Feasibility of immersed hollow fiber membranes for the isolation of phenolic compounds from grape pomace extracts: Preliminary evidence from lab-scale study

Camille Rouquié1, Layal Dahdouh1, Michèle Delalonde2 and Christelle Wisniewski2

1UMR QualiSud, CIRAD, 73 avenue J.F. Breton, F-34398 Montpellier Cedex 5, France
2UMR QualiSud, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 avenue Charles Flahaut, B.P. 14491, F-34093 Montpellier Cedex 5, France

Grapes are the world’s second largest produced fruit crop, with an annual production of 77 million tons in 2013 [1]. Among grapes processing industries, wineries induce approximately 10 million tons of byproducts per year, mostly pomace and lees [2]. Nowadays, the management and the valorization of food industry wastes constitute an economical, environmental and social challenge. It turns out that grape based products such as grape pomace contain a high amount of polyphenols, well known for their biological activities [3]. Thus, the extraction and purification of those high added value compounds from grape pomace are of great interest for cosmetic, nutraceutical and other chemical industries. Membrane technologies, well-known for their several advantages (low environmental impact, no solvent utilization, high selectivity, etc.), can be used to recover different classes of phenolic compounds from pomace extract, according to their molecular weights. In food industries, crossflow filtration is generally performed using tubular mineral membranes under high crossflow velocities [4, 5]. However, immersed organic hollow-fiber membrane process could be interestingly used as an alternative separation technique for such application, notably due to the significant reduction of the energy consumption [6].

In this context, the aim of this work was to provide reliable information to develop a convenient immersed hollow-fiber membranes pilot for the isolation of polyphenols from grape pomace extracts. Therefore, lab-scale experiments were performed using a frontal filtration module in order to identify the main parameters governing the separation efficiency. Three factors known to impact membrane performances were considered and tested: (i) the membrane average pores diameter or molecular weight cut-off (0.1 μm 100 kDa 10 kDa polyethersulfone membrane), (ii) the physiochemical characteristics of pomace extracts (particles size distribution, turbidity, etc.) and (iii) the hydrodynamic conditions, namely shear stress. In order to identify the optimal operating conditions for the pilot-scale filtration, the performances of lab-scale filtration were particularly studied in terms of fouling mechanisms (productivity) and phenolic compounds separation (selectivity).

Keywords: winery waste; valorization; membrane filtration; phenolic compounds

References

Influence of non-starchy polysaccharide hydrocolloids on the rheological and storage stability of starch pastes and gels

Marek Sikora, Anna Dobosz, Magdalena Krystyjan, Edyta Maja Kutyla-Kupidura, Piotr Tomasik, Renata Sabat, Anna Wywrocka-Gurgul

Department of Carbohydrate Technology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, 122 Balicka St., Poland

An influence of non-starchy polysaccharide hydrocolloids (NPH), such as xanthan, guar and locust bean gums on the rheological stability of the normal (NPS) and waxy (WPS) potato pastes and gels was studied. Rheological properties of the NPS and WPS pastes without and with an addition of NPH were studied in terms of the flow curves and hysteresis loops areas, while thixotropic properties were determined by the in-shear structural recovery as well as by apparent viscosity at constant shear of 50 s−1 (with and without pre-shearing) tests. An influence of the NPH addition on the rheological and storage stability (susceptibility to retrogradation) of two NPS (with various amylose content) and WPS were also studied. For this purpose the viscoelastic and textural properties as well as syneresis of the chilled samples, stored up to 90 days were measured. It was concluded that both the rheological and storage stability of the samples depended on the amylose content and concentration of starch as well as on the quality and quantity of NPH added. In the case of the rheological stability an important factor was also the temperature of the samples’ preparation, whereas in the case of the storage stability the time of storage was the main factor.

Keywords: starch; non-starchy polysaccharides; retrogradation; Rheology, thixotropy

This project was financed from the funds of the National Science Centre of Poland awarded basing on the decision number UMO-2013/11/B/NZ9/01951.
Book of Abstracts

2-4 November 2016, Barcelona / Spain

Established, emerging and exploratory food science and technology.

http://www.foodfactor.org
Book of Abstracts

The Food Factor I Barcelona Conference, 2-4 November 2016, Barcelona (Spain)
INTRODUCTION

This book contains a selection of the abstracts that were accepted for presentation at The Food Factor I Barcelona Conference, Established, emerging and exploratory food science and technology, which was held at the University of Barcelona, Spain, from 2 to 4 November 2016.

