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ABSTRACT Mycoplasma capricolum subsp. capripneumoniae (Mccp) is a common pathogen of goats that causes
contagious caprine pleuropneumonia.We closed the gap and corrected rRNA operons in the draft genome of Mccp
M1601: a strain isolated from an infected goat in a farm in Gansu, China. The genome size of M1601 is 1,016,707 bp
with a GC content of 23.67%.We identified 915 genes (occupying 90.27% of the genome), of which 713 are protein-
coding genes (excluding 163 pseudogenes). No genomic islands and complete insertion sequences were found in
the genome. Putative determinants associated with the organism’s virulence were analyzed, and 26 genes (including
one adhesion protein gene, two capsule synthesis gene clusters, two lipoproteins, hemolysin A, ClpB, and proteins
involved in pyruvate metabolism and cation transport) were potential virulence factors. In addition, two transporter
systems (ATP-binding cassette [ABC] transporters and phosphotransferase) and two secretion systems (Sec and signal
recognition particle [SRP] pathways) were observed in the Mccp genome. Genome synteny analysis reveals a good
collinear relationship betweenM1601 andMccp type strain F38. Phylogenetic analysis based on 11 single-copy core
genes of 31 Mycoplasma strains revealed good collinearity between M1601 and Mycoplasma capricolum subsp.
capricolum (Mcc) and close relationship amongMycoplasma mycoides cluster strains. Our genome-wide analysis of
Mccp M1601 provides helpful information on the pathogenic mechanisms and genetics of Mccp.
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Mycoplasma capricolum subsp. capripneumoniae (Mccp) is the causa-
tive agent for contagious caprine pleuropneumonia (CCPP), a major
infectious disease characterized by high morbidity in goats and its
ability to cause considerable economic losses in Africa and Asia. The
pathological lesions of CCPP are localized exclusively in the lungs and

pleura, and the pathological changes consist of a pleuropneumonia,
unilateral hepatization, pleuritis, and an accumulation of pleural fluid
(OIE 2016). The disease is now threatening disease-free countries and
has been listed by the World Organisation for Animal Health (OIE)
(Nicholas and Churchward 2012).

Mccp belongs to the genus Mycoplasma under the class Mollicutes.
Isolating Mccp requires a high level of expertise and special growth me-
dium. In addition, the organism is very fastidious and has slow growth.
Until now, only about half of countries, where clinical disease has been
reported, had isolated the causative organism (Manso-Silván et al. 2011).

In 2007, a severe contagious respiratory disease occurred in a goat
farm in theGansu Province of China that has spread to other provinces.
Themain symptomsof this diseasewere coughing andhigh fever,which
led to a morbidity rate of 62% and a mortality rate of 45%. The clinical
symptoms and pathological changes were similar to CCPP. The organ-
ism was isolated from lungs of sick goats and placed in improved
Thiaucourt’s medium, purified three times, and namedM1601. Biochem-
istry tests, 16S RNA sequence analysis, and animal pathogenicity tests
were performed to further confirm the Mccp strain (Guo et al. 2011).
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In 2011, the first draft genome of Mccp strain M1601 was released
(Chu et al. 2011). The genome of four other Mccp strains was reported
later (Dupuy and Thiaucourt 2014; Falquet et al. 2014), but virulence
factors of this important pathogen are still poorly understood. In this
study, the gap of M1601 draft genome was closed, and the rRNA
operon sequences were corrected to yield complete genomic sequences.
Comprehensive genomic analysis of this pathogen was conducted.
Putative determinants associated with Mccp virulence were identified
based on the comprehensive genome analysis. Finally, comparative and
phylogenetic analyses were performed. Understanding the supposed
virulence genes, genome features, and genetics of this strain would be
valuable in determining its pathogenic mechanisms and genetics.

