Simultaneous analysis of 400 pesticide residues in rice by GC-MS/MS and LC-MS/MS

Jonghwa Lee¹, Jung Hak Lee¹, Yongho Shin¹, Jiho Lee¹, Jeong Hee Sung¹, Eunhye Kim¹, Hyeri Lee¹ and Jeong-Han Kim¹

¹Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
²Geum River Environmental Research Center, National Institute of Environmental Research, Okcheon guns 29027, Republic of Korea

This study was aimed to develop an optimized and rapid multi-residue (400 pesticides in rice) method using gas and liquid chromatography-triple quadrupole mass spectrometry (GC-MS/MS and LC-MS/MS). For the sample preparation, citrate buffered QuEChERS (EN 15662) methodology was employed. The target analytes were extracted with acetonitrile and treated with magnesium sulfate, sodium chloride, trisodium citrate dehydrate and disodium hydrogen citrate sesquihydrate. The d-SPE (dispersive solid phase extraction) procedures were carried out with extracts before the analysis of GC-MS/MS (Electron impact ionization mode) and LC-MS/MS (Positive or negative electrospray ionization mode) without filtering procedure after high speed centrifugation (13,000 rpm) of d-SPE mixtures. LC-MS/MS analysis was performed using a gradient elution of water and methanol modified with formic acid and ammonium formate buffer. Detection in GC- or LC-MS/MS was carried out in scheduled selected reaction monitoring mode. To achieve the best specificity in GC-MS/MS, two different precursor ions per each compound were selected to produce product ion from each precursor on collision-induced dissociation optimization. Pressure pulse injected (2 µL, 40 psi) in GC system improved limit of detection significantly, compared with conventional injection. GC-MS/MS detected 192 compounds and LC-MS/MS detected 217 compounds. When the final extracts was concentrated and re-dissolved with toluene, not only sensitivity of target analytes increased but also some pesticides showed better peak shape in chromatographic separation. Quantification of each analyte was performed by plotting matrix matched calibration curves at concentration ranging from 0.002 to 0.2 mg/kg. Correlation coefficients (R²) of calibration curves were >0.99 for all target compounds. Limit of quantitation was in the range of 0.001 to 0.050 mg/kg. To evaluate validity of the method developed in this study, recovery tests were carried out with un-contaminated organic rice samples at spiking levels of 0.01 and 0.05 mg/kg (n=3). At the fortification level 0.01 mg/kg, 80.8-81.3% of the pesticides analyzed satisfied the recovery criteria of 70-120% (RSD ≤20%). At higher fortification level of 0.05 mg/kg, 89.1-88.9% of the pesticides were in the criteria. Higher matrix effects (>137%) were observed in GC-MS/MS data while the LC-MS/MS data had relatively low matrix effects (< 21%). In conclusion, the method developed for this study demonstrated to be efficient and rapid in multi-residue analysis of rice.

Keywords: pesticide multiresidues; GC-MS/MS; LC-MS/MS; rice

Hydrotextural and granulometric characterization of cassava during gari production

A. Escobar¹, E. Ronder¹, L. Dahooub², J. Ricci², D. Pabon³, T. Tran³, D. Dufour¹,², B. Cuq⁶, M. Delalonde⁶

¹ CIAT (International Center for Tropical Agriculture), AA6713, Cali, Colombia
² CIRAD (Centre de coopération internationale en recherche agronomique pour le développement, Persyst department, UMR QualiSud), 34398 Montpellier, France
³ UFR des Sciences Pharmaceutiques et Biologiques (Université Montpellier, UMR QualiSud), 15 avenue Charles Flahault, BP. 14491, F-34093 Montpellier Cedex 5, France
⁴ Universidad del Valle (Univalle), A.A. 25360, Cali, Colombia
⁵ Cassava and Starch Technology Research Unit (CSTRU), National Center for Genetic Engineering and Biotechnology (BIOTEC), Kasetsart University, Bangkok, Thailand
⁶ UMR 1208 Ingénierie des Agropolymères et Technologie Emergent IATE (INRA-Montpellier SupAgro), 2 place Pierre Viala, 34060 Montpellier, France

* Corresponding author: Tel +57 (2) 4450000 Ext: 3296; E-mail: a.esobar@cgiar.org

Gari is a staple food in several Western African countries. It is a cassava traditional product, made through successive operations such as peeling, rasping, fermentation/pressing, sieving, and roasting (cooking/drying). In West Africa, there is a large variability of gari products, characterized by a large range of characteristics, depending on the process. Several works showed that rasping, fermentation, pressing and roasting operations are key steps that impact physico-chemical and sensory properties of gari.

The objective of this work was to investigate the relationships between process, structure, and properties during the production of Gari. Relevant physicochemical characteristics of the product during the different steps of transformation of cassava into gari were measured. The hydro-textural and granulometric characteristics are followed at the same time to appreciate the impact of the successive operations of pressing/fermentation/sieving on the product qualities.