The first edition of this Food Factor Conference gathered around 250 participants, coming from more than 45 countries. And around 280 works were presented at the conference. This was a more than satisfactory level of attendance for this first research forum, especially in the context of a global budget constraint.

The organization called for research papers dealing with the following topics:

Food chemistry and biochemistry
Topics: structure and function of major and minor components (either nutrient or non-nutrient) of foods, the biochemical changes produced during handling, storage, post-harvest/morten processing, distribution or due to domestic conditions, and their impact on nutritional, physiological, sensorial, or toxicological properties and safety; Reports on new or improved techniques or methods for addressing these topics or on the chemistry of food contacting materials. Specific areas of interest were:
 o Food bioactives
 o Chemistry of food additives and preservatives
 o Chemical analysis for the determination of authenticity and origin of foods
 o Biochemical changes in cereal grains and legumes due to postharvest conditions and treatments (storage, germination, fermentation…)
 o Biochemical changes in postharvest fruits and vegetables with impact in quality
 o Biochemical changes produced in the conversion of muscle into meat and fish
 o Biochemistry of the biosynthesis of milk components
 o Biochemical changes of the transformation of milk into dairy products
 o Browning reactions in foods
 o Lipid peroxidation
 o Computational chemistry in food research
 o Chemistry of food packaging and food-handling materials

Food microbiology
Topics: microorganisms that are related to human nutrition and health: those used to make foods or whose use and/or consumption can improve food production or host health; the detection, identification and quantification of those that pose a threat to food safety or quality (also applied to microbial toxins and metabolites and foodborne viruses); the study of their biology (biochemistry, ecology, genetics, physiology…); their role in various food processing methods and in food spoilage; their susceptibility to different physical or chemical agents, processing or packaging methods; or their interaction with different food chain environments and foodstuff, reports on the development and application of mathematical and computational tools in food research. Specific areas of interest were:
 o Rapid detection of foodborne pathogens
 o High throughput screening
 o Norovirus and other viral agents in foods
 o Antimicrobial/biocide resistance
 o Microbial risk analysis: assessment, management and communication
 o Microbiology of fermented foods and beverages
 o Food defense

Food contamination
 o Mycotoxins
 o Intestinal microbiota and host health
 o Hygienic design of food manufacturing lines
 o Epidemiology of foodborne pathogens
 o Spoilage of soft drinks (with increasing levels of nutrients)
 o Biofilms
 o Cross-contamination
 o Beneficial microbes
 o Food parasites
 o Microbial nutrition; probiotics
 o Bacterial and fungal species: Yersinia, Bacillus, Staphylococcus, Listeria, Salmonella, Escherichia coli, Vibrio, Campylobacter, Brucella, Mycobacterium, Clostridium, Streptococcus, and others; Aflatoxins and other microbial-derived toxins; Norovirus, Rotavirus, Hepatitis virus and other viral agents

Food physics
Topics: understanding and measurement of the physical properties of foods and their constituents: structural, rheological, textural, optical, electrical, thermodynamic, flowing, acoustic, mechanical…, how they change during processing, the relationship between the properties of their constituents (water, proteins, fats, oils, gasses, and minor constituents like vitamins and minerals) and their macroscopic properties (texture, taste, smell, colour, nutritional and health impact), or the developments of purely physical ways of treating foods, either thermal or non-thermal. Specific areas of interest are:
 o Thermal modification of foods: heat-moisture treatment, annealing, microwave heating, osmotic pressure treatment …
 o Non-thermal modification of foods: ultrahigh-pressure treatments, instantaneous controlled pressure drop, high-pressure homogenizers, dynamic pulsed pressure, pulsed electric fields, freezing, thawing…
 o Multiscale computer simulation and mathematical modeling of food structures
 o Novel microscopy, image analysis, and characterization techniques
 o Soft matter physics applied to food materials
 o Colloidal structures, their interactions and relationship with food stability and overall macroscopic properties
 o Modern technologies for sensory analysis
 o Relationship between physical properties of food and consumer preferences