MATERIALS AND METHODS

Bacterial growth and DNA extraction
Mccp M1601 was grown in improved Thiaucourt’s medium (PPLO
broth 21 g/liter, glucose 2 g/liter, sodium pyruvate 2 g/liter, 20% horse
serum, 25% yeast extract 100 ml/liter, 0.4% phenol red 5 ml/liter,
100 units of penicillin, and 0.01% acetic acid thallium) at 37�. The
100 ml mid-log phase culture was harvested by centrifugation at
12,000 · g for 30 min and resuspended in 10 ml PBS (0.01 M, pH
7.2). Subsequently, total genomic DNAwas extracted with a TIANamp
Bacteria DNA Kit (Tiangen, Beijing, China) according to manufac-
turer’s instructions.

Gap closure and rRNA operon sequences correction
The M1601 draft genome sequence with one gap cited in 760,982–
761,498 was previously described (Chu et al. 2011). Gap closure was
conducted as follows: The corresponding sequence was extracted from
MccpAbomsa-9231 sequence (NZ_LM995445) and used as a reference
template for assembly. The assembly was then corrected manually. The
gap consisted of 517 bp, and it was then inserted into the M1601 draft
genome. There are two sets of rRNA operon sequence in the genome,
one operon of M1601 strain was PCR amplified and sequenced
by Sanger method. Another operon sequence was deducted after per-
forming an assembly with the previous operon, being chosen as the
reference sequence. The corrected rRNA operon sequences
were then replaced in the corresponding M1601 sequence, yielding
complete genomic sequences (GenBank under accession number
NZ_CP017125).

Annotation and sequence analysis
The complete sequence was analyzed using Glimmer 3.0 (Delcher
et al. 1999) for open reading frames containing .30 predicted amino
acid residues. Transfer RNA (tRNA) and ribosomal RNA (rRNA)
genes were predicted using tRNAscan-SE (Lowe and Eddy 1997) and
Aragorn (Laslett andCanback 2004), andRNAmmer (Lagesen et al. 2007),
respectively. Insertion and deletion (InDel) detection was conducted
using LASTZ software (Harris 2007) to compare M1601 with Myco-
plasma capricolum subsp. capricolum (Mcc) reference strain 27343. The
best match results (,10 bp) were then extracted by using axtBest to
obtain the preliminary InDel results. The 150 bp (3 · SD) from up-
stream and downstream of the reference sequence InDel sites were
aligned and validated with the sample sequencing reads by BWA soft-
ware (Li and Durbin 2009). After filtering, the reliable InDel sites were
obtained. The genomic islands and insertion sequences were found by
using Path-DIOMB (Hsiao et al. 2003) and ISfinder (https://www-is.
biotoul.fr/), respectively.

The function annotation of the predicted protein-coding genes was
conducted by blasting based on the COG, KEGG, Swiss-Prot, TrEMBL,

and NCBI-NR databases. Pseudogenes were detected by BLASTN
analysis, and then the annotation was revised manually.

The putative virulence genes were identified by gene annotation and
reference studies (O’Riordan et al. 2003; Chastanet et al. 2004; Hames
et al. 2009; Bürki et al. 2015; Gründel et al. 2015). BLASTP searches
(E-value ,1e25) against the NCBI database were applied, and the
results were filtered by selecting the highest score of alignment (homol-
ogy identity.40% and minimal alignment length percentage.40%).
Core genes and specific genes were analyzed by CD-HIT software (Li
and Godzik 2006) for clustering similar proteins with a threshold of
50% pairwise identity and 0.7 length difference cutoff in amino acids.

Comparative and phylogenetic analysis
Genomic alignment of Mccp strains M1601 and F38 was conducted
using MUMmer (Delcher et al. 2003) and LASTZ (Harris 2007).
Genomic synteny was performed based on the alignment results.
Multiple sequence alignments of single-copy of core genes among
31 Mycoplasma strains were performed using MUSCLE (Edgar
2004). The phylogenetic tree was constructed by TreeBeST (Nandi
et al. 2010) using themaximum likelihoodmethod with 1000 bootstrap
replicates. The genome sequences of other Mycoplasma strains were
downloaded from the NCBI database.