The obtained results showed that time of fermentation didn’t have any impact on the final water content of the pressing cake. The granulometric analysis showed that the time of fermentation and the pressing did not change the particles size distribution. Indeed the fresh pulp obtained just after rasping and the fermented/pressed pulp had the same particles size distribution. This observation could be due to either (i) the presence of an excess of water that does not allow the agglomeration of the vegetal tissue pieces during sieving or to (ii) the reduction of the initial cell sizes during pressing.

The projection on the hydro-textural diagram of the physicochemical characteristics concerning the different intermediate products, showed that cassava roots and all transformed pulps, were quasi-saturated with liquid (water). This observation highlights that the pressing operation counter-balance the hydro-textural differences generated during fermentation. Moreover, the results obtained in this work will contribute to propose a fine description of the product just before the roasting step.

Keywords: Gari, cassava, hydro-textural, physicochemical characteristics
Book of Abstracts

2-4 November 2016, Barcelona / Spain

THE FOOD FACTOR I
Barcelona Conference

Established, emerging and exploratory food science and technology.

http://www.foodfactor.org
Book of Abstracts

The Food Factor I Barcelona Conference, 2-4 November 2016, Barcelona (Spain)
INTRODUCTION

This book contains a selection of the abstracts that were accepted for presentation at The Food Factor I Barcelona Conference, Established, emerging and exploratory food science and technology, which was held at the University of Barcelona, Spain, from 2 to 4 November 2016.

The first edition of this Food Factor Conference gathered around 250 participants, coming from more than 45 countries. And around 280 works were presented at the conference. This was a more than satisfactory level of attendance for this first research forum, especially in the context of a global budget constraint.

The organization called for research papers dealing with the following topics:

Food chemistry and biochemistry
Topics: structure and function of major and minor components (either nutrient or non-nutrient) of foods, the biochemical changes produced during handling, storage, post-harvest/mortem processing, distribution or due to domestic conditions, and their impact on nutritional, physiological, sensorial, or toxico-logical properties and safety; Reports on new or improved techniques or methods for addressing these topics or on the chemistry of food contacting materials. Specific areas of interest were:
 o Food bioactives
 o Chemistry of food additives and preservatives
 o Chemical analysis for the determination of authenticity and origin of foods
 o Biochemical changes in cereal grains and legumes due to postharvest conditions and treatments (storage, germination, fermentation…)
 o Biochemical changes in postharvest fruits and vegetables with impact in quality
 o Biochemical changes produced in the conversion of muscle into meat and fish
 o Biochemistry of the biosynthesis of milk components
 o Biochemical changes of the transformation of milk into dairy products
 o Browning reactions in foods
 o Lipid peroxidation
 o Computational chemistry in food research
 o Chemistry of food packaging and food-handling materials

Food microbiology
Topics: microorganisms that are related to human nutrition and health: those used to make foods or whose use and/or consumption can improve food production or host health; the detection, identification and quantification of those that pose a threat to food safety or quality (also applied to microbial toxins and metabolites and foodborne viruses); the study of their biology (biochemistry, ecology, genetics, physiology…); their role in various food processing methods and in food spoilage; their susceptibility to different physical or chemical agents, processing or packaging methods; or their interaction with different food chain environments and foodstuff, reports on the development and application of mathematical and computational tools in food research. Specific areas of interest were:
 o Rapid detection of foodborne pathogens
 o High throughput screening
 o Norovirus and other viral agents in foods
 o Antimicrobial/biocide resistance
 o Microbial risk analysis: assessment, management and communication
 o Microbiology of fermented foods and beverages
 o Food defense

Food contamination
 o Mycotoxins
 o Intestinal microbiota and host health
 o Hygienic design of food manufacturing lines
 o Epidemiology of foodborne pathogens
 o Spoilage of soft drinks (with increasing levels of nutrients)
 o Biofilms
 o Cross-contamination
 o Beneficial microbes
 o Food parasites
 o Microbial nutrition; probiotics
 o Bacterial and fungal species: Yersinia, Bacillus, Staphylococcus, Listeria, Salmonella, Escherichia coli, Víbrio, Campylobacter, Brucella, Mycobacterium, Clostridium, Streptococcus, and others; Aflatoxins and other microbial-derived toxins; Norovirus, Rotavirus, Hepatitis virus and other viral agents