Food analysis
Topics: analysis of foods and their constituents (amino acids, peptides, proteins, phenolic compounds, carbohydrates, DNA fragments, vitamins, functional ingredients or nutraceuticals, toxins, pesticide and drug residues, industrial, processing and packaging contaminants, additives, allergens, antibiotics, nanoparticles,…) by the use of analytical and imaging techniques and methods, in the context of the assessment of food structure, quality, safety, traceability, origin, authenticity, health benefits of certain constituents;…; works featuring the analysis of large amounts of data generated by different techniques or time series of many variables (chemometrics). Specific areas of interest were:
 o Instrumental techniques: biological, separation, spectroscopic, rheological, thermal, radiochemical, electrochemical, miniaturized microfluidic systems, modern foodomics and or systems biological approaches…
 o Imaging techniques: optical, confocal, electron, atomic force microscopies…
 o Analysis of sensory properties of foods
Food processing and packaging
Topics: established and novel processing and packaging technologies applied for delivering foods that last longer before spoiling (preservation), and that are available, safe, nutritious, and convenient, while minimizing environmental impact. Specific areas of interest were:
- Active and intelligent packaging
- Migration and potential health effects of packaging-associated chemicals of concern (Bisphenol-A, semiconductor)
- Modified atmosphere packaging
- Established and modern processing and preservation technologies: drying, cooling, freezing, heating, salting, fermentation, pasteurization, additives addition, irradiation, hurdle technology, use of high-pressure and pulsed electric field processing, dense phase carbon dioxide, ozone, ultrasounds, cold plasma, IR technologies, natural antimicrobials, oxygen depleted storage, microwave heating, low shear extrusion...
- Green technologies: supercritical fluid extraction, membrane technology, bioconversions...
- Biorefinery in the production of food components (proteins, carbohydrates, fats...)
- Dietary, health, and environmental concerns related to food processing
- Waste reduction in food processing and valorization of by-products

Food engineering and hygienic design
Topics: (hygienic) design and (safe) operation of food plants, including engineering tools for assessing and managing risks. Specific areas of interest were:
- Heat, mass transfer and fluid flow in food processing
- Artificial intelligence in food research and industry
- Mathematical modelling and software development for food research and industry
- Finding, correcting and preventing hazards in food industry: Hazard Analysis and Critical Control Point (HACCP), Microbial Risk Assessment (MRA)...

Environmental impact of food production and consumption
Topics: environmental impact of the food supply chain (carbon and water footprint, biodiversity, land use...), for each of the food groups. Specific areas of interest were:
- Food waste impact on climate, water, land and biodiversity
- Ways of reducing environmental impact
- Environmental impact of meat production

Foods of plant origin
Topics: plant, animal, crop or soil science relevant to the production of foods of plant origin: cereals, legumes, fruit and vegetables, sugar crops. Specific areas of interest were:
- Understanding phytobiomes for improved crop productivity
- Farming animal science: cattle, sheep, goats, horses, pigs, poultry
- Soil science

Sustainable farming systems
- Genetic and non-genetic crop improvement
- Plant and crop protection
- Crop models
- Improvement of water use
- Resistance to pests and disease
- Modification of crops for reducing waste
- Filling the gap between plant and crop physiology
- Stress in crops produced by changing environmental conditions

Foods of animal origin
Topics: animal, vegetal, soil or marine/aquatic science relevant in the production of foods of animal origin: meat, fish, milk and their derived products, eggs, insects...

The regular conference program was complemented with two Plenary Lectures:
“Highlighting natural value: physical and chemical approaches in food processing” by Isabel C.F.R. Ferreira, from the Mountain Research Centre (CIMO), ESA, Politechnic Institute of Bragança, Portugal
“Nonthermal processing technologies for food: Current applications and future perspectives” by Pedro Elez-Martínez, from the University of Lleida, Spain

We hope attendants and readers in general will find the content of this book of abstracts interesting, inspiring and useful and we look forward to seeing you in another fruitful edition of the conference in 2018.

The Organizing Committee
Food Factor I Barcelona General Coordinator
Formatex Research Center
C/Zurbarán 1, Planta 2, Oficina 1
06002 Badajoz
Spain