Data availability
The genome sequence data were deposited in GenBank with the
accession number NZ_CP017125. Supplemental Material, Figure S1
shows a comparison of genomic structure between Mccp strain
M1601 and Mcc ATCC 27343. Figure S2 shows a comparison of com-
plete genome betweenMccp strainsM1601 and F38. Table S1 shows an
overview of the predicted results of the Mccp M1601 genome. Table S2
shows the genes involved in transport and metabolism. Table S3 shows
the transporter system of Mccp. Table S4 shows the proteins involved
in the secretion system. Table S5 shows the predicted genes involved in
DNA replication. Table S6 shows the predicted genes involved in tran-
scription. Table S7 shows the predicted genes involved in translation.
Table S8 shows the InDel analysis between the M1601 genome and
reference strain sequence. Table S9 shows the genome information of
Mccp strain M1601 and four other partially annotated Mccp strains.

RESULTS

Genome features
TheMccp strainM1601genomecontains a single, circular chromosome
of 1,016,707 bp with GC content of 23.67%, in line with the low GC
content characteristics of Mycoplasma (Figure 1). A total of 915 genes
were identified and occupy 90.27% of the genome. The genome con-
tains 713 protein-coding genes (excluding 163 pseudogenes), six rRNA
genes, 30 tRNA genes, and three ncRNA genes (Table S1). Among the
protein-coding genes, 461 genes (50.38%) were assigned into specific
functional clusters of orthologous groups families, comprising 21 func-
tional categories (Table 1). No genomic islands and complete insertion
sequences were detected in the genome. The genome sequence data
were deposited in GenBank with the accession number NZ_CP017125.

Virulence factors
Adhesion is the first step of Mycoplasma infection of host cells; thus,
adhesion proteins can be regarded as virulence-associated proteins
of the pathogen (Razin et al. 1998). One adhesion-related gene
(XDU01000267) was found in the Mccp M1601 genome. The capsule
is often thought to be an important virulence factor for some patho-
genic bacterium, such as Pasteurella multocida (Boyce and Adler 2000)

2900 | S. Chen et al.

https://www-is.biotoul.fr/
https://www-is.biotoul.fr/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/FigureS1.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/FigureS2.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS1.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS2.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS3.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS4.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS5.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS6.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS7.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS8.xls
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS9.doc
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300085/-/DC1/TableS1.doc


and Mycoplasma mycoides subsp. mycoides SC (March and Brodlie
2000; Pilo et al. 2007). The genome contains a gene cluster
(XDU01000075, XDU01000076, XDU01000814, and XDU01000816)
involved in the synthesis of the capsule, comprising genes encoding
glycosyltransferase, UTP–glucose-1-phosphate uridylyltransferase, and
diacylglyceryl transferase (Table 2).

ClpC is an ATPase that plays an important role in cell adhesion and
invasion and is responsible for the virulence of L. monocytogenes (Nair
et al. 2000). ClpB is a component of stress response in microorganisms
that serve as a chaperone for preventing protein aggregation and assist-
ing in the refolding of denatured proteins. ClpBwas also involved in the
virulence of L. monocytogenes (Chastanet et al. 2004). Although clpC
gene was not found, one clpB gene (XDU01000405) was identified in
the genome of Mccp, and it shows 72% identity with the ClpB protein
of L. monocytogenes. Thus, ClpB may be a virulence factor of Mccp.

Variable surface proteins (Vsps) have been thought to play an
important role in the process of antigenic variation and immunity
evasion, and are regarded to be a pathogenic factor for Mycoplasma
(Bürki et al. 2015). VmcC is reported to play key role in the antigenic
variation and survival of Mcc (Wise et al. 2006), and P60 surface
lipoprotein is considered to be related to virulence of M. hyopneumo-
niae (Seymour et al. 2012). One VmcC lipoprotein (XDU01000612)
and P60 surface lipoprotein (XDU01000037) were found in the ge-
nome. These identified lipoproteins may be associated with Mccp
virulence.

Hemolysins are toxic proteins that cause the lysis of erythrocytes by
forming pores in their membranes (Goebel et al. 1988). Hemolysin A
(XDU01000067) was identified in the Mccp genome, and it could be
considered as a virulence factor.