Food physics
Topics: understanding and measurement of the physical properties of foods and their constituents: structural, rheological, textural, optical, electrical, thermodynamic, flowing, acoustic, mechanical…, how they change during processing, the relationship between the properties of their constituents (water, proteins, fats, oils, gasses, and minor constituents like vitamins and minerals) and their macroscopic properties (texture, taste, smell, colour, nutritional and health impact), or the developments of purely physical ways of treating foods, either thermal or non-thermal. Specific areas of interest are:
 o Thermal modification of foods: heat-moisture treatment, annealing, microwave heating, osmotic pressure treatment …
 o Non-thermal modification of foods: ultrahigh-pressure treatments, instantaneous controlled pressure drop, high-pressure homogenizers, dynamic pulsed pressure, pulsed electric fields, freezing, thawing…
 o Multiscale computer simulation and mathematical modeling of food structures
 o Novel microscopy, image analysis, and characterization techniques
 o Soft matter physics applied to food materials
 o Colloidal structures, their interactions and relationship with food stability and overall macroscopic properties
 o Modern technologies for sensory analysis
 o Relationship between physical properties of food and consumer preferences

Food analysis
Topics: analysis of foods and their constituents (amino acids, peptides, proteins, phenolic compounds, carbohydrates, DNA fragments, vitamins, functional ingredients or nutraceuticals, toxins, pesticide and drug residues, industrial, processing and packaging contaminants, additives, allergens, antibodies, nanoparticles….) by the use of analytical and imaging techniques and methods, in the context of the assessment of food structure, quality, safety, traceability, origin, authenticity, health benefits of certain constituents…; works featuring the analysis of large amounts of data generated by different techniques or time series of many variables (chemometrics). Specific areas of interest were:
 o Instrumental techniques: biological, separation, spectroscopic, rheological, thermal, radiochemical, electrochemical, miniaturized microfluidic systems, modern foodomics and/or systems biological approaches…
 o Imaging techniques: optical, confocal, electron, atomic force microscopies…
 o Analysis of sensory properties of foods
The Food Factor I Barcelona Conference
Barcelona (Spain), 2-4 November 2016

Food processing and packaging
Topics: established and novel processing and packaging technologies applied for delivering foods that last longer before spoiling (preservation), and that are available, safe, nutritious, and convenient, while minimizing environmental impact. Specific areas of interest were:
- Active and intelligent packaging
- Migration and potential health effects of packaging-associated chemicals of concern (Bisphenol-A, semicarbazide…)
- Modified atmosphere packaging
- Established and modern processing and preservation technologies: drying, cooling, freezing, heating, salting, fermentation, pasteurization, additives addition, irradiation, hurdle technology, use of high-pressure and pulsed electric field processing, dense phase carbon dioxide, ozone, ultrasonics, cold plasma, IR technologies, natural antimicrobials, oxygen depleted storage, microwave heating, low shear extrusion...
- Green technologies: supercritical fluid extraction, membrane technology, bioconversions...
- Biorefinery in the production of food components (proteins, carbohydrates, fats…)
- Dietary, health, and environmental concerns related to food processing
- Waste reduction in food processing and valorization of by-products

Food engineering and hygienic design
Topics: (hygienic) design and (safe) operation of food plants, including engineering tools for assessing and managing risks. Specific areas of interest were:
- Heat, mass transfer and fluid flow in food processing
- Artificial intelligence in food research and industry
- Mathematical modelling and software development for food research and industry
- Finding, correcting and preventing hazards in food industry: Hazard Analysis and Critical Control Point (HACCP), Microbial Risk Assessment (MRA)...

Environmental impact of food production and consumption
Topics: environmental impact of the food supply chain (carbon and water footprint, biodiversity, land use...), for each of the food groups. Specific areas of interest were:
- Food waste impact on climate, water, land and biodiversity
- Ways of reducing environmental impact
- Environmental impact of meat production

Foods of plant origin
Topics: plant, animal, crop or soil science relevant to the production of foods of plant origin: cereals, legumes, fruit and vegetables, sugar crops. Specific areas of interest were:
- Understanding phytobiomes for improved crop productivity
- Farming animal science: cattle, sheep, goats, horses, pigs, poultry
- Soil science

- Sustainable farming systems
- Genetic and non-genetic crop improvement
- Plant and crop protection
- Crop models
- Improvement of water use
- Resistance to pests and disease
- Modification of crops for reducing waste
- Filling the gap between plant and crop physiology
- Stress in crops produced by changing environmental conditions

Foods of animal origin
Topics: animal, vegetal, soil or marine/aquatic science relevant in the production of foods of animal origin: meat, fish, milk and their derived products, eggs, insects...

The regular conference program was complemented with two Plenary Lectures:
“Highlighting natural value: physical and chemical approaches in food processing” by Isabel C.F.R. Ferreira, from the Mountain Research Centre (CIIMO), ESA, Polytechnic Institute of Bragança, Portugal
“Nonthermal processing technologies for food: Current applications and future perspectives” by Pedro Elez-Martínez, from the University of Lleida, Spain

We hope attendants and readers in general will find the content of this book of abstracts interesting, inspiring and useful and we look forward to seeing you in another fruitful edition of the conference in 2018.

The Organizing Committee
Food Factor I Barcelona General Coordinator
Formatex Research Center
C/Zurbarán 1, Planta 2, Oficina 1
06002 Badajoz
Spain