Agritrop
Accueil

D 5.5.1.1. Final report on sensory testing in Africa for Group 1. Project AFTER “African Food Tradition rEvisited by Research”

Fliedel Geneviève, Maraval Isabelle, Lahon Marie-Christine, Forestier N., Grabulos Joël, Mestres Christian, Sacca Carole, Akissoé Noël H., Monteiro Maria Joao, Pintado Maria Manuela E., Amoa-Awua Wisdom, Oduro-Yeboah Charlotte, Ahmed Zahra S., Awad Sameh, Fathi M., Abozed S., Bechoff Aurélie, Tomlins Keith I.. 2015. D 5.5.1.1. Final report on sensory testing in Africa for Group 1. Project AFTER “African Food Tradition rEvisited by Research”. s.l. : Projet AFTER-Union Européenne, 26 p.

Rapport d'expertise
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
D5.5.1.1. Final report on sensory testing in Africa for Group 1.pdf

Télécharger (432kB) | Prévisualisation

Résumé : This deliverable concerns the sensory evaluation of the reengineered group 1 African products in the AFTER project. Specifically, it related to reengineered akpan and gowe from Benin, kenkey from Ghana and Kishk Sa'eedi in Egypt. Concerning reengineered akpan from Benin, the sensory evaluation was undertaken in Montpellier, France. Re-engineering of akpan has focused primarily on improvement of sanitary properties of the product, which was a great achievement and will allow producing Akpan on a larger scale in SMEs in Africa. Sensory evaluation of the Akpan products was carried out using CATA and JAR techniques that have been developed for use with consumers instead of a trained panel. Three Akpan products were tested by 102 consumers: Akpan added with 10% sugar (AS10), Akpan added with 3% spray-dried milk and 8.7% sugar (AMS8.7) and Akpan added with 3% spray-dried milk and 15% sugar (AMS15). Independently of the Akpan tasted, Acidity or Sweetness attributes were scored “Just About Right, as I like” by 56 to 77% of consumers. Odour perception was perceived differently, depending on consumers. However, Texture was found “Too weak”, too liquid by the majority of consumers (49 to 55%) and Taste “too strong” (46 to 54%). The most frequently CATA descriptors checked by consumers which better described Akpan products were: “Artificial”, “Floral”, “New/Different”, “Strong in Taste”, “Mealy”, followed by “Liquid”, “Drinking yoghurt”, “Sweet”, “Acidic”, and “Rough”. At the opposite, an ideal-yoghurt was described as Creamy, Natural, Good for health, Refreshing, Homogeneous, with a texture of a Bulgarian yoghurt-type, Thick, Sweet, Attractive, Nutritious and Milk taste. In terms of sensory evaluation, the three Akpan products did not significantly. If we remove the terms such as “artificial”, “strong in taste”, “floral” due to a manufacturing error (use of a few drops of citronella essential oil instead of citronella infusion as a traditional flavouring of Akpan in Benin), it remains the terms “mealy”, “liquid” “drinking yoghurt” that better describe the product and were previously used for describing traditional Akpan product. This suggests that sensory properties of the reengineered Akpan may not be acceptable to French consumers who prefer a product with a creamy, homogeneous, Bulgarian yoghurt-type taste. Gowe in Benin was not tested using sensory evaluation. Sensory testing of Gowe in Benin was not undertaken because this was planned to be undertaken in Europe. The reason is because the methodology used in sensory evaluation is independent of the location provided the samples are the same. However, the particular samples provided for French sensory testing contained a concentration of aflatoxin that was higher than the minimum EU allowable limit. It was not possible to repeat the sensory test in France because it would have taken too long to obtain a replacement supply from Benin and to repeat the processing (takes one week). In which case the samples would have been took different to enable a comparison. The sensory evaluation of kenkey was carried at the Food Research Institute, Ghana. Current trends in urbanization, and the increasing popularity of kenkey among consumers, require larger scale production with consistent quality. Testing was conducted to determine the sensory profile of white reengineered kenkey made using the optimum pre-process conditions of steeping time (30 and 45h), steeping temperature (30ᵒC and 35ᵒC) and dough fermentation time of 12 hours. The qualitative descriptive analysis showed that the sensory profile of white kenkey