Pyruvate is the first product in the process of aerobic metabolism of
glucose. It goes to the mitochondrion to produce acetyl-CoA under

catalysis of pyruvate dehydrogenase (PDH) enzyme complex. Lipoate–
protein ligase (LplA) and PDH complex (composed of PDH E1, lipoic
acid acetyltransferase E2, and dihydrolipoamide dehydrogenase E3)
play a critical role in pyruvate metabolism (Patel et al. 2014). A mutant
of dihydrolipoamide dehydrogenase E3 was significantly attenuated in
M. gallisepticum in vivo (Gates et al. 2008). Recent research indicated
that pyruvatemetabolism component PDH subunits may contribute to
the pathogenesis of M. pneumoniae infections by interaction with hu-
man plasminogen (Gründel et al. 2015). LplA ligates lipoic acid from
the host to the PDH E2 component to generate E2-lipoamide, which
plays an important role in pyruvate metabolism. L. monocytogenes
lacking LplA1 were defective for growth in the host cytosol and atten-
uated 300-fold compared with wild-type strain (O’Riordan et al. 2003).
Four PDH complex genes and two lplA genes were identified in the
genome, and they were regarded to be virulence factors (Table 2).

Glycerol metabolism and production of H2O2 are considered to be
associated with Mycoplasma virulence (Vilei and Frey 2001; Hames
et al. 2009). The glpF-glpK-glpD (XDU01000242, XDU01000243, and
XDU01000244) and gtsA-gtsB-gtsC gene clusters (XDU01000486,
XDU01000487, and XDU01000488), which are involved in glycerol
metabolism, were identified in the Mccp genome.

Magnesium transporters MgtA and MgtE have been showed to be
related to virulence of some bacteria (Groisman et al. 2013), such as
Aeromonas hydrophila (Merino et al. 2001). In theMccp genome, three
magnesium transporters genes (XDU01000099, XDU01000796,
XDU01000848) were found. Potassium transporter TrkA is related to
virulence of Salmonella (Su et al. 2009), and sodium transporter is
reported to be associated with the virulence of Yersinia pestis
(Minato et al. 2013) and Pseudomonas aeruginosa (Ueda and Wood
2008). One potassium transporter TrkA (XDU01000743) and one so-
dium transporter (XDU01000742) were found in the genome, which

Figure 1 Genome architecture of Mccp strain
M1601. The dnaA gene is at position 1. Moving
inside, the first circle shows the position coordi-
nates of genome sequence. The second circle
represents the locations of the predicted coding
sequences on the plus and minus strands. The
third circle shows the results of color-coded
CDS by COG categories annotation (see the de-
scription in the bottom right corner). The fourth
circle shows the presence of orthologous genes in
five Mccp strains and Mcc reference strain 27343.
The fifth circle represents the location of sup-
posed virulence genes. The sixth circle represents
the mean centered G + C content of the genome.
The average GC is baseline, outwardly projecting
expresses higher than the average, and inwardly
projecting means below. The seventh circle
shows the GC (G + C) skew plot. Green: above
zero; purple: below zero.
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are involved in potassium and sodium uptake, respectively. These pro-
teins may be associated with the virulence of Mccp.

Transporter, metabolism, and secretion
The biosynthetic capacity of Mycoplasma is severely poor, and most
nutrition is obtained from the host during the intracellular lifestyle
(Roger and Robin 1998). Thus, many genes are involved in Myco-
plasma transporter and metabolism systems. In the M1601 genome,
175 genes were identified, which were related to transporter and me-
tabolism systems (Table S2). In total, 164 genes were involved in amino
acid, nucleotide, carbohydrate, inorganic ion, and coenzyme transport
and metabolism, whereas 11 other genes were related with lipid and
secondary metabolite biosynthesis, transport, and catabolism. Two
transporter systems, ABC transporter system and the phosphotransfer-
ase system (PTS), were identified. Forty-eight genes encode the ABC-
type transporter systems including 22 ABC transporter ATP-binding
proteins, 22 ABC transporter permeases, two ATPase components, and
two other proteins. By contrast, 18 genes encode for the PTS transport
system (Table S3).

