

A step by step guidelines to the construction of a conceptual model with the PARDI* method

*Problem, Actors, Resources, Dynamics, Interactions

M. Etienne, C. Le Page and G. Trébuil

Problem: a question to be examined collectively by the participants

- Here Designation of a facilitator in each group
 - Manage exchanges among members
 - Guarantee an equitable participation from every member
 - Ask each member to justify their choices & suggestions
 - Production of a set of diagrams easy to understand by all members

**** Agreement on a clear & concise <u>definition</u> of the problem**

- Do not be over ambitious!
- To limit the degree of system complexity to be taken into account

**** Agreement on the relevant boundaries of the system to be investigated**

- A piece of land: (sub-)watershed, irrigation scheme, « territory »
- A delimited social-ecological system, agricultural system

Actors: identify the main actors concerned by the problem under study

List of the actors who could or should play a role in managing the problem

Distinguish between the **Direct** & **Indirect** (influence) actors

Show the <u>linkages</u> between these actors

- Make this link explicit on a diagram (key & precise verbs)
- Bring actors with strong linkages close to each other on the diagram

**** Associate a management entity to each of these actors**

- A spatial one (field, herd, farm, catchment, province, etc.)
- Or not (market, commodity chain, credit system, etc.)

Stakeholder Diversity & Heterogeneity / Importance of issue & influence on the outcome (Grimble & Wellard, 1997)

Doi Tiew case study, Nan Province, Northern Thailand (Dumrongrojwatthana, 2011): LU conflict between types of herders & 2 forest management agencies (NKU & NNP)

Resources: what are the main resources & the crucial information needed for their sustainable use?

X List of the <u>key resources involved</u> in the question being examined

Group members to propose resources & justify their suggestions

**** Associate pertinent monitoring indicator(s) to each of the selected resources**

- Quantitative or qualitative ones
- More than one per resource if needed (if no agreement, etc.)

**** Any important <u>time unit</u> linked to resources?**

- Day, season, year (with specific characteristics), etc.
- Temporary vs perennial resources...

Dynamics: what are the main dynamics at play? How are they modified by the actors' actions?

**** What are the <u>main processes creating change</u>** in the sub-system & problem?

- Select among the key ecological, social, economic, policy, etc. ones
- ☑ If too many, rank 10 most important + select top 5 & assign codes

**** When several ecological processes are at work:** Need for specific diagrams? Such as:

- State transition (succession of states of the resource) diagram or
- Flow (of individuals, goods, materials) diagram

Distinguish between <u>two main kinds of</u> <u>dynamics</u>:

- Human activity-based ones (effects of human actions & techniques)
- Natural ones (based on the own evolution of the resource)

Examples of resource dynamics diagrams

1. Dynamics of reeds in Camargue wetlands (Mathevet et al.)

2. Lubéron biosphere reserve: vegetation transition diagram (M.Etienne)

Recapitulation: Based on the three diagrams produced in previous steps

\Re Any obvious gap(s)?

- Any activity or resource poorly documented (knowledge gap to be filled, if yes how?)? Specify
- Any important stakeholder forgotten & to be added? Specify

Any disagreement among group members?

- Need for further information to settle the debate? What kind?
- Proposed source of information (expert, field survey, etc.)?

Then move on to the final step: Construction of the interaction diagram

- △ A synthesis of the previous 3 steps...
- Focusing on the linkages between resources & their users

Interactions: Final conceptual model on how the stakeholders perceive the sub-system to function

First, locate the <u>key selected resources</u> at the centre of the diagram

Facilitator draws the list at the centre of the diagram

Show how each actor is using these resources

- Each arrow/interaction is characterized by an action verb precising the corresponding action performed by the actor

Key role of group facilitator in this final step

- Product easy to read set of relevant, agreed upon & clear interactions
- □ Be flexible to allow final corrections of gaps, precision of terms, etc.