was dependent on preprocessing variables. Thus merely optimizing the pre-processing variables with regards to acid production and other readily measurable constituents though could shorten the production process could not guarantee the best product sensory quality. The results show that all the descriptors generated were appropriate for differentiating sensory qualities among samples and could be used for basic research and product development for white kenkey. Soft and sticky texture in white kenkey was highly appreciated. Sensory evaluation of Kishk Sa'eedi (KS) was undertaken in Egypt. KS is an Egyptian indigenous wheat-based fermented food prepared traditionally according to the method applied by Upper Egyptians. This work is done to characterize sensory properties and sensory profile of the reengineered KS. Quantitative descriptive analysis (QDA) coupled with principal component analysis (PCA) was used to study the interrelationship among and between sensory attributes. 14 terms regarding appearance, odour, flavour and texture of the samples, was selected and a glossary describing each descriptor was developed. Three KS samples were profiled by 11 assessors using the chosen 14 sensory descriptors. Mean intensity ratings of the descriptive attributes showed that there were significant differences (p<0.05) within KS samples for all the 14 attributes tested. In general, high ratings for creamy colour, fresh odour, KS taste and fracturability are considered as positive effects that would be favoured by panellists while increase in caramel colour, sour taste, denseness and mouth coating are regarded as undesirable. The re-engineered KS sample perceived as less sour and less salty compared with the traditional ones. With regard to texture quality, reengineered sample was easy to fracture, and scored higher for grittiness. Meanwhile, the sample was rated lower than the traditional ones with regard to Kishk taste and fermented odour. Descriptive sensory evaluations between of the traditional and re-engineered KS samples showed that tastes i.e. sour, salty, and KS taste; fracutability and grittiness were discriminating attributes. Fermented odour, colour i.e. creamy and caramel; presence of fissure and presence of bran were least discriminating. Evaluation of the KS sensory characteristics provide in depth understanding of the sensory quality criteria as perceived by the sensory trained panel. The present study showed that substantial differences in sensory character were noted between the traditional and re-engineered KS in particular, differences in colour, fresh odour, KS taste, fracutability and mouth coating. This work showed that the application of QFD and PCA techniques could provide the useful information to KS and helped to identify the importance of product attributes. In conclusion the sensory evaluation showed clear sensory differences between the traditional and reengineered products relating to akpan from Benin, kenkey from Ghana and Kishk Sa'eedi from Egypt. Other deliverables will report on the acceptance by consumers.

Classification Agris : U30 - Méthodes de recherche
Q04 - Composition des produits alimentaires

Agences de financement européennes : European Commission

Programme de financement européen : FP7

Projets sur financement : (EU) African Food Tradition Revisited by Research

Auteurs et affiliations

  • Fliedel Geneviève, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Maraval Isabelle, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Lahon Marie-Christine, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Forestier N.
  • Grabulos Joël, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Mestres Christian, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Sacca Carole, UNB (BEN)
  • Akissoé Noël H., UNB (BEN)
  • Monteiro Maria Joao, Universidade Catolica Portuguesa (PRT)
  • Pintado Maria Manuela E., Universidade Catolica Portuguesa (PRT)
  • Amoa-Awua Wisdom, Food Research Institute (GHA)
  • Oduro-Yeboah Charlotte, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Ahmed Zahra S., National Research Center El-Behoot (EGY)
  • Awad Sameh, Faculty of Agriculture (EGY)
  • Fathi M.
  • Abozed S.
  • Bechoff Aurélie, University of Greenwich (GBR)
  • Tomlins Keith I., University of Greenwich (GBR)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/586331/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-04-12 ]