Protein secretion systems are also important for Mycoplasma sur-
vival in the host. The Mccp encodes nine proteins that are involved in
protein secretion systems, including the Sec and SRP pathways (Table
S4). The Sec system contains six proteins, SecA, SecD, SecE, SecG, SecY,
and YidC. SRP-docking proteins FtsY and ffh were identified to par-
ticipate in the SRP pathway. In addition, one lipoprotein signal pepti-
dase A8 (XDU01000432) was found, whereas the signal peptidase I
gene was absent.

Replication, transcription, and translation
In the Mccp genome, dnaA encoded by XDU01000001 binds to the
DnaA box as an ATP-bound complex at the origin of replication,
during the initiation of chromosomal replication. Fifty genes, which
encode DNA polymerase III, DNA helicase, DNA polymerase I, 59-39
exonuclease, endonuclease, repair protein, and NAD-dependent DNA
ligase, were found to be involved in replication, recombination, and
repair (Table S5).

In total, 27 genes (Table S6) were involved in transcription whereas
108 genes (Table S7) were related to translation, ribosomal structure,
and biogenesis. Transcription elongation and termination were regu-
lated by NusA, NusB, NusG, and GreA. GreA is a transcription elon-
gation factor which could prevent transcription arrest, and NusA can
induce transcription pausing, or stimulate anti-termination together
with NusB and NusG (Borukhov et al. 2005). Eight transcriptional
regulators were found in the Mccp genome, which include two RpiR
and DeoR, one ROK, GntR, HrcA, and Fur (Table S6). In addition,
50 ribosomal proteins, 21 tRNA synthetase genes, and 11 translation
factors were found in the genome (Table S7).

Comparative and evolutionary analysis
To reveal the genetic relationship between Mccp and Mcc, the Mccp
strain M1601 genome and Mcc reference strain ATCC27343
(NC_007633) were compared (Figure S1). The size of the Mcc
ATCC 27343 genome was 6684 bp shorter than the Mccp M1601
genome. For 870 genes in theMcc ATCC 27343, 79.43% of them are
observed in the Mccp genome. No large-scale insertion, deletions,
and inversions existed between these two genomes, whilst there
were 416 insertion/deletions found, these included 196 (47.12%)
insertions and 220 (52.88%) deletions (Table S8). The genome
comparisons among the sequenced Mccp strain M1601 and four
other annotated Mccp strains were also conducted and are listed in
Table S9.

In addition, the synteny of M1601 and the reference genome Mccp
F38 was analyzed. Three blocks were developed with 99.86% identity.
The block type exhibited forward collinearity, non-translocation, and
non-inversion.Relative to theF38 genome, 870bpdeficiencyand446bp
insertion existed between the first two blocks and the last two blocks in
M1601. Therefore, a good collinear relationship exists between M1601
and F38 (Figure S2).

A phylogenetic tree based on 11 single-copy core genes of 31Myco-
plasma strains was constructed (Figure 2). The results indicated a close
relationship between Mccp M1601 and four other strains. All strains
of Mccp, Mycoplasma mycoides subsp. mycoides SC (MmmSC),

n Table 1 Functional category in COG of Mccp

Code Functional category F38 M1601 Common

C Energy production and conversion 25 25 25
D Cell cycle control, cell division, chromosome partitioning 5 5 5
E Amino acid transport and metabolism 32 30 30
F Nucleotide transport and metabolism 29 29 29
G Carbohydrate transport and metabolism 42 41 41
H Coenzyme transport and metabolism 22 20 20
I Lipid transport and metabolism 13 13 13
J Translation, ribosomal structure and biogenesis 139 138 138
K Transcription 26 26 26
L Replication, recombination and repair 43 44 43
M Cell wall/membrane/envelope biogenesis 8 8 8
N Cell motility 2 2 2
O Posttranslational modification, protein turnover, chaperones 18 18 18
P Inorganic ion transport and metabolism 21 22 21
Q Secondary metabolites biosynthesis, transport and catabolism 2 2 2
R General function prediction only 34 32 32
S Function unknown 8 9 8
T Signal transduction mechanisms 13 13 13
U Intracellular trafficking, secretion, and vesicular transport 5 5 5
V Defense mechanisms 10 10 10
X Mobilome: prophages, transposons 3 3 3
— Total in COG 465 461 458
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M. mycoides subsp. capri (Mmc), Mcc, andM. leachii (Ml), belong to a
large M. mycoides cluster.

