the industry. The aim of this study was to determine the combined effects of ozone solutions and sodium bicarbonate on levels of geosmin and 2-methylisoborneol in tilapia (Oreochromis niloticus) fillets during freeze storage. Fish were soaked in 3 ppm ozone with different sodium bicarbonate concentrations (5 and 10%, w/v) at 10 min. All samples were analyzed in terms of pH, thiobarbituric acid reactive substance (TBARS) total volatile base nitrogen (TVB-N) content texture analysis, geosmin and 2-methylisoborneol (MIB) contents. The results showed that pH value decreased with the increased storage times (p <0.05) while TBARS and TVB-N were increased (p <0.05). However, the control had significantly higher TBARS and TVB-N than the samples (p<0.05). The effect of ozone solutions and sodium bicarbonate was more pronounced on hardness (p <0.05). Both geosmin and MIB were effectively reduced when treated with ozone and sodium bicarbonate hence the off flavor was the reduced. The results indicated that ozone solution with 5% sodium bicarbonate was a mild prospective oxidation protocol when compared with ozone solution with 10% sodium bicarbonate to enhance the physicochemical properties of fish as well as to eliminate muddy flavors.

Key word (s): ozone, sodium bicarbonate, geosmin, 2-methylisoborneol, tilapia

Book of Abstracts

2-4 November 2016, Barcelona / Spain

THE FOOD FACTOR I
Barcelona Conference

Established, emerging and exploratory food science and technology.

http://www.foodfactor.org
INTRODUCTION

This book contains a selection of the abstracts that were accepted for presentation at The Food Factor I Barcelona Conference, Established, emerging and exploratory food science and technology, which was held at the University of Barcelona, Spain, from 2 to 4 November 2016.

The first edition of this Food Factor Conference gathered around 250 participants, coming from more than 45 countries. And around 280 works were presented at the conference. This was a more than satisfactory level of attendance for this first research forum, especially in the context of a global budget constraint.

The organization called for research papers dealing with the following topics:

Food chemistry and biochemistry
Topics: structure and function of major and minor components (either nutrient or non-nutrient) of foods, the biochemical changes produced during handling, storage, post-harvest/mortem processing, distribution or due to domestic conditions, and their impact on nutritional, physiological, sensorial, or toxicological properties and safety; Reports on new or improved techniques or methods for addressing these topics or on the chemistry of food contacting materials. Specific areas of interest were:
- Food bioactives
- Chemistry of food additives and preservatives
- Chemical analysis for the determination of authenticity and origin of foods
- Biochemical changes in cereal grains and legumes due to postharvest conditions and treatments (storage, germination, fermentation…)
- Biochemical changes in postharvest fruits and vegetables with impact in quality
- Biochemical changes produced in the conversion of muscle into meat and fish
- Biochemistry of the biosynthesis of milk components
- Biochemical changes of the transformation of milk into dairy products
- Browning reactions in foods
- Lipid peroxidation
- Computational chemistry in food research
- Chemistry of food packaging and food-handling materials

Food microbiology
Topics: microorganisms that are related to human nutrition and health: those used to make foods or whose use and/or consumption can improve food production or host health; the detection, identification and quantification of those that pose a threat to food safety or quality (also applied to microbial toxins and metabolites and foodborne viruses); the study of their biology (biochemistry, ecology, genetics, physiology…); their role in various food processing methods and in food spoilage; their susceptibility to different physical or chemical agents, processing or packaging methods; or their interaction with different food chain environments and foodstuff, reports on the development and application of mathematical and computational tools in food research. Specific areas of interest were:
- Rapid detection of foodborne pathogens
- High throughput screening
- Norovirus and other viral agents in foods
- Antimicrobial/biocide resistance
- Microbial risk analysis: assessment, management and communication
- Microbiology of fermented foods and beverages
- Food defense

Food contamination
- Mycotoxins
- Intestinal microbiota and host health
- Hygienic design of food manufacturing lines
- Epidemiology of foodborne pathogens
- Spoilage of soft drinks (with increasing levels of nutrients)
- Biofilms
- Cross-contamination
- Beneficial microbes
- Food parasites
- Microbial nutrition; probiotics
- Bacterial and fungal species: Yersinia, Bacillus, Staphylococcus, Listeria, Salmonella, Escherichia coli, Vibrio, Campylobacter, Brucella, Mycobacterium, Clostridium, Streptococcus, and others; Aflatoxins and other microbial-derived toxins; Norovirus, Rotavirus, Hepatitis virus and other viral agents