Interactions: options for managing cases dealing with complex issues

1st option: produce an Interactions diagram per challenge

Same method as above is used for each challenge

2nd option: if no clearly identified challenge, then group the resources by categories &

- Rank these categories according to their relative importance/problem
- Participants select 3 or 4 most important resource categories
- Produce interactions diagrams for each selected resource categories &
- Add a step to merge these different sub-diagrams into a single one

Examples of PARDI Interactions diagram

1. Water management, Crocodile River Case, South Africa

2. Doi Tiew, Nan Forest-Farmland interface case

4. Camargue wetlands: Crops-Herds-Water user interactions

Selection of the spatial & time scales of the model

Criteria to be used when selecting scales:

- Must allow visualization of the main indicators selected by participants
- ☐ Take into account the average <u>size of management entities</u> & <u>precision</u> <u>level required</u> regarding main processes
- Based on <u>available information</u> & <u>means to fill knowledge gaps</u>
- Compatibility with gaming & computer simulation constraints

A tip: save the successive versions of your 4 diagrams = milestones of the co-construction process

- Use a recorder, observer, interactive board, sets of digital photos, etc.
- Refer to them later on in the ComMod process as needed.

Ex: Defining Time & Spatial scales in Causse Méjan

Towards a shared representation of the system to be managed .a common representation society resource environment ...changing individual ones? Stakeholders' arena environment From individual representations to... resource society

Use of PARDI outputs: taking the perspectives further

In a ComMod process

- Set-up a more <u>complete arena</u> of stakehodlers for <u>field testing</u> & improvement of the prototype conceptual model
- Convert the conceptual model into a <u>role-playing game</u> (RPG) as a way to submit it to the stakeholders for enrichment / validation / rejection
- Produce a set of formal <u>UML diagrams</u> from the PARDI ones as a step toward the implementation of a computer Agent-Based Model (ABM)

38 Use of PARDI experience/process to build a multi-stakeholder collaborative platform to

- Design, implement & assess a resource management plan
- Negotiate rules, coordinating mechanisms & monitoring indicators
- Agree on collaborative research priorities, etc.

Real world - Role-Playing Games (RPGs) & ABM in ComMod:

various kinds of associations

Co-construction & use of formal models with stakeholders in a ComMod sequence

1. Co-construction of a shared representation of the problem to be examined collectively

2. Collective visualisation of social & resource dynamics

3. Assessment & discussion of scenarios of change in context or stakeholders' practices

(Role-Playing Games and/or computer Agent-Based Models)

Dynamics of collective learning & decision-making processes about land / resource management in ComMod

Use of PARDI outputs: taking the perspectives further (2)

**** Comparison of the stakeholders' mental models on the problem/issue at stake**

- ☑ Build the diagrams with each key stakeholder individually for knowledge elicitation (and recognition of different knowledge systems), then
- Co-construct collectively a shared representation of the sub-system
- Comparative analysis & emergence of co-management of the resource

Importance of process facilitation skills

- Ensure mutual respect, conviviality & psychological safety to promote collective empowerment of the participants, equity, trust, learning
- Specific skills to anticipate unexpected stakeholder's reactions
- Be sensitive & responsive to power relations among the participants
- Pay attention to the process legitimacy & actors' representativeness
- Because of complexity & uncertainty: recall process objectives regularly.

3 références pour aller plus loin:

- Etienne M., 2009. Co-construction d'un modèle d'accompagnement selon la méthode ARDI : guide méthodologique. Cardère éditeur, Laudun, 71 p.
- # Etienne M., Du Toit D., Pollard, S., 2011. **ARDI: a co-construction** method for participatory modeling in natural resources management. Ecology and Society 16(1): 44. [online] URL: http://www.ecologyandsociety.org/vol16/iss1/art44/
- Mathevet R., Etienne M., Lynam T., Calvet C., 2011. Water management in the Camargue Biosphere Reserve: insights from comparative mental models analysis. Ecology and Society 16(1): 43. [online] URL: http://www.ecologyandsociety.org/vol16/iss1/art43/