DISCUSSION
Adhering to host cell is a crucial step in the process of Mycoplasma
infection and colonization, and is an important aspect of the research of
pathogenic mechanisms. At present, several adhesion proteins of var-
iousMycoplasma species have been identified, such as variable surface
lipoproteins (Sachse et al. 2000), a-enolase (Song et al. 2012), VpmaX
protein (Zou et al. 2013) ofM. bovis, P50 ofM. hominis (Kitzerow et al.
1999), LppS of M. conjunctivae (Belloy et al. 2013), and P19 of
M. mycoides subsp. mycoides (Mmm) (Zhou et al. 2016). A previous
study reported that a hypothetical membrane protein encoded by the
0297 gene of Mccp strain C87001 showed significant adhesion on goat
bronchial epithelial cells (Bai et al. 2014). The XDU01000267 gene,
corresponding to homologous 0297 gene, may be an adhesion protein
of Mccp, but this finding needs further verification.

Vsps play an important role in Mycoplasma colonization and ad-
aptation to the host environment in different infection stages. Vsps are
also related to antigenicity and immune regulation of Mycoplasma
(Buchenau et al. 2010; Bolland and Dybvig 2012). Variable surface

lipoprotein gene cluster exists in many Mycoplasma genomes, such
asMmc,Mcc, andMmmSC. InM1601, oneVmcC and one P60 surface
lipoprotein were found, and both were considered to be potential vir-
ulence factors. In addition, proteins related to capsule synthesis and
pyruvate metabolism were also related with bacterial virulence (Boyce
and Adler 2000; O’Riordan et al. 2003; Gates et al. 2008; Gründel et al.
2015).We found two gene clusters involved in capsule synthesis and six
pyruvate-metabolism-related enzyme genes in the Mccp genome, and
all these genes may be associated with Mccp virulence.

At present, seven types of protein secretion systems in bacteria have
been identified (Abdallah et al. 2007). A signal peptide present at
N-terminal on the secreted protein via Sec pathway is required and
cleaved to the mature form (Beckwith 2013). Signal peptidases are
proteases that remove the N-terminal signal peptide of secreted pro-
teins in the endoplasmic reticulum. Signal peptidase I gene and lipo-
protein signal peptidase gene are found inMycoplasma species such as
M. conjunctivae (Calderon-Copete et al. 2009), M. hyopneumoniae
(Moitinho-Silva et al. 2012), M. pulmonis (Chambaud et al. 2001),
and M. synoviae (Vasconcelos et al. 2005). However, in the Mccp
M1601 genome, only one lipoprotein signal peptidase gene was found,
which was similar to M. bovis (Li et al. 2011). This finding indicated

Figure 2 Phylogenetic tree based on 11 single-
copy core genes of 31 selected Mycoplasma. The
phylogenetic tree was constructed by TreeBeST
using the maximum likelihood method with
1000 bootstrap replicates. The bootstrap num-
bers are given for each node. The tree is drawn
to scale, with branch lengths measured in the
number of substitutions per site. The Mccp strain
M1601 is highlighted by black circles.
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that Mccp may have the same mechanism of extracellular protein
secretion as M. bovis but different from M. pulmonis, M. hyopneumo-
niae, and M. synoviae.

DNA replication, recombination, and repair in the Mccp genome
were also analyzed, and 50 proteins were involved in these biological
processes. However, no typical mismatch-repair system (MutHLS)
genes were found. The error may be repaired mainly by RecF pathway
which including recombinational repair, the nucleotide excision repair
system and the base excision repair system as previously reported
(Carvalho et al. 2005).

M1601 andMcc strain ATCC27343 kept good collinearity, suggest-
ing closer genetic relationship between Mccp and Mcc. Good collinear
relationshipwasseen forMccpstrainsM1601andF38.Thephylogenetic
analysis indicated thatMccp,Mmc,Mcc,Mmm,andMlall belong to the
Mmcluster,which is inaccordancewith the result of collinearity analysis
and morphological and biochemical features.
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