Food physics
Topics: understanding and measurement of the physical properties of foods and their constituents: structural, rheological, textural, optical, electrical, thermodynamic, flowing, acoustic, mechanical…, how they change during processing, the relationship between the properties of their constituents (water, proteins, fats, oils, gasses, and minor constituents like vitamins and minerals) and their macroscopic properties (texture, taste, smell, colour, nutritional and health impact), or the developments of purely physical ways of treating foods, either thermal or non-thermal. Specific areas of interest are:
- Thermal modification of foods: heat-moisture treatment, annealing, microwave heating, osmotic pressure treatment …
- Non-thermal modification of foods: ultrahigh-pressure treatments, instantaneous controlled pressure drop, high-pressure homogenizers, dynamic pulsed pressure, pulsed electric fields, freezing, thawing…
- Multiscale computer simulation and mathematical modeling of food structures
- Novel microscopy, image analysis, and characterization techniques
- Soft matter physics applied to food materials
- Colloidal structures, their interactions and relationship with food stability and overall macroscopic properties
- Modern technologies for sensory analysis
- Relationship between physical properties of food and consumer preferences

Food analysis
Topics: analysis of foods and their constituents (amino acids, peptides, proteins, phenolic compounds, carbohydrates, DNA fragments, vitamins, functional ingredients or nutraceuticals, toxins, pesticide and drug residues, industrial, processing and packaging contaminants, additives, allergens, antibiotics, nanoparticles,…) by the use of analytical and imaging techniques and methods, in the context of the assessment of food structure, quality, safety, traceability, origin, authenticity, health benefits of certain constituents…, works featuring the analysis of large amounts of data generated by different techniques or time series of many variables (chemometrics). Specific areas of interest were:
- Instrumental techniques: biological, separation, spectroscopic, rheological, thermal, radiochemical, electrochemical, miniaturized microfluidic systems, modern foodomics and/or systems biological approaches…
- Imaging techniques: optical, confocal, electron, atomic force microscopies…
- Analysis of sensory properties of foods
Food processing and packaging
Topics: established and novel processing and packaging technologies applied for delivering foods that last longer before spoiling (preservation), and that are available, safe, nutritious, and convenient, while minimizing environmental impact. Specific areas of interest were:
- Active and intelligent packaging
- Migration and potential health effects of packaging-associated chemicals of concern (Bisphenol-A, semicarbazide…)
- Modified atmosphere packaging
- Established and modern processing and preservation technologies: drying, cooling, freezing, heating, salting, fermentation, pasteurization, additives addition, irradiation, hurdle technology, use of high-pressure and pulsed electric field processing, dense phase carbon dioxide, ozone, ultrasounds, cold plasma, IR technologies, natural antimicrobials, oxygen depleted storage, microwave heating, low shear extrusion…
- Green technologies: supercritical fluid extraction, membrane technology, bioconversions…
- Biorefinery in the production of food components (proteins, carbohydrates, fats…)
- Dietary, health, and environmental concerns related to food processing
- Waste reduction in food processing and valorization of by-products

Food engineering and hygienic design
Topics: (hygienic) design and (safe) operation of food plants, including engineering tools for assessing and managing risks. Specific areas of interest were:
- Heat, mass transfer and fluid flow in food processing
- Artificial intelligence in food research and industry
- Mathematical modelling and software development for food research and industry
- Finding, correcting and preventing hazards in food industry: Hazard Analysis and Critical Control Point (HACCP), Microbial Risk Assessment (MRA)…

Environmental impact of food production and consumption
Topics: environmental impact of the food supply chain (carbon and water footprint, biodiversity, land use…), for each of the food groups. Specific areas of interest were:
- Food waste impact on climate, water, land and biodiversity
- Ways of reducing environmental impact
- Environmental impact of meat production

Foods of plant origin
Topics: plant, animal, crop or soil science relevant to the production of foods of plant origin: cereals, legumes, fruit and vegetables, sugar crops. Specific areas of interest were:
- Understanding phytobiomes for improved crop productivity
- Farming animal science: cattle, sheep, goats, horses, pigs, poultry
- Soil science
- Sustainable farming systems
- Genetic and non-genetic crop improvement
- Plant and crop protection
- Crop models
- Improvement of water use
- Resistance to pests and disease
- Modification of crops for reducing waste
- Filling the gap between plant and crop physiology
- Stress in crops produced by changing environmental conditions

Foods of animal origin
Topics: animal, vegetal, soil or marine/aquatic science relevant in the production of foods of animal origin: meat, fish, milk and their derived products, eggs, insects…

The regular conference program was complemented with two Plenary Lectures:
“Highlighting natural value: physical and chemical approaches in food processing” by Isabel C.F.R. Ferreira, from the Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Portugal
“Nonthermal processing technologies for food: Current applications and future perspectives” by Pedro Elez-Martínez, from the University of Lleida, Spain

We hope attendees and readers in general will find the content of this book of abstracts interesting, inspiring and useful and we look forward to seeing you in another fruitful edition of the conference in 2018.

The Organizing Committee
Food Factor I Barcelona General Coordinator
Formatex Research Center
C/ Zurbarrán 1, Planta 2, Oficina 1
06002 Badajoz
Spain